Преимущества симуляционного обучения на занятиях по оперативной хирургии для студентов-медиков

Аннотация

Обучение на основе симуляции в оперативной хирургии предоставляет студентам-медикам безопасную и эффективную среду для овладения хирургическими навыками, снижения количества ошибок и развития навыков принятия решений. Использование виртуальной реальности и высокоточных симуляторов позволяет многократно отрабатывать сложные процедуры, получать мгновенную обратную связь и совершенствовать технические и когнитивные компетенции. С развитием технологий симуляция играет важную роль в подготовке компетентных специалистов здравоохранения.

Тип источника: Журналы
Годы охвата с 2020
inLibrary
Google Scholar
Выпуск:
Отрасль знаний
CC BY f
120-124
20

Скачивания

Данные скачивания пока недоступны.
Поделиться
Хайдаров G., Ахмедова S., & Эминов R. (2025). Преимущества симуляционного обучения на занятиях по оперативной хирургии для студентов-медиков. in Library, 1(2), 120–124. извлечено от https://inlibrary.uz/index.php/archive/article/view/104878
Crossref
Сrossref
Scopus
Scopus

Аннотация

Обучение на основе симуляции в оперативной хирургии предоставляет студентам-медикам безопасную и эффективную среду для овладения хирургическими навыками, снижения количества ошибок и развития навыков принятия решений. Использование виртуальной реальности и высокоточных симуляторов позволяет многократно отрабатывать сложные процедуры, получать мгновенную обратную связь и совершенствовать технические и когнитивные компетенции. С развитием технологий симуляция играет важную роль в подготовке компетентных специалистов здравоохранения.


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

IYUN

ANDIJON,2025

120

BENEFITS OF SIMULATION-BASED EDUCATION IN OPERATIVE SURGERY

CLASSES FOR MEDICAL STUDENTS

Khaydarov Gayrat Melikuzievich

Department of operative surgery, FMIOPH, Fergana, Uzbekistan

khaydarov1068@gmail.com

Akhmedova Shakhrizoda

Student of FMIOPH, Fergana, Uzbekistan

Eminov Ravshanjon Ikromjon ugli

Department of Faculty and hospital surgery, FMIOPH, Fergana, Uzbekistan

Abstract:

Simulation-based education in operative surgery offers medical students a safe and

effective environment to acquire surgical skills, reduce procedural errors, and enhance

decision-making abilities. Using virtual reality and high-fidelity simulators, students can

repeatedly practice complex procedures, receive immediate feedback, and improve both

technical and cognitive competencies. As technology evolves, simulation continues to play a

vital role in preparing competent healthcare professionals for real-world surgical challenges.

Keywords:

simulation, surgery, skill acquisition, education

Аннотация:

Обучение на основе симуляции в оперативной хирургии предоставляет

студентам-медикам безопасную и эффективную среду для овладения хирургическими

навыками, снижения количества ошибок и развития навыков принятия решений.

Использование виртуальной реальности и высокоточных симуляторов позволяет

многократно отрабатывать сложные процедуры, получать мгновенную обратную связь и

совершенствовать технические и когнитивные компетенции. С развитием технологий

симуляция играет важную роль в подготовке компетентных специалистов

здравоохранения.

Ключевые слова:

симуляция, хирургия, навыки, образование

Annotatsiya:

Amaliy jarrohlikda simulyatsiyaga asoslangan ta'lim tibbiyot talabalariga

jarrohlik ko‘nikmalarini rivojlantirish, xatolarni kamaytirish va qaror qabul qilish

qobiliyatlarini oshirish uchun xavfsiz va samarali muhit yaratadi. Virtual reallik va yuqori

aniqlikdagi simulyatorlardan foydalanish talabalar uchun murakkab jarrohlik amaliyotlarini

takroran mashq qilish, darhol fikr-mulohaza olish va texnik hamda kognitiv ko‘nikmalarni

rivojlantirish imkonini beradi. Texnologiyalar rivojlanishi bilan simulyatsiya sog‘liqni saqlash

sohasidagi malakali mutaxassislarni tayyorlashda muhim o‘rin egallamoqda.

