Сатвалдиева Э.А., Файзиев О.Я., Джалилов А.А., Ашурова Г.З

ИНТЕНСИВНАЯ ТЕРАПИЯ ХИРУРГИЧЕСКОГО СЕПСИСА У ДЕТЕЙ НА ФОНЕ БАКТЕРИАЛЬНОЙ ДЕСТРУКЦИИ ЛЕГКИХ

Ташкентский педиатрический медицинский институт

Цель исследования. Оценка эффективности ранней диагностики и интенсивной терапии хирургического сепсиса, развившегося на фоне бактериальной деструкции легких у детей на основе комплексного анализа клинико-лабораторных, бактериологических критериев и шкалы pSOFA.

Материалы и методы. Срок исследования - 2019г. - март 2021 гг. Объект исследования (n=24) - дети с хирургической патологией (бактериальная деструкция легких).

Результаты. Эффективность комплексной интенсивной терапии хирургического сепсиса отмечена в 91,6% случаях. В 2 случаях погибли дети младшего возраста в результате запоздалой диагностики и поступления с БДЛ, легочно-плеврально-медиастинальной формой, в связи с развитием рефрактерного септического шока.

Согласно анализу статистики сепсиса у детей, в США за 5 лет случаи тяжелого педиатрического сепсиса повысились с 45 до 81%, а случаи неонатального сепсиса возросли с 4,5 до 9,7 случаев на 1000 родов [18]. Для облегчения диагностики сепсиса у детей в последние годы были разработаны детские шкалы PSOFA, PELOD-2 (см. табл. 1). Они не обладают 100% специфичностью, но использование их поможет в ранней диагностике и терапии сепсиса. Сегодня в большинстве лечебно-профилактических учреждениях работают локальные протоколы АБТ на основе микробиологического мониторинга локальных патогенов.

последние десятилетия в качестве биомаркеров сепсиса было предложено более 200 соединений, в том числе маркеры острой воспалительной реакции провоспалительные цитокины, маркеры врожденного иммунного ответа, а также предшественники гормонов - прокальцитонин При сравнении диагностической значимости ПКТ и СРБ пришли к заключению, что большая надежность в диагностике сепсиса все же принадлежит ПКТ-тесту [10,20]. Обсуждается диагностическая значимость пресепсина, субстанции Р, лактата, тканевого фактора (ТF) как ранних предикторов сепсиса [1,5,13]. Однако, ввиду сложности патогенеза сепсиса и его гетерогенности, маловероятно, что единственный подходящий биомаркер будет когда-то найден. Из-за схожести формирования ответа на рецепторы ассоциированных клеток ни один маркер не

сможет со 100% специфичностью и чувствительностьюотличитьнеспецифическое повреждение клеток от инфекционного процесса [15].

Количество контролируемых клинических испытаний по проблеме педиатрического сепсиса очень мало и все они отражают нерешенность проблемы, отсутствие единой концепции и протоколов, доступных и надежных биомаркеров в педиатрии. До сих пор отсутствует универсальный биомаркер, чувствительный и специфичный на самых ранних стадиях сепсиса у взрослых и детей, простой в исполнении, дешевый и доступный в широкой диагностике для стран с различным уровнем экономики и финансирования здравоохранения

Цель работы - оценка эффективности ранней диагностики и интенсивной терапии хирургического сепсиса, развившегося на фоне бактериальной деструкции легких у детей на основе комплексного анализа клинико-лабораторных, бактериологических критериев и шкалы pSOFA.

Для определения предикторов сепсиса у хирургических пациентов были проанализированы клинические (среднее артериальное давление (АДср), частота сердечных сокращений (ЧСС), частота дыхания (ЧД), сатурация и т.д.) и лабораторные показатели в 1-2-е сутки (до 48 ч) идентификации сепсиса, 4 и 8 сутки интенсивной терапии. Тромбоцитопения констатировалась при количестве тромбоцитов

<100 000/мкл. крови, иммуноглобулинемия G - Результаты клинико-лабораторных исследовапри его уровне в сыворотке <7 г/л. Прокальцитонин определяли иммунофлуоресцентным методом на анализаторе «Triage® MeterPro» (Biosite Diagnostics, США). Анализ газов и электролитов крови проводили на анализаторе мощью пакета статистических программ Sta-«Stat Profile CCX» (Nova Biomedical, CIIIA). tistica 6.1 (StatSoft, USA, 2003).

