SIMULATION-BASED TRAINING FOR ORTHOPEDIC RESIDENTS: IMPACT ON SURGICAL CONFIDENCE AND SKILL ACQUISITION

Abstract

Simulation-based training has revolutionized orthopedic education by providing realistic, risk-free environments for surgical practice. This article reviews current technologies such as Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), and haptic-based systems used to train orthopedic residents. These tools improve psychomotor skills, surgical confidence, and procedural accuracy. Despite rapid technological advancement, challenges such as cost and curricular integration remain. Structured simulation programs hold promise for the future of surgical education.

Source type: Journals
Years of coverage from 2020
inLibrary
Google Scholar
CC BY f
485-489
34

Downloads

Download data is not yet available.
To share
Mukhammadiev, S., Nishanov, E., & Eminov, R. (2025). SIMULATION-BASED TRAINING FOR ORTHOPEDIC RESIDENTS: IMPACT ON SURGICAL CONFIDENCE AND SKILL ACQUISITION. in Library, 1(2), 485–489. Retrieved from https://inlibrary.uz/index.php/archive/article/view/98084
Crossref
Сrossref
Scopus
Scopus

Abstract

Simulation-based training has revolutionized orthopedic education by providing realistic, risk-free environments for surgical practice. This article reviews current technologies such as Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), and haptic-based systems used to train orthopedic residents. These tools improve psychomotor skills, surgical confidence, and procedural accuracy. Despite rapid technological advancement, challenges such as cost and curricular integration remain. Structured simulation programs hold promise for the future of surgical education.


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

MAY

ANDIJON,2025

485

SIMULATION-BASED TRAINING FOR ORTHOPEDIC RESIDENTS: IMPACT ON

SURGICAL CONFIDENCE AND SKILL ACQUISITION

Mukhammadiyev Sobirjon Uchkunjon ugli

Traumatology and Orthopedics, FMIOPH, Fergana, Uzbekistan

mukhammadiyev95@gmail.com

Nishanov Eshonkhoja Khamedkhoja ugli

Traumatology and Orthopedics, FMIOPH, Fergana, Uzbekistan

eshonxojanishonov@gmail.com

Eminov Ravshanjon Ikromjon Ugli

Faculty and Hospital Surgery Department, FMIOPH, Fergana, Uzbekistan

Abstract:

Simulation-based training has revolutionized orthopedic education by providing

realistic, risk-free environments for surgical practice. This article reviews current technologies

such as Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), and haptic-based

systems used to train orthopedic residents. These tools improve psychomotor skills, surgical

confidence, and procedural accuracy. Despite rapid technological advancement, challenges

such as cost and curricular integration remain. Structured simulation programs hold promise for

the future of surgical education.

Keywords:

simulation, orthopedics, training, technology, surgery

Аннотация:

Обучение на основе симуляторов произвело революцию в ортопедическом

образовании, обеспечивая реалистичную и безопасную среду для практики

хирургических навыков. В статье рассматриваются современные технологии, такие как

виртуальная реальность (VR), дополненная реальность (AR), смешанная реальность (MR)

и системы с тактильной обратной связью, используемые в подготовке ортопедов. Эти

технологии улучшают психомоторные навыки, уверенность хирургов и точность

операций. Несмотря на достижения, остаются проблемы интеграции в учебные

программы и высокая стоимость. Структурированные симуляционные курсы имеют

большое будущее в хирургическом обучении.

Ключевые слова:

симуляция, ортопедия, обучение, технологии, хирургия

Annotatsiya:

Simulyatsiyaga asoslangan treninglar ortopediya taʼlimida inqilobiy o‘zgarishlar

olib keldi. Ular jarrohlik amaliyotini xavfsiz va real muhitda mashq qilish imkonini beradi.

Ushbu maqolada ortopediya rezidentlarini o‘qitishda qo‘llaniladigan Virtual Haqiqat (VR),

Kengaytirilgan Haqiqat (AR), Aralash Haqiqat (MR) va haptik tizimlar haqida so‘z boradi. Bu

texnologiyalar psixomotor ko‘nikmalar, jarrohlik ishonchi va aniqligini oshiradi. Ammo yuqori

xarajatlar va o‘quv dasturlariga to‘liq integratsiya kabi muammolar mavjud. Tuzilgan

simulyatsiya dasturlari kelajakda jarrohlik taʼlimining ajralmas qismiga aylanishi kutilmoqda.

Kalit so‘zlar:

simulyatsiya, ortopediya, taʼlim, texnologiya, jarrohlik

Introduction

Simulation-based training for orthopedic residents employs a variety of simulators and

technologies, each offering unique advantages and addressing different aspects of surgical

education. Virtual Reality (VR) and Mixed Reality (MR) environments are prominently used,

leveraging platforms like HTC Vive™ and Microsoft HoloLens™ to create immersive training

experiences. These technologies allow residents to practice procedures such as the Less

Invasive Stabilization System (LISS) plating surgery and Condylar plating surgery, which are

crucial for treating femur fractures[1] [2] [3]. The integration of haptic feedback in simulators

further enhances the realism by providing tactile sensations, which are essential for developing


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

MAY

ANDIJON,2025

486

the psychomotor skills necessary for orthopedic surgery[2] [9]. Additionally, the use of green

screen technology in MR environments enables interaction with both virtual and real-world

objects, offering a comprehensive training experience[1] [3]. The Internet of Medical Things

(IoMT) and Next Generation Internet technologies facilitate the development of network-based

simulators, allowing for distributed and collaborative training environments that are accessible

24/7[3] [10]. Despite the technological advancements, the focus of many studies remains on

validating these simulators rather than integrating them into formal curricula, highlighting a

need for curricular development that aligns with educational frameworks like Kern's[4].