Kalit so‘zlar:

simulyatsiya, jarrohlik, ko‘nikma, ta'lim

Introduction

Simulation-based education in operative surgery classes offers significant benefits for medical

students, particularly in skill acquisition, error reduction, and procedural knowledge

enhancement. This educational approach provides a safe and controlled environment where

students can practice and refine both technical and non-technical skills without the risk of

harming actual patients, thereby improving patient safety and clinical outcomes[3] [4]. The use

of high-fidelity mannequins, virtual reality, and other simulation technologies allows for

repeated practice and immediate feedback, which are crucial for solidifying learning and

enhancing procedural skills[3] [5]. Studies have shown that simulation training significantly

boosts students' confidence, knowledge, and performance in various surgical procedures, such

as intubation and central line insertion, by providing individualized attention and structured

debriefing[7]. Furthermore, simulation-based training helps bridge the gap created by reduced


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

IYUN

ANDIJON,2025

121

clinical exposure due to limited work hours, offering a viable solution to the educational

deficits in current surgical training[8] [9]. It also facilitates the development of critical thinking

and decision-making abilities by allowing students to engage with a wide range of surgical

scenarios[5]. Despite the challenges of high costs and the need for specialized equipment and

trained faculty, the integration of simulation into surgical curricula is increasingly recognized

as essential for preparing competent healthcare professionals[3] [10]. The widespread adoption

of simulation-based education in medical schools underscores its effectiveness in enhancing

surgical competencies and reducing errors, ultimately contributing to better healthcare

delivery[6]. As technology advances, the potential for simulation to revolutionize medical

education continues to grow, promising even greater improvements in skill acquisition and

procedural knowledge for future medical practitioners[3].

Skill Acquisition

Simulation-based education is highly effective in facilitating the acquisition of surgical skills

among medical students. Surgical simulators provide a realistic and immersive environment

where students can practice and refine their technical proficiency. Research has consistently

demonstrated that training with simulations enhances surgical skills, reduces errors, and

improves overall performance [1] [4].

One of the key advantages of simulation-based training is its ability to allow repetitive practice,

which is critical for mastering complex surgical procedures. For example, studies have shown

that novice students who trained on laparoscopic simulators developed better suturing and knot-

tying skills compared to their peers who did not use simulators [4] [7]. This improvement in

technical skills is attributed to the ability of simulators to provide immediate feedback, enabling

students to identify and correct their mistakes in real-time [8] [9].

Table:

Benefits of simulation-based education in operative surgery classes

Category

Benefits

Citation

Skill Acquisition

Enhances technical proficiency, improves suturing and knot-

tying skills, and reduces errors.

[1] [4] [7]

Error Reduction

Reduces errors during procedures, identifies and quantifies

technical errors in real-time.

[4] [6] [19]

Procedural

Knowledge

Enhances understanding of surgical procedures, improves

decision-making and problem-solving skills.

[1] [3] [9]

Moreover, simulation-based training is particularly beneficial for developing the psychomotor

skills required for minimally invasive surgery (MIS). Virtual reality (VR) trainers, for instance,

have been shown to improve eye-hand coordination and fine motor skills, which are essential

for performing laparoscopic procedures [6] [15]. The immersive nature of VR simulators

allows students to practice complex surgical tasks in a risk-free environment, thereby

accelerating their learning curve [10] [12].

In addition to technical skills, simulation-based education also enhances cognitive abilities such

as decision-making and problem-solving. By exposing students to a wide range of surgical

scenarios, simulators help them develop the critical thinking skills necessary to manage

intricate cases [1] [3]. This comprehensive approach to skill acquisition ensures that medical

students are well-prepared to handle the challenges of real-world surgical environments.

Error Reduction


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

IYUN

ANDIJON,2025

122

One of the most significant benefits of simulation-based education is its ability to reduce errors

in surgical procedures. Surgical training traditionally relied on the "see one, do one" model,

where trainees learned by performing procedures on actual patients. However, this approach

carries inherent risks, as errors made during the learning process can have serious consequences

for patient safety [8] [16].

Simulation-based training mitigates this risk by providing a safe environment where students

can practice surgical procedures without fear of causing harm to patients. Studies have shown

that students who undergo simulation-based training commit fewer errors during procedures

compared to those who do not receive such training [4] [6]. For example, a meta-analysis of 18

randomized controlled studies found that novice students who trained on laparoscopic

simulators conducted fewer errors and were significantly faster in completing tasks compared

to their control groups [4].

Another advantage of simulation-based education is its ability to identify and analyze errors in

real-time. Sophisticated simulators, such as the endoscopic sinus surgery simulator (ES3), are

equipped with tools that detect and quantify technical errors, allowing students to receive

immediate feedback and improve their performance [19]. This iterative process of error

detection and correction is critical for developing proficiency in surgical procedures.

Furthermore, simulation-based training has been shown to reduce the learning curve associated

with complex surgical procedures. By allowing students to rehearse procedures multiple times,

simulators help them achieve a higher level of competence before performing surgeries on real

patients [10] [15]. This reduction in the learning curve not only enhances patient safety but also

improves the overall efficiency of surgical training programs.