ний представлены в таблице 2. На всех этапах интенсивной терапии проводился мониторинг основных органов жизнеобеспечения. Статистическая обработка данных выполнена с по-

Таблица 1

	Баллы						
Дисфункция			4				
	0	1	<u>2</u> Школа pSOF	3	4		
Респираторная							
PaO2/FiO ₂	> 400	300-399	200-299	100-199	< 100		
SpO2/FiO ₂	> 292	264-291	221-264	148-220	< 148		
Сердечно -сосудис Средн. артериальн		ние (мм	рт. ст) или вазоп	рессоры (мкг • кг ⁻¹ •м	ин ⁻¹)		
0- < 1 мес.	> 46	< 46					
1-11 мес.	> 55	< 55		Допамин > 5 мкг • кг ⁻¹ • мин ⁻¹	Допамин > 5 мкг • кг ⁻¹ • мин ⁻¹ Адреналин или норадреналин > 0,1 мкг • кг ⁻¹ • мин ⁻¹		
12-23 мес.	> 60	< 60	Допамин < 5 мкг • кг ⁻¹ • мин ⁻				
24-59 мес.	> 62	< 62	1 или добутамин в	Адреналин или			
60-143 мес.	> 65	< 65	любой дозировке	норадреналин < 0,1 мкг • кг ⁻¹ • -1 мин			
144-216 мес.	> 67	< 67					
> 216 мес.	> 70	< 70					
Почечная, креатин	ин (мг/д	л)					
0- < 1 мес.	< 0,8	0,8-0,9	1,0-1,1	1,2-1,5	> 1,6		
1-11 мес.	< 0,3	0,3-0,4	0,5-0,7	0,8-1,1	> 1,2		
12-23 мес.	< 0,4	0,4-0,5	0,6-1,0	1,1-1,4	> 1,5		
24-59 мес.	< 0,6	0,6-0,8	0,9-1,5	1,6-2,2	> 2,3		
60-143 мес.	< 0,7	0,7-1,0	1,1-1,7	1,8-2,5	> 2,6		
144-216 мес.	< 1,0	1,0-1,6	1,7-2,8	2,9-4,1	> 4,2		
> 216 мес.	< 1,2	1,2-1,9	2,0-3,4	3,5-4,9	> 5,0		
Гематологическая							
Тромбоциты х10 ⁹ /л	> 150	100-149	50-99	20-49	< 20		
Почечная							
Билирубин (мг/дл)	< 1,2	1,2-1,9	2,0-5,9	6,0-11,9	> 12		
Неврологическая							
Шкала ком Глазго*	15	13-14	10-12	6-9	< 6		

Материал и методы

Исследование проспективное, нерандомизированное, типа случай-контроль. Срок исследования - 2019- март 2021 гг. Критерии включения пациентов в исследование - признаки органной дисфункции (2+), прокальцитонин >0,5 нг/мл, PSOFA >3 баллов (табл.1), возраст дети до 18 лет, наличие необходимого объема Критерии обследования. исключения несогласие пациента или его родственников на участие в исследовании. В исследование был включен 24 пациента c бактериальной деструкцией легких. Средний возраст 5,9±1,5 лет. ИВЛ (SAVINA) длительностью более 48 часов осуществлялась 12 пациентам (50%). Длительность нахождения в ОРИТ составила, в среднем 15,3±5,6 дней. Микробиологический мониторинг с определением чувствительности микроорганизма к антибиотикам проводился до и на этапах лечения (мокрота, моча, альвеолярный аспират, кровь, содержимое из дренажей). Определение чувствительности выделенных штаммов К антибиотикам осуществляли диско-диффузионным методом. Результаты микробиологического мониторинга представлены в диаграммах 1,2.

