INTERNATIONAL JOURNAL ON HUMAN COMPUTING STUDIES

www.journalsresearchparks.org/index.php/IJHCS e-ISSN: 2615-8159|p-ISSN: 2615-1898 Volume: III Issue: 3 May-June 2021

OTHER WAYS TO BUILD CORRELATION MODELS

Sh. B. Ochilov, A. N. Tagaev, O.K.Khudayberdieva Bukhara, Uzbekistan Bukhara engineering technological institute

_____***___

Abstract: This article has developed a new method for building production functions. On the basis of accurate data, the methodology for calculating the coefficients of any mathematical models is shown.

Key words: production function, correlation analysis, product function, approximation, forecasting.

Introduction

Reflecting the main connections in nature and society in mathematical language has always been one of the main problems of science. Everyone

knows that this problem has been solved in general cases in science. The

most complex methods of this

process are the collection of statistical figures about an existing object, the preliminary hypothesis that the function available on the basis of these figures is reflective of this process, proving it in mathematical ways. By this time, all specialists will effectively use this path.

Of course, there are shortcomings in this method, as well as in certain shortcomings of any method. Predictions derived from the construction of mathematical models in economics do not always provide clarity. Everyone knows that seismology has a very low accuracy level of forecasts based on models under construction.

Therefore, the results obtained from mathematical models in many areas are used not as the main tool for compiling conclusions, but as

auxiliary information. This thing has the same drawbacks as in medicine, physics and biology.

For instance, let ${\mathcal Y}$ be the cotton yield and ${\mathcal X}$ be the amount of local fertilizer applied to the soil.

As a result of statistical analysis, it is known

that the y = 18,0+1,6x link is established. In that

case, when 10 tons of local fertilizer is applied to 1 hectare of land, the employee who works in practice will never accept the

assertion that the yield will be y = 34 s / ha as 100% correct.

So are there any ways to further increase the

accuracy

level

 $y = f(x_1; x_2; ..., x_n)$

correlation relationships that are being built, or their role in their production, or are the methods used to date the last resort?

This article has tried to prove that there are such ways.

First of all, let's think about the fact that the most mistakes can come out within the hypotheses that are made in tradition methods:

- The first shortcoming is that in our opinion is \mathcal{Y}_i - the results of the experiment directly - correspond directly to a certain class of functions.

- We think that the second shortcoming is that we do not take into consideration the change nature in the experiments results obtained from point to point.

www.journalsresearchparks.org/index.php/IJHCS e-ISSN: 2615-8159|p-ISSN: 2615-1898 Volume: III Issue: 3 May-June 2021

If it were possible to avoid the above drawbacks, then we would increase the level of correlation that will be detected to real realities. Research conducted in this way shows that in order to realistically express the processes, we need to

look for the product of this function, not the

- 1

tionship
$$y = f(x_1; x_2; \dots, x_n)$$
, based on the

given statistical numbers.

With a fully constructed derivative function, it will not be difficult to find a single integrated primary connection. Based on the results of the given experiment, the structure of the derivative function makes it possible to take into account the characteristics of the decrease in the growth of the function, flexure- bending, which characterizes this process.

> y_{i} So on the basis of we deal with the

problem of finding the product of the function, not the function itself.

It is known from the course of mathematical

$$\frac{f(x + \Delta x) - f(x)}{\Delta x}^{0} \approx f'(x_{0}) \text{ or}$$
analysis that
$$\frac{y_{i+1} - x_{i+1} -$$

Hence, if
$$y_i$$
 - are statistical numbers and their

corresponding

$$x_i$$
 are given $i=1,n$, then at by y

n-1 points we can also find the values of the product function corresponding to the point

corresponding to the points \mathcal{X}_i . This allows us to $\varphi = f$ (x)find . Let's take a brief example.

Provide information on cotton yields and

organic fertilizers used (figures are conditional). Based on them, we will find a productive function and then integrate the main function. We draw

conc	lusions b	y com	paring	the	nur	nbers	found	using	the	nev	v pa	ath v	vith
the	numbers	found	based	on	the	conn	ection	found	in	the	inad	ccess	ible
Wi	1	-			<u> </u>	-		1	-				

	у	x	Δy	Δx	$\frac{\Delta y}{\Delta x}$	$\frac{\Delta y}{\Delta x} + x$	x 2	x
- 1	24	3,5	1.5	12	2	12	- S. 1	100
1	24,3	3,8	0,3	0,3	1	3,8	14,44	3,8
1	24,7	4,1	0,4	0,3	1,33	5,47	16,81	4,1
1	25,2	4,3	0,5	0,2	2,5	10,75	18,49	4,3
- 1	25,3	4.5	0,1	0,2	0,5	2,25	20,25	4,3 4,5 4,75
1	24,8	4,7	-0,5	0,2	-2,5		22,09	4,7
- 1	25,7	4,75	0,9	0,05	18	85,5	22,5625	4,75
1	25,9	4,8	0,2	0,05	4	19,2	23,04	4,8
1	26,1	4,85	0,2	0,05	4	19,4	23,5225	4,85
Ĩ	27	5	0,9	0,15	6	30	25	5
Σ	253	44,3	3	2	34,83	164,62	186,21	40,8

Here ${\mathcal Y}$ - is the cotton yield and ${\mathcal X}$ - is the amount of local fertilizer applied to 1 ha of land.