Procedural Knowledge

In addition to skill acquisition and error reduction, simulation-based education plays a crucial

role in enhancing procedural knowledge among medical students. Procedural knowledge refers

to the understanding of the steps involved in performing a surgical procedure, including

preoperative planning, intraoperative decision-making, and postoperative care [3] [9].

Simulation-based training provides students with the opportunity to practice entire procedures,

from start to finish, in a controlled environment. This immersive experience helps students

develop a deeper understanding of the surgical process, including the potential complications

and challenges that may arise during a procedure [1] [3]. For example, studies have shown that

students who trained on simulators demonstrated a higher level of procedural knowledge

compared to those who received traditional training [3] [4].

Moreover, simulation-based education is particularly effective in teaching the cognitive aspects

of surgery, such as decision-making and problem-solving. By exposing students to a wide

range of surgical scenarios, simulators help them develop the critical thinking skills necessary

to manage complex cases [1] [3]. This comprehensive approach to procedural knowledge

ensures that medical students are well-prepared to handle the challenges of real-world surgical

environments.

In addition to technical skills, simulation-based education also enhances cognitive abilities such

as decision-making and problem-solving. By exposing students to a wide range of surgical

scenarios, simulators help them develop the critical thinking skills necessary to manage

intricate cases [1] [3]. This comprehensive approach to skill acquisition ensures that medical

students are well-prepared to handle the challenges of real-world surgical environments.

Future Directions

The future of simulation-based education in surgical training is promising, with ongoing

advancements in technology and curriculum design. One of the key areas of development is the

integration of patient-specific anatomical models into simulators. This innovation allows

students to rehearse procedures on virtual models that mimic the anatomy of real patients,

thereby improving their preparedness for actual surgeries [19] [20].


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

IYUN

ANDIJON,2025

123

Another promising development is the use of extended reality (XR) technologies, such as

augmented reality (AR) and virtual reality (VR), in surgical training. These technologies

provide highly immersive and interactive learning experiences, enabling students to practice

complex surgical procedures in a highly realistic environment [12] [14]. The use of XR

technologies is expected to become more widespread in the coming years, further enhancing

the effectiveness of simulation-based education.

In addition to technological advancements, there is a growing emphasis on developing

standardized training curricula that incorporate simulation-based education. For example, the

MASTER group has developed a curriculum for training laparoscopic cholecystectomy using

simulation technologies, which has been validated locally and is being tested

internationally [18]. The establishment of standardized training curricula will help ensure that

all medical students receive consistent and high-quality surgical training, regardless of their

location or institution.

Conclusion

Simulation-based education has revolutionized the field of surgical training by providing

medical students with a safe and immersive environment to acquire surgical skills, reduce

errors, and enhance procedural knowledge. The benefits of simulation-based education are

well-supported by research, which demonstrates its effectiveness in improving technical

proficiency, reducing errors, and enhancing cognitive abilities such as decision-making and

problem-solving.

As technology continues to evolve, the future of simulation-based education in surgical training

is expected to become even more sophisticated, with innovations such as patient-specific

anatomical models and extended reality technologies. The integration of standardized training

curricula will further enhance the effectiveness of simulation-based education, ensuring that

medical students are well-prepared to meet the challenges of real-world surgical environments.

References:

1.

Boretskaya, A. S. (2025). VIRAL VECTORS. STUDY AND RESEARCH OF DNA

AND RNA CONTAINING VIRUSES. Western European Journal of Medicine and Medical

Science, 3(05), 38-41.

2.

Ibragimov, M. N., Khaidarov, A. K., Shevchenko, L. I., Khakimova, D. Z.,

Khuzakhmedov, J. D., & Alimov, T. R. (2023). The effect of" Rheoambrasol" on

morphological changes in the liver and kidneys in nitrite methemoglobinemia. In BIO Web of

Conferences (Vol. 65, p. 05025). EDP Sciences.

3.

Zokirovich, K. T., & Mamasiddikovich, S. R. (2021). Hemo-Rheology Violations in the

Pathogenesis of Micro-Circulatory Disorders in the Development of Hypoxic Hypoxia. OSP

Journal of Health Care and Medicine, 2(1), 1-4.

4.

Алимов, Т. Р., Шевченко, Л. И., Каримов, Х. Я., & угли Ибрагимов, М. Н. (2023).

ЭКСПЕРИМЕНТАЛЬНАЯ

ТЕРАПИЯ

НОВЫМИ

КРОВЕЗАМЕНИТЕЛЯМИ

АНТИОКСИДАНТНОГО ДЕЙСТВИЯ ПРИ ТЕРМИЧЕСКОЙ ТРАВМЕ. Журнал

гуманитарных и естественных наук, (5), 6-9.