Результаты и обсуждение

Учитывали объективные показатели органной дисфункции (100% случаев). Как было отмечено выше, сепсис - это гетерогенный процесс с выраженной индивидуальной вариабельностью, что усложняет его диагностику и лечение. Возрастные различия в концентрации и составе гемоглобина, ЧСС, ударного объема, АД, легочного сосудистого сопротивления, системного сосудистого сопротивления, скорости метаболизма, запасов гликогена и массы белка являются основой многих возрастных различий в реакции организма на инфекцию [9,14]. При постановке диагноза наиболее важна клиническая картина болезни. Такие признаки, как лихорадка, лейкоцитоз или лейкопения, тахипноэ и тахикардия. являются неспецифическими. Поэтому мониторинг показателей метаболизма, гемодинамики, циркуляции, а также биомаркеров более значим для практических врачей [15]. Лабораторные признаки полиорганной недостаточности: гипоксия, гиперкарбия, ацидоз, изменение кривой SpO₂, гипертрасфераземия, гипергликемия, гипогликемия. В оценке СВР у

детей ведущими являлись лабораторные показатели: лейкоцитоз > 15×10^9 /л, лейкопения < 5×109 /л, нейтрофилез > 6×10^9 /л, нейтропения < $1,5 \times 10^9$ /л, юные формы нейтрофилов > $1,5 \times 10^9$ /л, токсическая зернистость нейтрофилов, уровень СР-белка> 10 мг/л, уровень прокальцитонина > 2 нг/мл.

«Золотым стандартом» диагностики инфекции всегда было принято считать гемокультуру, которая является специфическим и доступным методом, однако его чувствительность не превышает 25-42%. При этом время до получения результата составляет минимум 48 часов, в большинстве случаев и более длительного срока (региональные ЛПУ). Кроме этого, из-за применения антибиотиков до забора крови, гемокультура часто дает ложноотрицательный результат. В этиологии сепсиса особое место занимают нозокомиальные и панрезистентные к антибактериальным препаратам микроорганизмы (Ps aeruginosa, Enterobacteriaceae, Acinetobacter spp., St. Aureus et epidermidis, Kl.Pneumonia, Bacteroides spp. [3,4,6,19,20]. Возбудитель остается неизвестным у 30-75% детей с сепсисом [14].

Локальный протокол интенсивной терапии сепсиса на фоне бактериальной деструкции легких (основные положения).

1. Респираторная поддержка (в 50% случаях)

Протективная стратегия ИВЛ с ДО (4-6 мл/кг) при ОРДС (1С); аналгоседация в виде непрерывной инфузии с ежедневными перерывами без релаксантов (1В). ИВЛ проводилась в режиме с управляемым давлением (РС) с быстрым переходом к режимам вспомогательной вентиляции. Мониторинг газообмена проводился на основании КОС и газов крови, SpO₂ - 90-95%.

THE RESERVE THE PROPERTY OF TH

Таблица 2

Клинико-биохимические и специальные маркеры сепсиса у детей

Показатель	1-2 сутки (48 ч)	4 сутки	8 сутки
АД ср, мм рт. ст.	84 (80-91.7)	80 (78-90.2)	72 (65-82.1)
ЧСС, мин ⁻¹	129 (95-144.1)	118 (91-130.3)	107 (91-113,9)
ЧД, мин ⁻¹	34 (23-42,6)	29 (22-37,2)	25 (23-31,7)
Температура тела, °С	37.9 (36-38.7)	37.5 (36-38.1)	37.0 (36-37.7)
SpO ₂ , %	96 (95-99)	97 (97-100)	98 (98-99)
Лейкоциты, тыс/мкл	15.8 (5.33-21.38)	12.85 (5.43-16.18)	9.05 (7.55-12.92)
Гемоглобин, г/л	105 (98-127)	114 (109-133)	117 (110-132)
Тромбоциты, тыс/мкл	120.5 (86.1-194.5)	124.3 (90.5-180.7)	139.2 (109.5-184.7)
Доля нейтрофилов, %	81.6 (72.8-85,4)	78.9 (70.8-83)	70.6 (64.3-80,1)
Фибриноген, г/л	5.1 (3.92-5.07)	4.8 (3.77-4.86)	4.0 (2.92-4.06)
Н	7.32 (7.29-7.37)	7.32 (7.29-7.37)	7.34 (7.30-7.37)
ВЕ, ммоль/л	-2.7 (-5.3-1.23)	-2.5 (-5.0-1.22)	-2.0 (-3.1-1.22)
Бикарбонат, ммоль/л	23.2 (21.95-25.20)	22.8 (21.05-24.10)	22.1 (21.01-23.30)
ACT, u/l	1,2 (0,45-1,91)	1,0 (0,45-1,01)	0,8 (0,45-1,00)
Общий белок, г/л	48.4 (41.58-57.15)	49.9 (47.18-59.77)	57.9 (50.58-65.73)
Альбумин, г/л	27.2 (24.9-32.0)	28.9 (25.5-34.0)	31.0 (28.8-34.6)
Креатинин, мкмоль/л	87.5 (70.9-112.7)	89.9 (69.2-115.4)	93.5 (76.2-127.2)
Глюкоза, ммоль/л	7.1 (3.9-9.05)	7.0 (4.5-8.15)	6.5 (4.9-7.55)
Ig G, г/л	6.01 (4.57-7.74)	6.58 (4.97-7.94)	6.99 (5.77-7.98)
С-реактивный белок, мг/л	34.0 (29.2-40.9)	27.0 (22.0-37.5)	15.0 (10.2-25.5)
Прокальцитонин, нг/мл	2.60 (1.48-8.03)	2.10 (1.41-5.10)	1.98 (0.92-2.53)