Suppose
$$\frac{\Delta y}{\Delta x}$$
 - grows linearly, i.e let
 $\frac{dy}{dx} = a_0 + bx$. Let's find this connection. In

the small squares method,

instead of
$$\sum_{\Delta x} \frac{\Delta y}{\Delta x} = \sum_{i=1}^{N} \frac{\sum_{i=1}^{N} y}{\sum_{i=1}^{N} x} \sum_{i=1}^{N} \frac{\sum_{i=1}^{N} y}{\sum_{i=1}^{N} x} \sum_{i=1}^{N} \frac{\sum_{i=1}^{N} y}{\sum_{i=1}^{N} x}$$

and we have the following system of equations.

$$\int \frac{\Delta y}{\partial y} = 9a + h \cdot \sum x$$

$$\begin{vmatrix} \sum_{i=1}^{9} & \Delta x & 0 & \sum_{i=1}^{9} & i \\ \sum_{i=1}^{1} & \Delta x & 0 & i \\ \sum_{i=1}^{1} & \Delta x & \sum_{i=1}^{9} & x_i + \sum_{i=1}^{9} & x \end{vmatrix}$$

Based on the numbers above, we get the following and solve this system to find the unknowns of the necessary coefficient. [34.83 = 9a + 40.8b]

$$\begin{cases} & & & \\ & & \\ & & \\ & & \\ 164,6 = 40,8a_0 + 186,17b \\ a_0 = -23,645 \\ b = 6,07 \end{cases}$$

INTERNATIONAL JOURNAL ON HUMAN COMPUTING STUDIES

and

on

www.journalsresearchparks.org/index.php/IJHCS e-ISSN: 2615-8159|p-ISSN: 2615-1898 Volume: III Issue: 3 May-June 2021

Т	hat	is,	by	integrating
$\frac{dy}{dt} =$	-23,645 +	- 6,07x ,	<i>C</i> is deter	rmined
based dx			itial	condition
	(-23,645			concuron
6,07x y = -2	(x) dx (3,645x+3,0	$035x^2 + c$		an
2 025	2 00 (45	E70E2 2 :	· · · · · · · · · · · · · · · · · · ·	

 $y = 3,035x^2 - 23,645x + 69,57952y - 3$ is determined.

But using traditional methods it is possible to solve this problem and find the linear function y = 18,212 + 1,6x. Now the question arises as to

what if the process is in the form of a multivariable function. It should be noted that in this case a lot of mathematical problems arise. In this case, the

problem cannot be solved in one attempt.

We propose to define this problem for each

variable separately as $y_i = f(x_i)$ for each variable,

and then to define the resulting function as the average of the sum of the functions. That (is) ()

$$y = f(x; x; ..., x) = \begin{cases} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{cases} f(x; x; ..., x) = \begin{cases} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{cases} f(x; x; ..., x) = \begin{cases} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{cases} f(x; x; ..., x) = \begin{cases} 1 & 2 \\$$

Let's look at this solution in a concrete example.For convenience, we consider the above example as a function of two variables rather than

 x_1 - ${\mathcal Y}$ - is the cotton yield; let one variable. Hence

be the amount of local fertilizer (T) per hectare and

 \mathcal{X}_2 - be the amount of mineral fertilizer per hectare (kg). Below are the results of several years of

observations. Let
$$y = f(x_1; x_2)$$
 be required to

Table 2

determine the relationship by constructing the product function.

$$\begin{array}{ll} y_1 & f_1'(x_1) \\ = \end{array}$$

_

had already been calculated. So now we only calculate

$$y_2 = f_2(x_2)$$
. Taking the relevant data

from the table No2 above, we construct an equations system for $y_2 = f_2$ (x_{2})

$$\begin{cases} 0,469 = 9a_0 + 995b \\ 54,98 = 995a_0 + 112011b \end{cases}$$
Solve the equation and find
 $y = -0,11989 + 0,001556x_2$. But we found
 $\frac{dy_2}{dx_2} = -0,11989 + 0,001556x_2$. Integrating it
the basis of the condition
 $y_2 = 28,62 - 0,11989x_2 + 0,000776x_2$
 $y_2 = 28,62 - 0,11989x_2 + 0,000776x_2$
 $y_2 = 28,62 - 0,11989x + 0,000776x^2$
 $f(x) = 3,035x^2 - 23,645x + 69,5795$
and
 $f(x) = 28,62 - 0,11989x + 0,000776x^2$
 $y = f(x_1; x_2) = 49 - 11,8225x_1 + 1,5175x_1^2 - 0,0599x + 0,000388x_2^2$
 $f(x = x) + 0,000388x_2^2$

This function can be used to estimate how close the calculated relationship is to the actual values by calculating the values at the corresponding

points.