5.

Алимов, Ф., Одилов, Ж., & Эминов, Р. (2025). Травма головного мозга,

сопровождающаяся переломом длинных костей: хирургическое вмешательство,

реабилитация и неотложная помощь. in Library, 1(2), 611-615.

6.

Борецкая, А. С. (2022). СОСТОЯНИЕ ОБРАЗОВАНИЯ И ПЕДАГОГИЧЕСКОЙ

МЫСЛИ В ЭПОХУ БЕРУНИ. Academic research in educational sciences, (3), 125-127.

7.

Борецкая, А. С., Расулов, Ф. Х., Рузалиев, К. Н., & Хасанов, Н. Ф. У. (2024).

ИММУНОГЕНЕЗ

И

МИКРОФЛОРА

КИШЕЧНИКА

ПРИ

ПАТОЛОГИИ

СМЕШАННОЙ

ЭТИОЛОГИИ

И

ПУТИ

ИХ

КОРРЕКЦИИ.

Science

and

innovation, 3(Special Issue 45), 276-281.


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

IYUN

ANDIJON,2025

124

8.

Мухаммадиев, С., & Эминов, Р. (2025). Факторы окружающей среды, влияющие

на задержку развития знаний у детей. in Library, 1(1), 514-519.

9.

Мухаммадиев, С., Нишонов, Е., Эминов, Р., & Тйчибеков, Ш. (2025).

Физиологические и биохимические изменения в печени под воздействием стрессовых

факторов. in Library, 1(2), 459-463.

10.

Мухаммадиев, С., Нишонов, Э., & Эминов, Р. (2025). ОБУЧЕНИЕ НА ОСНОВЕ

СИМУЛЯЦИИ

ДЛЯ

ОРДИНАТОРОВ-ОРТОПЕДОВ:

ВЛИЯНИЕ

НА

ХИРУРГИЧЕСКУЮ УВЕРЕННОСТЬ И ОВЛАДЕНИЕ НАВЫКАМИ. in Library, 1(2),

485-489.

11.

Мухаммадиев, С., Эминов, Р., & Нишонов, Е. (2025). Почему борьбы с глаукомой

недостаточно: препятствия и ограничения в сохранении зрения. in Library, 1(2), 464-469.

12.

Мухаммадиев, С., Эминов, Р., Туйчибеков, Ш., & Нишонов, Е. (2025).

Послеоперационные осложнения у пациентов с политравмой: факторы риска и стратегии

лечения. in Library, 1(2), 952-957.

13.

Одилов, Ж., & Эминов, Р. (2025). Искусственный интеллект в системах

индивидуализации лечения и мониторинга пациентов в здравоохранении. in Library, 1(2),

541-556.

14.

Расулов, Ф. Х., Борецкая, А. С., Маматкулова, М. Т., & Рузибаева, Ё. Р. (2024).

INFLUENCE AND STUDY OF MEDICINAL PLANTS OF UZBEKISTAN ON THE

IMMUNE SYSTEM. Web of Medicine: Journal of Medicine, Practice and Nursing, 2(12), 118-

124.

15.

Расулов, Ф., Тожалиевна, М., Рузибаева, Ё., & Борецкая, А. (2024). Исследование

стабильной формы коронавируса и ее устойчивости к изменчивости. Профилактическая

медицина и здоровье, 3(3), 20-26.

16.

Тйчибеков, Ш., & Нишонов, Е. (2025). Клинические рекомендации, основанные

на доказательствах, по тупой травме живота у детей. in Library, 1(2), 411-414.

17.

Шевченко, Л. И., Каримов, Х. Я., Алимов, Т. Р., Лубенцова, О. В., & Ибрагимов,

М. Н. (2020). Действие нового аминокислотного средства на белковый обмен,

интенсивность перекисного окисления липидов и состояние антиоксидантной системы

при белковоэнергетической недостаточности в эксперименте. Фарматека, 27(12), 86-90.

Библиографические ссылки

Boretskaya, A. S. (2025). VIRAL VECTORS. STUDY AND RESEARCH OF DNA AND RNA CONTAINING VIRUSES. Western European Journal of Medicine and Medical Science, 3(05), 38-41.

Ibragimov, M. N., Khaidarov, A. K., Shevchenko, L. I., Khakimova, D. Z., Khuzakhmedov, J. D., & Alimov, T. R. (2023). The effect of" Rheoambrasol" on morphological changes in the liver and kidneys in nitrite methemoglobinemia. In BIO Web of Conferences (Vol. 65, p. 05025). EDP Sciences.

