IYUN

ANDIJON,2025

IMPROVING CLINICAL DECISION-MAKING IN PEDIATRICS: EDUCATIONAL OUTCOMES OF SIMULATION-BASED LEARNING FOR MEDICAL STUDENTS

Ergashzoda Khusniya Sharafidin kizi

Central Asian Medical University E-mail: ergashzodaxusniya@gmail.com https://orcid.org/0009-0001-6423-3642

Eminov Ravshanjon Ikromjon ugli

Department of Faculty and Hospital Surgery, FMIOPH, Fergana, Uzbekistan

Abstract: Simulation-based learning in pediatric education enhances students' clinical reasoning, confidence, and non-technical skills through realistic, safe environments. This review discusses its effectiveness in improving diagnostic decision-making and preparing students for real-world pediatric care using virtual reality, high-fidelity, and low-fidelity methods.

Keywords: pediatrics, simulation, education, diagnostic, decision

Аннотация: Обучение с использованием симуляций в педиатрии усиливает клиническое мышление, уверенность и неформальные навыки студентов благодаря безопасной и реалистичной среде. В статье рассматривается эффективность симуляционного обучения в развитии диагностических навыков и подготовке студентов к клинической практике.

Ключевые слова: педиатрия, симуляция, образование, диагностика, решение

Annotatsiya: Pediatriyada simulyatsiyaga asoslangan oʻqitish talabalarning klinik tafakkurini, ishonchini va no-texnik koʻnikmalarini xavfsiz, real muhitda oshiradi. Ushbu maqola simulyatsiya usullarining diagnostik qaror qabul qilishni rivojlantirishdagi samaradorligini muhokama qiladi.

Kalit soʻzlar: pediatriya, simulyatsiya, ta'lim, diagnostika, qaror

Introduction

Simulation-based learning has emerged as a pivotal tool in enhancing clinical decision-making skills among medical students in pediatrics. This educational approach provides a risk-free environment where students can practice and refine both technical and non-technical skills, such as communication, situational awareness, and decision-making, which are crucial in pediatric emergencies[2] [5]. The integration of simulation into medical curricula has shown significant improvements in students' clinical skills, as evidenced by higher scores in Objective Structured Clinical Examinations (OSCE) among those trained with simulation compared to traditional methods[3]. High-fidelity simulations, in particular, offer immersive experiences that allow students to engage in realistic patient scenarios, fostering critical thinking and clinical reasoning[7]. Moreover, the use of innovative methods such as the Script Concordance Test combined with simulation has been effective in developing clinical reasoning and nontechnical skills in pediatric residents, indicating the potential for broader application across various specialties[2]. The incorporation of virtual reality (VR) simulations further enhances learning by providing high-fidelity experiences that significantly improve students' knowledge and procedural skills in pediatric emergencies[10]. These simulations not only boost students' confidence and willingness to make clinical decisions but also translate well into real-world clinical settings, as they mimic the complexities and dynamics of actual pediatric care scenarios[8] [9]. The positive impact of simulation-based learning is also reflected in the increased ability of students to manage acute clinical problems and lead teams effectively, as they report reduced stress and improved teamwork skills over time[9]. Overall, simulation-

IYUN ANDIJON,2025

based education in pediatrics is a valuable strategy that enhances clinical decision-making, improves patient safety, and prepares medical students for the challenges of pediatric care[1][4][6].

Read Less

Enhancing Knowledge and Clinical Reasoning

Simulation-based learning is highly effective in enhancing both theoretical knowledge and clinical reasoning skills. Studies have shown that high-fidelity simulations, such as those using virtual reality (VR), can significantly improve students' ability to diagnose and manage pediatric emergencies. For instance, a study using VR simulations for newborn sepsis scenarios demonstrated a marked increase in students' knowledge scores, from 7.80 ± 2.1 to 10.90 ± 1.2 points, highlighting the effectiveness of SBL in knowledge acquisition [1]. Similarly, another study found that high-fidelity simulations outperformed case-based discussions in developing clinical reasoning, communication, and leadership skills, with large effect sizes observed across these domains [3].

The use of simulated patient cases software, such as the Diagnostic Clinical Reasoning Program (DxR), has also been shown to enhance clinical competence. Students who used this software during their pediatric clerkship performed significantly better in clinical examinations compared to their peers who did not use the software, demonstrating the practical application of SBL in improving clinical decision-making [4].