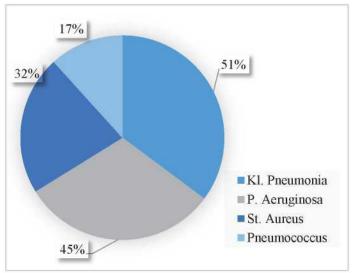
PC, PRESSURE ASSIST CONTROL. Ведущий регулируемый параметр - давление вдоха (Pinsp). Дополнительно - f, PEEP. Установочные начальные параметры:

- □ Pinsp <PEEP 5-8 см вод ст (профилактика ателектротравмы)
 - □ Время вдоха 0,8 с (физиологичное)
- \Box ЧД (f)-20 (дети >Fi O_2 0,8 (в идеале 0.5-0.6)

Достоинства метода РС: хорошая синхронизации ИВЛ с любой дыхательной активностью пациента; большая защищенность пациента от баро - и волюмотравмы.

2. Инфузионно-трансфузионная терапия. Расчет ИТ в среднем, состоял 4-6 (4+2) мл/кг/

час. При потере >20% ОЦК у детей может сохраняться нормальное АД, детский организм долго себя компенсирует [11]. Гипотензия у них развивается лишь на поздних стадиях СШ и имеет неблагоприятный исход. Качественный состав ИТ был представлен сбалансированными кристаллоидами (раствор Рингера лактата), реже 0,9% раствор натрия хлорида, а также коллоидами (альбумин) до достижения АД ср > 60 мм рт. ст., ЦВД 8 мм рт. ст. (1В), что согласуется международными протоколами [16,17]. При жидкостно-рефрактерном шоке (если циркуляция не восстанавливалась после 3-х болюсов по 20 мл/кг) подключали в течение первого часа вазопрессорную поддержку -


допамин, адреналин, норадреналин (1С). Адреналин (0,05-0,3 мкг/кг/мин) замещал допамин в качестве вазоактивного препарата первой линии у детей [8,19] с «холодным шоком». При классическом «теплом шоке» препарат выбора - норадреналин (0,05-0,1

мкг/кг/мин). Пациентам с низким сердечным выбросом и высокой сосудистой резистентностью (после проведенной ИТ на фоне нормального АД холодные конечности, замедленное капиллярное наполнение, сниженный диурез) назначался добутамин. Не рекомендуется [50] использовать гидроксиэтилкрахмал (ГЭК) для замещения ОЦК у п ц ентов с сепсисом/СШ (с ильная реком ендация, вы сокое качество доказательс тв).

3. Антимкробная терапия. Назначение антибиотиков широкого спектра действия в пределах 1-3 часов после постановки диагноза сепсис/СШ (1В); пересмотр схемы АБТ после получения результат мкробиологиче ког анализа и оценки клинических данных с целью сужения антибактериального спектра до адекватного (1С) (принцип деэскалации). В исследовании А. Китаг и соавт. (2006) было показано, что с каждым часом задержки назначения адекватной АБТ после развития гипотензии летальность увеличивается на 7,6% [22]. У детей задержка с прим нением АБТ на 1

ч независимо связано с увеличением летальности [30].