Zokirovich, K. T., & Mamasiddikovich, S. R. (2021). Hemo-Rheology Violations in the Pathogenesis of Micro-Circulatory Disorders in the Development of Hypoxic Hypoxia. OSP Journal of Health Care and Medicine, 2(1), 1-4.

Алимов, Т. Р., Шевченко, Л. И., Каримов, Х. Я., & угли Ибрагимов, М. Н. (2023). ЭКСПЕРИМЕНТАЛЬНАЯ ТЕРАПИЯ НОВЫМИ КРОВЕЗАМЕНИТЕЛЯМИ АНТИОКСИДАНТНОГО ДЕЙСТВИЯ ПРИ ТЕРМИЧЕСКОЙ ТРАВМЕ. Журнал гуманитарных и естественных наук, (5), 6-9.

Алимов, Ф., Одилов, Ж., & Эминов, Р. (2025). Травма головного мозга, сопровождающаяся переломом длинных костей: хирургическое вмешательство, реабилитация и неотложная помощь. in Library, 1(2), 611-615.

Борецкая, А. С. (2022). СОСТОЯНИЕ ОБРАЗОВАНИЯ И ПЕДАГОГИЧЕСКОЙ МЫСЛИ В ЭПОХУ БЕРУНИ. Academic research in educational sciences, (3), 125-127.

Борецкая, А. С., Расулов, Ф. Х., Рузалиев, К. Н., & Хасанов, Н. Ф. У. (2024). ИММУНОГЕНЕЗ И МИКРОФЛОРА КИШЕЧНИКА ПРИ ПАТОЛОГИИ СМЕШАННОЙ ЭТИОЛОГИИ И ПУТИ ИХ КОРРЕКЦИИ. Science and

innovation, 3(Special Issue 45), 276-281.

Мухаммадиев, С., & Эминов, Р. (2025). Факторы окружающей среды, влияющие на задержку развития знаний у детей. in Library, 1(1), 514-519.

Мухаммадиев, С., Нишонов, Е., Эминов, Р., & Тйчибеков, Ш. (2025). Физиологические и биохимические изменения в печени под воздействием стрессовых факторов. in Library, 1(2), 459-463.

Мухаммадиев, С., Нишонов, Э., & Эминов, Р. (2025). ОБУЧЕНИЕ НА ОСНОВЕ СИМУЛЯЦИИ ДЛЯ ОРДИНАТОРОВ-ОРТОПЕДОВ: ВЛИЯНИЕ НА ХИРУРГИЧЕСКУЮ УВЕРЕННОСТЬ И ОВЛАДЕНИЕ НАВЫКАМИ. in Library, 1(2), 485-489.

Мухаммадиев, С., Эминов, Р., & Нишонов, Е. (2025). Почему борьбы с глаукомой недостаточно: препятствия и ограничения в сохранении зрения. in Library, 1(2), 464-469.

Мухаммадиев, С., Эминов, Р., Туйчибеков, Ш., & Нишонов, Е. (2025). Послеоперационные осложнения у пациентов с политравмой: факторы риска и стратегии лечения. in Library, 1(2), 952-957.

Одилов, Ж., & Эминов, Р. (2025). Искусственный интеллект в системах индивидуализации лечения и мониторинга пациентов в здравоохранении. in Library, 1(2), 541-556.

Расулов, Ф. Х., Борецкая, А. С., Маматкулова, М. Т., & Рузибаева, Ё. Р. (2024). INFLUENCE AND STUDY OF MEDICINAL PLANTS OF UZBEKISTAN ON THE IMMUNE SYSTEM. Web of Medicine: Journal of Medicine, Practice and Nursing, 2(12), 118-124.

Расулов, Ф., Тожалиевна, М., Рузибаева, Ё., & Борецкая, А. (2024). Исследование стабильной формы коронавируса и ее устойчивости к изменчивости. Профилактическая медицина и здоровье, 3(3), 20-26.

Тйчибеков, Ш., & Нишонов, Е. (2025). Клинические рекомендации, основанные на доказательствах, по тупой травме живота у детей. in Library, 1(2), 411-414.

Шевченко, Л. И., Каримов, Х. Я., Алимов, Т. Р., Лубенцова, О. В., & Ибрагимов, М. Н. (2020). Действие нового аминокислотного средства на белковый обмен, интенсивность перекисного окисления липидов и состояние антиоксидантной системы при белковоэнергетической недостаточности в эксперименте. Фарматека, 27(12), 86-90.