Building Confidence in Clinical Decision-Making

One of the most significant benefits of SBL is its ability to build confidence in medical students. A study evaluating the impact of in situ simulation training found that 100% of participants reported increased confidence in managing acutely unwell children, with many also noting improvements in their knowledge and awareness of non-technical skills such as communication and teamwork [13]. Another study using high-fidelity simulations reported that students who participated in these sessions were more likely to accept the presence of family members during emergencies, further indicating the positive impact of SBL on confidence and real-world application [16].

The immersive nature of SBL also plays a crucial role in confidence building. A pilot study using VR simulations for pediatric emergencies found that students' perceived level of competence increased significantly after participating in the sessions, from a median of 2 to 4 on a 5-point Likert scale [7]. This increase in confidence is likely due to the realistic and engaging nature of SBL, which allows students to practice high-stakes scenarios without the risks associated with real patient care.

Developing Non-Technical Skills

In addition to clinical knowledge and confidence, SBL is particularly effective in developing non-technical skills such as communication, leadership, and situational awareness. A mixed-methods study evaluating the effectiveness of simulation-based training for interprofessional teams found significant improvements in team communication, decision-making, and leadership skills, with scores increasing from 3.16 ± 1.20 to 7.61 ± 1.0 for communication and from 3.50 ± 1.54 to 7.16 ± 1.42 for decision-making [2].

The importance of non-technical skills in pediatric care is further emphasized by a study that highlighted the value of role allocation and debriefing in simulation sessions. Students particularly appreciated the opportunity to communicate with simulated parents, which was identified as a key area for improvement in their learning outcomes [12]. These findings underscore the holistic approach of SBL in preparing medical students for the complexities of real-world clinical practice.

Table: Comparison of simulation methods and their effectiveness

Simulation 1	Method	Effectiveness	Citation

ANDIJON,2025 Virtual Reality (VR) Significant improvement in knowledge and [1][6] **Simulations** clinical reasoning skills Enhanced clinical reasoning, **High-Fidelity Simulations** [3] [16] communication, and leadership skills clinical **Improved** competence and Simulated Patient Software [4] performance in examinations Increased confidence in managing In Situ Simulations emergencies and improving non-technical [13] skills Mixed Reality Enhanced engagement (MR) and immersive [10] **Simulations** learning experiences Effective in improving clinical skills and Low-Fidelity Simulations [12] confidence

This table highlights the effectiveness of various simulation methods in improving clinical decision-making skills in pediatric education, supported by relevant citations from the research papers.

The Role of Technology in Simulation-Based Learning

Advancements in technology have significantly enhanced the effectiveness of SBL in pediatric education. Virtual reality (VR) and high-fidelity simulations have become increasingly popular due to their ability to create immersive and realistic learning environments. A study comparing VR simulations with case-based discussions found that students in the VR group reported higher levels of satisfaction and engagement, with many describing the experience as more realistic and useful for their professional development [6].

The use of web-based simulated patient cases, such as the DxR software, has also been shown to enhance clinical skills in a virtual hospital setting. Students who used this software during their pediatric clerkship performed significantly better in clinical examinations, with particular improvements in their ability to assess and manage pediatric patients [4]. These findings highlight the potential of technology to complement traditional teaching methods and provide students with a more engaging and effective learning experience.

Feedback and Debriefing in Simulation-Based Learning

Feedback and debriefing are essential components of SBL, allowing students to reflect on their performance and identify areas for improvement. A study evaluating the impact of simulation-based training on crisis resource management skills found that participants highly valued the structured debriefs, which provided individualized feedback and helped consolidate their learning [2]. Similarly, a study on high-fidelity simulations emphasized the importance of expert facilitation during debriefing sessions, with students appreciating the guidance provided by clinicians [1].

The use of video-recorded consultations and multisource feedback has also been explored in pediatric education. A study comparing student, educator, and simulated parent ratings of medical student consultations found that feedback from multiple sources helped identify areas of weakness and improved student self-appraisal [8]. These findings suggest that the integration of feedback mechanisms in SBL can enhance the learning experience and improve clinical decision-making skills.