Мы следовали стандарту исследования крови на стерильность из двух периферических вен с интервалом до 30 минут в два флакона. Забор крови из центрального венозного катетера проводили, при условии, что он только что установлен. Для диагностики или исключения катетер-ас оциированного с псиса допускался забор крови из ра ее уставленного катетера. Бактериологическое исследование из разных локусов выявило следующие данные: из крови - Staphylococcus, coagulase negative - 42,5% (8), St Aureus - 26,3% (5), Streptococcus viridans et pneumoniae- 10,5% (2), Enterococcus faecium -5,4%, K1 pneumoniae-10,5%, Pseudomonas spp.-5,4%. Преобладали грамположительные бакте ии: кагулазонег тивные стафилококки и зо ти стафилококк. Анализ результатов исследования показал, что из альвеолярного аспирата - Kl.Pneumonia -51%, P. Aeruginosa -45%, St. Aureus - 32%, Pneumococcus -17%.

Микробиологический мониторинг также был проведен на основных этапах исследования. Первоначально, при идентификации сепсиса, до взятия биологических сред больного для бактериологического исследования назначалась эмпирическая комбинированная АБТ антибиотиками широкого спектра действия, с последующей (через 48-72 часов) коррекцией АБТ в виде сужения в результате идентификации возбудителя и его чувствительности.

При Γp^{-} сепсисе применяли деэскалационный режим АБТ защищенными ЦФ 3-4 поколения в комбинации с АГ 3 поколения, далее при

необходимости и по данным микробиологического мониторинга шла смена курсов АБТ на КБ (эртапенем, меропенем), фосфомицин.

При Γp^+ сепсисе, акцент делали на применение антибиотиков группы Оксазолидинонов и Гликопептидов. При наличии метициллинрезистентного St. Aureus (MRSA), коагулазонегативного стафилококка использовали гликопептиды (ванкомицин, тейкопланин), а в случае ванкомицинрезистентных штаммов - линезолид. По показаниям в схему АБТ включали противогрибковые препараты (флюканазол) не более 5 дней.

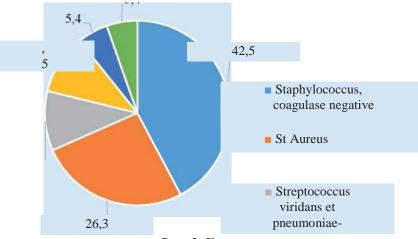


Рис. 2. Гемокультура

Необходимо, чтобы у пациентов с хирургическим сепсисом был своевременно определен и санирован источник инфекции и чтобы все необходимые мероприятия по санации этого источника были предприняты, как только диагноз будет установлен (лучшие практические рекомендации).

- 4. Поддержание уровня глюкозы в крови < 8 ммоль/л после начальной стабилизации (2C).
- 5. Профилактика стрессорных язв и кровотечения из верхних отделов ЖКТ путем применения ^-блокаторов (1A).
- 6. Нутритивная поддержка (НП). Развитие органной дисфункции (ОД) при сепсисе часто сопровождается синдромом гиперметаболизма. Покрытие энергетических потребностей за счет собственных клеток или аутоканнибализм приводит к усугублению проявлений ОД. Выбор метода НП зависел от степени выраженности питательного статуса и нарушения функции ЖКТ. Парентеральное питание (ПП) при сепсисе назначали при невозможности проведения энтерального кормления в полном объеме. Проводили режим круглосуточного введения нутриентов, ввиду лучшей переносимости и метаболизма. В программе смешанного парентерально-энтерального питания (ПЭП) вводили парентеральные смеси глутамина 20% 2 мл/кг/с (Имун) в течение 5 дней. Скорость инфузии: 0,5 мл/мин в течение 2-х часов. До настоящего времени в большинстве работ по НП акцентируется внимание на необходимость включения глутамина в программу ПЭП в основном с целью под- $^{\text{мо}}$ р $^{\phi o - \varphi}$ V $^{\text{нк}}$ П $^{\text{ионально}}$ й пелостности держания

слизистой кишечника, снижения бактериальной транслокации за счёт предотвращения атрофии слизистой и стимулирующего влияния на иммунную функцию лимфоидного аппарата кишечной стенки [9]. Не рекомендуется [16] использовать только ПП или комбинации его с энтеральным у пациентов с сепсисом/СШ, которые могут питаться энтерально (сильная рекомендация, среднее качество доказательств). Противопоказаниями к любой НП были: рефрактерный СШ (гипотензия на фоне инфузии адреналина или норадреналина в дозе более 0,1 мкг/кг/мин); декомпенсированный метаболический ацидоз.