Now, based on the above numbers, let us construct a model of

www.journalsresearchparks.org/index.php/IJHCS e-ISSN: 2615-8159|p-ISSN: 2615-1898 Volume: III Issue: 3 May-June 2021

x	$_{1}; x_{2}$)							1967 - 14		
	2	x ₁	×1	Δ)	Δr	Δx_2	$\frac{\Delta y}{\Delta r_t}$	$\frac{\Delta y}{\Delta x_1}$	$\frac{\Delta y}{\Delta x_1} \cdot x_1$	$\frac{\Delta y}{\Delta t_1} \cdot t_1$	x_1^2
	24	3,5	80	+	+	1.4	+-		+-		
	24,3	3,6	87	0.3	0,3	7	. 1	0.043	3,729	3,8	756
	24,7	4.1	.95	0,4	0,3		1,33	0,090	4,750	5,467	-902
	25,2	4,3	98	0,5	0,2	3	2,5	0,167	16.333	10,75	960
	25,3	45	105	0,1	0,2	7	0,5	0,014	1,500	2,25	1107
	24,8	4,7	110	-0,5	0,2	5	-2,5	-0.100	-11,000	-11,75	1210
	25,7	4,75	117	0,9	0,05	T	38	0,129	15,043	85.5	1368
	25,9	4,B	121	0,2	0,05	4	- 4	0,050	6,050	19.7	1464
	26,1	4,85	127	0,2	0,05	6	4	0,033	4,233	19,4	1612
-	27	5	135	0.5	0,15			0,113	15,188	30	1822
	253	44,3	1075	1.000	20322	7 6	34,833	0,498	55,826	164,617	11200

in the form

 $y = a_0 + a_1 x_1 + a_2 x_2$ using traditional methods

INTERNATIONAL JOURNAL ON HUMAN COMPUTING STUDIES

www.journalsresearchparks.org/index.php/IJHCS e-ISSN: 2615-8159|p-ISSN: 2615-1898 Volume: III Issue: 3 May-June 2021

and compare the results with the results of the connection constructed on the basis of the method we propose.

Table № 3

$$\begin{cases} 252,7 = 10a_0 + 44,3a_1 + 1075a_2 \\ 1126,95 = 44,3a_0 + 198,455a_1 + 4838,5a_2 \\ 27302 = 1075a_1 + 4838,5a_1 + 118407a_2 \\ 0 & 1 & 2 \\ \\ \text{Solving the equations system, we obtain} \\ y = 21,8344 - 1,12383x_1 + 0,07827x_2 \\ f(x_1;x_2) = 49 - 11,8225x_1 + 1,5175x^2 - 0,0599x_1 + 0,000388x^2 \\ \\ generated by the new method and \\ y = 21,8344 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 11,8225x_1 + 1,5175x^2 - 0,0599x_2 + 0,000388x^2 \\ \\ generated by the new method and \\ y = 21,8344 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 11,2383x_1 + 0,07827x_2 \\ \\ generated by the new method and \\ y = 21,8344 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 11,2383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 11,2383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 49 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,12383x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,1238x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,1238x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,1238x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,1238x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,1238x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,1238x_1 + 0,07827x_2 \\ \\ f(x_1;x_2) = 40 - 1,1238x_1 + 0,078x_2 \\ \\ f(x_1;x_2) = 40 - 1,1238x_1 + 0,0$$

in the traditional method. Comparing the results obtained on the basis of these two functions, it is possible to be sure that the proposed method does not lag behind the traditional methods.

The following table shows \mathcal{Y}_x is an actual

experimental results,

 ${oldsymbol{\mathcal{Y}}_T}$ are results calculated by

the traditional method, ${\mathcal Y}_{arphi}$ is a sequence of

www.journalsresearchparks.org/index.php/IJHCS e-ISSN: 2615-8159|p-ISSN: 2615-1898 Volume: III Issue: 3 May-June 2021

numbers calculated by the proposed method.

- But there are many questions that require mathematical validation.
- 1) is the proposed method always effective?
- 2) is it possible to compare these two methods mathematically.
- 3) how the reliability of predictions can be assessed mathematically.

These are questions that need to be addressed in the future.

Reference

1. Kremer N. Sh. Econometrics: textbook . – M.: Publishing House, 2018 Yurayt. – p 354.

2. State statistics committee of the Republic of Uzbekistan [electronic resource] - access procedure:http://www.stat.uz

©2021,JJHCS | Research Parks Publishing (IDEAS Lab) www.researchparks.org | Page 57