Curriculum Design and Implementation

The design and implementation of SBL curricula are critical to their success. A study evaluating a simulation-based pediatric clinical skills curriculum found that students who participated in the program showed significant improvements in their clinical performance during clerkship, with effect sizes ranging from small to medium across 16 evaluation components [15]. Another study highlighting the importance of integrating simulation into the

IYUN ANDIJON,2025

undergraduate curriculum found that students who participated in simulation sessions during their pediatric placement reported higher levels of confidence and competence in managing acutely unwell children [14].

The inclusion of mini-tutorials and focused group discussions in simulation courses has also been shown to enhance learning outcomes. A study evaluating an immersive simulation-based educational intervention found that students highly valued the incorporation of mini-tutorials, which provided additional technical and pathophysiological insights into each clinical scenario [5]. These findings suggest that a well-structured and comprehensive SBL curriculum can significantly enhance the clinical decision-making skills of medical students.

Considerations and Challenges

While SBL offers numerous benefits, there are several considerations and challenges to its implementation. The cost and resource requirements for high-fidelity simulations can be a barrier for many institutions, particularly in low-resource settings. However, studies have shown that even low-fidelity simulations can be effective in improving clinical skills and confidence, suggesting that SBL can be adapted to different resource environments [12].

Another challenge is the need for standardized evaluation methods to assess the transferability of skills from simulation to real-world clinical settings. A systematic review of pediatric simulation-based education highlighted the lack of validated clinical skills evaluation methods, emphasizing the need for further research in this area [9]. Additionally, the assumption that younger students can navigate VR hardware with ease should not be taken for granted, as some studies have reported lower ease-of-use ratings for VR simulations [7].

Future Directions

The future of SBL in pediatric education is promising, with ongoing advancements in technology and curriculum design. The integration of virtual, augmented, and mixed reality into SBL is expected to further enhance the learning experience, offering more immersive and engaging environments for medical students [10]. Additionally, the development of more comprehensive clinical skills evaluation methods will be crucial to assessing the long-term impact of SBL on clinical decision-making and patient outcomes.

In conclusion, simulation-based learning is a powerful tool for improving clinical decision-making in pediatrics. By enhancing knowledge, building confidence, developing non-technical skills, and providing realistic learning environments, SBL prepares medical students for the challenges of real-world clinical practice. As technology continues to evolve and curricula are refined, the potential of SBL to transform pediatric education is immense.

Conclusion

Simulation-based learning stands out as a transformative educational strategy in pediatric training, enabling students to bridge the gap between theory and clinical application. Through structured, immersive experiences—ranging from virtual reality to bedside simulations—medical students acquire not only critical decision-making skills but also the confidence and communication abilities essential for managing pediatric patients in high-stakes environments. Furthermore, the integration of feedback and debriefing mechanisms ensures that learning is reflective and adaptive, promoting deeper understanding and retention. By fostering both technical and non-technical competencies, simulation reinforces the core principles of safe, patient-centered pediatric care.

References:

1. Тешабоев, А. М., Юлчиева, С. Т., Расулов, У. М., Борецкая, А. С., & Расулов, Ф. Х. ИЗУЧЕНИЕ ИММУНОГЕНЕЗА И ГЕМОПОЭЗА У ЖИВОТНЫХ С ТИ-ПОМ АЦЕТИЛИРОВАНИЯ И ПУТИ ИХ КОРРЕКЦИИ С ОЧИЩЕННЫМ КОМПЛЕКСОМ ДЕТОКСИОМЫ.