7. Иммуностимулирующая терапия. стояние иммуносупрессии при сепсисе приводит к развитию вторичной инфекции (Acinetobacter, Enterococcus грибы Candida), что мо жет ухудшить и сход [16]. Сегодня в большинстве случаев внутривенные иммуноглобулины позиционируются как препараты 2 ряда, востребованные у пациентов с неблагоприятным течением болезни, резистентностью возбудителей к антимикробным препаратам и высоким риском летального исхода. Так, при проведении двойного слепого исследования уставлено, что использование внутривенных иммуноглобулинов (ВВИГ) у детей с сепсисом увеличивает выживаемость и сокращает длительность пребывания в госпитале [7]. Наш опыт применения с 4 дня

болезни ВВИГ Биовена в дозе 0,4 г/кг/сутки, показал относительную стабилизацию клинических проявлений сепсиса через несколько дней интенсивной терапии. ВВИГ вводили 5 дней на фоне комплексной патогенетической интенсивной терапии.

<u>Приводим в качестве примера клинический</u> случай:

Пациент - девочка А., 1 г. 2 мес. Дата поступления 08.12.20 г. Жалобы (со слов матери): на гипертермию, отсутствие аппетита, беспокойство, одышку, стонущее дыхание.

Анамнез болезни: Болеет в течение 10 дней. В сентябре 2020 по поводу пневмонии получала стационарное лечение. В ноябре получила проф. прививку. С 01.12.20 состояние ухудшилось. Появились беспокойство, лихорадка, одышка, отказ от еды, слабость, боли в животе. Объективно: общее состояние тяжелое. МОД: ОДН, ОССН, ОЦН. Ребенок вялый. Кожа и видимые слизистые резко бледные, цианотичные, сухие. Дыхание учащенное стонущее с участием вспомогательной мускулатуры. В легких справа жесткое проводное дыхание с сухими хрипами. Слева ослабленное дыхание. Тоны сердца глухие, тахикардия. Живот увеличен в объеме, вздут. Печень + 3,5 см. Стула не было 2 дня (со слов матери). Мочится мало.

УЗИ сердца от 08.12.2020 - Экссудативный перикардит: увеличение количества жидкости в перикарде по всей поверхности 21-23 мм. Фибринозные налеты.

УЗИ плевральной полости от 08.12.2020: в плевральных полостях определяется свободная жидкость: Справа 20,0 мл. Слева 80,0 мл.

Клинико-биохимические анализы (избранное): Нв 77 г/л; Лейк - 11.8 тыс, нейтрофилы 86%, СОЭ - 18 мм/ч. Средние молекулы -0,758 ед. Общий белок - 47.8 г/л. Мочевина - 18.2 ммоль/л; АСТ - 4,8. Прокальцитонин - 17 нг/мл, СРБ - 72 мг/л. В бак посеве мочи, крови и зева: St. aureus, Ps. Aeruginosa. Шкала pSOFA 9 баллов.

Был установлен клинический диагноз:

Основной: БДЛ. Легочно-плевральная-медиастинальная форма.

Осложнения: Госпитальный сепсис (Гр⁺ и Гр⁻). Мультиорганная дисфункция: ОДН III ст. ОССН 11Б ст. Пиоторакс слева, гнойный перикардит. Токсический гепатит-нефрит

(гепато-ренальный синдром). ДВС-синдром. ОЦН. Энцефалопатия, инфекционно-токсическая. Нутритивная недостаточность 2 ст. Синдром гиперметаболизма.

10.12.20 произведена операция по жизненным показаниям: Стернотомия, перикардиотомия. Передняя перикардэктомия. Санация и дренирование полости. Гнойный выпот в объеме 100.0 мл

Торакоцентез 10.12.20: по дренажу из левой плевральной полости выделилось 110,0 мл гнойного выпота. Дренаж подключен к активной аспирации.

Интенсивная терапия: АБТ 1- курс Сульперазон+ Ванкомицин, 2 курс Меропенем + Линолид. Инфузионно-трансфузионная терапия (Рингер, физ раствор, альбумин, отмытые эритроциты). Иммуннозаместительная терапия (Внутривенные иммуноглобулины Биовен 0,4 г/кг/с 5 дней). Коррекция основных органов жизнеобеспечения с респираторной поддержкой. Смешанное ПЭП (с фармаконутриентом глутамином).

Динамика состояния: Ребенок 17 дней находился на ИВЛ. В течение 2-х недель по дренажу из левой плевральной полости - гнойный выпот ежедневно по 45-50,0 мл, также из перикарда. Проводился лаваж перикарда и левой плевральной полости антибиотиками в течение 2-х недель. Функционировал кожномедиастинальный свищ. Постоянный субфебрилитет. Выпот из перикарда и плевральной полости - обильный рост St. Aureus.

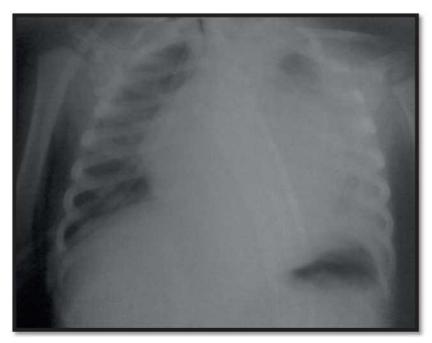


Рис. 3. Рентгенограмма легких от 08.12.2020. Интенсивная терапия в ОРИТ. Осумкованный гидроторакс слева. Перикардит.

К началу 3 недели состояния ребенка стало стабилизироваться, появилась четкая положительная динамика в общем состоянии и по результатам динамического обследования. Уменьшились признаки органно-системных повреждений. Клинико-биохимические анализы: Нв 117 г/л; Лейк - 9.8 тыс, СОЭ - 13 мм/ч. Общий белок - 58.8 г/л. Мочевина - 7.2 ммоль/л; АСТ - 1,0. Прокальцитонин - 5,7 нг/мл. pSOFA 4 балла.

Ребенок к концу 4 недели был переведен в профильное хирургическое отделение, где в последствие была проведена операция по поводу спаечного процесса (декортикация легких).

Результаты собственных исследований по-

казали эффективность комплексной интенсивной терапии хирургического сепсиса в 91,6% случаях. В 2 случаях погибли дети младшего возраста в результате запоздалой диагностики и поступления с БДЛ, легочно-плеврально-медиастинальной формой, в связи с развитием рефрактерного септического шока.

Таким образом, ранняя диагностика сепсиса, рациональная ранняя АБТ под контролем микробиологического мониторинга, с одновременной санацией хирургического очага инфекции, неагрессивная инфузионная терапия с ранним назначением вазопрессоров (СШ) с постоянным мониторированием основных органов жизнеобеспечения ребенка способствуют улучшению исходов от сепсиса и снижению летальности в данной категории больных.

Литература

- 1. Вельков В.В. Пресепсин новый высокоэффективный биомаркер сепсиса. Клинико-лабораторный консилиум. 2012;2(42):56-62.
- 2. Лекманов А.У., Миронов П.И. Сепсис в педиатрической практике пора договариваться. Российский вестник перинатологии и педиатри 2020;65:(3): 131-137.
- 3. Сатвалдиева Э.А., Мухитдинова Х.Н. Госпитальные инфекции у детей: диагностика, профилактика и антимикробная терапия, Ташкент. 2010:299.
- 4. Agyeman PKA, Schlapbach LJ, Giannoni E, Stocker M, Posfay-Barbe KM, et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. The Lancet Child & Adolescent Health, 2017;1(2):124-33.
- 5. Association between serum substance P levels and mortality in patients with severe sepsis /L. Lorente [et