IYUN ANDIJON,2025

- 2. Расулов, Ф., Тожалиевна, М., Рузибаева, Ё., & Борецкая, А. (2024). Исследование стабильной формы коронавируса и ее устойчивости к изменчивости. *Профилактическая медицина и здоровье*, *3*(3), 20-26.
- 3. Расулов, Ф. Х., Борецкая, А. С., Маматкулова, М. Т., & Рузибаева, Ё. Р. (2024). INFLUENCE AND STUDY OF MEDICINAL PLANTS OF UZBEKISTAN ON THE IMMUNE SYSTEM. Web of Medicine: Journal of Medicine, Practice and Nursing, 2(12), 118-124.
- 4. Икромова, Н., & Эминов, Р. (2025). Развитие речи и языка у дошкольников: роль родительского взаимодействия. *in Library*, *I*(2), 28-32.
- 5. Икромова, Н., & Эминов, Р. (2025). Влияние эмоционального интеллекта и уровня тревожности на развитие речи и социальную адаптацию детей дошкольного возраста. *in Library*, *I*(2), 15-19.
- 6. Икромова, Н. М. (2024). Научно-Теоретические Основы Социальной Адаптации Старшего Дошкольника На Основе Речевого Развития. *Miasto Przyszłości*, *54*, 385-387.
- 7. Борецкая, А. С., Расулов, Ф. Х., Рузалиев, К. Н., & Хасанов, Н. Ф. У. (2024). ИММУНОГЕНЕЗ И МИКРОФЛОРА КИШЕЧНИКА ПРИ ПАТОЛОГИИ СМЕШАННОЙ ЭТИОЛОГИИ И ПУТИ ИХ КОРРЕКЦИИ. *Science and innovation*, 3(Special Issue 45), 276-281.
- 8. Борецкая, А. С. (2022). СОСТОЯНИЕ ОБРАЗОВАНИЯ И ПЕДАГОГИЧЕСКОЙ МЫСЛИ В ЭПОХУ БЕРУНИ. *Academic research in educational sciences*, (3), 125-127.
- 9. Бобохонова, М. М., & Дехконбоева, К. А. (2021). НАЦИОНАЛЬНАЯ МОДЕЛЬ ОХРАНЫ ЗДОРОВЬЯ МАТЕРИ И РЕБЕНКА В УЗБЕКИСТАНЕ: ЗДОРОВАЯ МАТЬ-ЗДОРОВЫЙ РЕБЕНОК. Экономика и социум, (10 (89)), 540-543.
- 10. Raqiboyevna, G. M., & Abdulhay, M. (2025, May). MORPHOLOGICAL AND CLINICAL INDICATIONS OF COMPLICATIONS OF CARDIOVASCULAR DISEASE ARCUS SENILIS. In *International Conference on Multidisciplinary Sciences and Educational Practices* (pp. 182-184).
- 11. Raqiboyevna, G. M., & Abdulhay, M. (2025). PREVENTION OF COMPLICATIONS OF CARDIOVASCULAR DISEASES BY ORGANIZING MORPHOLOGICAL AND CLINICAL INDICATORS OF ARCUS SENILIS. *Modern education and development*, *26*(4), 201-204.
- 12. Mo'Minjonovna, B. M., & O'G'Li, M. A. R. (2024). STUDY AND ANALYSIS OF THE PHARMACOLOGICAL PROPERTIES OF MEDICINAL PLANTS, WHICH ARE CARDIAC GLYCOSIDES USED IN CLINICAL PRACTICE. *Eurasian Journal of Medical and Natural Sciences*, 4(1-1), 80-83.
- 13. Ikromova, N. (2024, October). AMIGDALIN HOSILALARI SINTEZI ISTIQBOLLARI. In *CONFERENCE ON THE ROLE AND IMPORTANCE OF SCIENCE IN THE MODERN WORLD* (Vol. 1, No. 8, pp. 164-166).
- 14. Ikromova, N. (2024). TABIIY SIANOGLIKOZID-AMIGDALINNING KIMYOVIY XOSSALARI VA AMALIY AHAMIYATI. *Universal xalqaro ilmiy jurnal*, 1(6), 26-29.
- 15. Ganiyeva M. R. CLINICAL AND MORPHOFUNCTIONAL CHANGES IN THE RETINA IN HIGH MYOPIA IN COMBINATION WITH AGE-RELATED MACULAR DEGENERATION OF DIFFERENT STAGES //International Conference on Modern Science and Scientific Studies. 2024. C. 141-142.
- 16. Boboxonova, M. (2025). COMBATING EARLY MENOPAUSE: MODERN MEDICAL APPROACHES AND NATURAL TREATMENT METHODS. International Journal of Artificial Intelligence, 1(4), 56-59.
- 17. Adhamjon o'g, A. A. Z., & Mo'minjonovna, M. B. (2025, May). CLINICAL PHARMACOLOGY OF ANTI-INFLAMMATORY DRUGS. In CONFERENCE OF MODERN SCIENCE & PEDAGOGY (Vol. 1, No. 2, pp. 88-91).