- ПЕДИАТРИЯ 1//2022 al]. J. Crit. Care.- 2015.- Vol. 23.- P.12-15. [Jones A.E., Shapiro N.I., Trzeciak S. et al. Lactate clearance vs central
- venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303:739-46.
- 6. Boeddha NP, Schlapbach LJ, Driessen GJ, Herberg JA, Rivero-Calle I, Cebey-Lopez M. EUCLIDS consortium, on behalf of the E. Mortality and morbidity in community-acquired sepsis in European pediatric intensive care units: a prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Critical Care (London, England), 2018;22(1):143.
- 7. Capasso L., Borrelli C. A., Parrella C. et al. Are IgM-enriched immunoglobulins an effective adjuvant in septic VLBW infants? Ital. J. Pediatrics. 2013;39:63.
- 8. Davis A. L. American College of Critical Care Medicine Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit. Care Med. 2017;45:1061-1093
- 9. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine. 2013.
- 11. Diagnostic and prognostic values of serum procalcitonin and C-reactive protein in patients of bacterial sepsis. X. Huang [et al] Zhonghua Yi Xue Za Zhi. 2014;94(27):2106-2109.
- 12. Diagnostic value and prognostic evaluation of Presepsin for sepsis in an emergency department. B. Liu [et al] Crit. Care- 2013;17(5):244.
- 18. Diagnostic and prognostic utility of tissue factor for severe sepsis and sepsis-induced acute lung injury. M. Xue [et al] J. Transl. Med. 2015;30(13):172.
- 19. Endo S., Suzuki Y., Takahashi G. Presepsin as a powerful monitoring tool for the prognosis and treatment of sepsis: A multicenter prospective study. J. Infect. Chemother. 2013;18(6):891-7.
- 20. Emr BM, Alcamo AM, Carcillo JA, Aneja RK, Mollen KP. Pediatric Sepsis Update: How Are Children Different? Surgical Infections, 2018;19(2):176-83.
- 21. Fazakas J., Trasy D, Molnar Z. Interpreting Procalcitonin at the Bedside Annual Update in Intensive Care and Emergency Medicine, Springer Intern Publishing Switzerland, 2016.
- 22. Ford N., Hargreaves S., Shanks L. Mortality after fluid bolus in children withshock due to sepsis or severe infection: a SR and MA PLoS One. 2012;7: e43953.
- 23. Glassford N. J., Bellomo R. Albumin administration in sepsis: the case for and against. ICU Management. 2017;17:36-43.
- 24. Hartman M.E., Linde-Zwirble W.T., Angus D.C. et al. Trends in the epidemiology of pediatric severe sepsis. Pediatr. Crit. Care Med. 2013; 14(7): 686-93.
- 25. Hasan GM, Al-Eyadhy AA, Temsah MHA, Al-Haboob AA, Alkhateeb MA, Al-Sohime F. Feasibility and efficacy of sepsis management guidelines in a pediatric intensive care unit in Saudi Arabia: A quality improvement initiative. International Journal for Quality in Health Care, 2018;30(8):587-93.
 - 26. Henriquez-Camacho C., Losa J. Biomarkers for Sepsis BioMed Res Int. 2014.

Satvaldiyeva E.A., Fayziyev O.Ya., Djalilov A.A., Ashurova G.Z.

BOLALARDA O'PKANING BAKTERIAL DESTRUKSIYASI FONIDAGI XIRURGIK SEP-SISDA INTENSIV TERAPIYA

Kalit soʻzlar: xirurgik sepsis, oʻpkaning bakterial destruksiyasi, balanslangan kristalloidlar, kislorodning respirator qo'llanishi, septik shok, intensiv terapiya.

intensiv davolash, oʻpkaning bakterial destruk- shi sababli erta yoshdagi bolalar oʻlimi kuzatildi. siyasi rivojlanishida klinik-labarator, rSOFA va bakteriologik mezonlar kompleks asosida baholanadi. Tekshirish muddati 2019-mart-2021-yillar. Tadqiqot obyekti xirurgik patologiya (oʻpkani bakterial destruksiyasi) qayd etilgan bolalar (n=24). Xirurgik sepsisda kompleks intensiv terapiya samarasi 91,6% da qayd etildi. 2 holatda tashxisning kech qoʻyilganligi va OʻBD -oʻpka plevra-mediastenal shakli bilan murojaati qilin-

Bolalarda xirurgik sepsisni erta tashxislash va ganligi oqibatida refrakter septik shok rivojlani-