Moreover, the use of physical simulators, such as cadavers and models, continues to play a role,

particularly in arthroscopy training, where hybrid simulators combine VR with physical

components to provide realistic tactile feedback[7]. The evolution of orthopedic training

methodologies, including the use of low-cost modules and motion tracking, reflects a shift

towards more accessible and standardized training solutions[5] [6]. Overall, the diverse array of

simulators and technologies underscores the potential of simulation-based training to enhance

the surgical skills of orthopedic residents, although further integration into structured

educational programs is necessary to maximize their impact[8].

Virtual Reality (VR) Simulators

Virtual Reality (VR) simulators are among the most widely used tools in orthopedic training.

These systems provide an immersive environment where residents can practice surgical

procedures without the risk of patient harm. VR simulators are further categorized into two

types:

a. Desktop VR Simulators

Description: These are non-immersive systems that use a computer, video screen, and a

joint model. They allow residents to practice using various instruments and provide haptic

feedback. Innovative software enables multiple training programs, offering precise

performance feedback [1] [2].

Example: The ARTHRO Mentor (Symbionix) and ArthroS (VirtaMed) are examples of

desktop VR simulators used for arthroscopic training [14].

b. Immersive VR Simulators

Description: These systems use head-mounted displays (HMDs) to create a fully

immersive environment. They are particularly effective for complex procedures like hip

arthroscopy and total hip arthroplasty. Studies have shown that skills learned on immersive VR

simulators can be successfully transferred to real clinical scenarios [3] [9].

Example: The PrecisionOS simulator is an immersive VR system used for training in

hip arthroscopy [3].

Augmented Reality (AR) and Mixed Reality (MR) Simulators

Augmented Reality (AR) and Mixed Reality (MR) technologies are gaining traction in

orthopedic training. These systems combine virtual and real-world elements to enhance surgical

planning and education.

a. Augmented Reality (AR)

Description: AR overlays digital information onto the real world, enabling surgeons to

visualize patient-specific anatomy in real-time. This technology is particularly useful for

preoperative planning and intraoperative navigation [5] [6].

Example: Microsoft HoloLens is used to create hybrid simulators for orthopedic open

surgery, combining AR with physical models [15].

b. Mixed Reality (MR)

Description: MR allows interaction between virtual and real-world objects in real time.

It is often used in hybrid simulators to create a more dynamic training environment [16] [18].

Example: A mixed-reality simulator for Condylar plating surgery uses greenscreen

technology to merge virtual and physical elements [16].


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

MAY

ANDIJON,2025

487

Hybrid Simulators

Hybrid simulators combine physical models with virtual or augmented reality elements to

create a more realistic training experience.

Description: These systems use patient-specific anatomical models created from

imaging data (e.g., CT scans) and integrate them with virtual content. They are particularly

useful for procedures like hip arthroplasty [15].

Example: The Microsoft HoloLens-based hybrid simulator for hip arthroplasty

combines physical synthetic bones with virtual anatomical models [15].

4. Physical and Synthetic Simulators

Physical and synthetic simulators are non-digital tools that replicate real-world surgical

environments. They are often used in conjunction with virtual technologies.

Description: These simulators use synthetic bones or cadaveric models to mimic

surgical scenarios. They are ideal for training in procedures like thoracolumbar pedicle screw

placement and knee arthroplasty [11] [12].

Example: Synthetic spine models are used in simulation training for spinal

instrumentation placement [11].

Digital Twins and Surgical Digital Twins (SDTs)

Digital twins are virtual replicas of real-world objects or environments. In orthopedic training,

they are used to create high-fidelity surgical environments for preoperative planning and

simulation.

Description: Surgical Digital Twins (SDTs) are dynamic 3D models that replicate the

entire surgical scene, including anatomy, instruments, and the surgeon's movements. They are

integrated with VR systems like SurgTwinVR for immersive training [4].

Example: SurgTwinVR is a VR application that immerses users in an SDT for surgical

education [4].

Haptic-Based Simulators

Haptic-based simulators focus on providing tactile feedback, which is essential for mastering

surgical techniques.

Description: These systems use haptic devices to simulate the feel of surgical

instruments and tissues. They are particularly useful for training in minimally invasive

procedures like arthroscopy [3] [17].

Example: The haptic-based simulator for Less Invasive Stabilization System (LISS)

plating surgery provides realistic feedback for femur fracture repair [17].

Network-Based and Online Simulators

Advances in internet and networking technologies have enabled the development of online

simulators that can be accessed remotely.

Description: These systems allow residents to train anytime and anywhere, making

them ideal for standardized curriculum-based training. They often incorporate haptic feedback

and immersive environments [17] [20].

Example: A standalone online haptic-based simulator for LISS plating surgery is

accessible to residents via next-generation internet technologies [17].

Multi-Modality Educational Workshops

These workshops combine multiple simulation technologies and educational methods to

provide comprehensive training.

Description: They often include VR simulations, saw-bone models, tutorials, and case-

based discussions. These workshops are designed to improve understanding of surgical

principles and procedures [12].

Example: A multi-modality "Bootcamp" for total knee arthroplasty (TKA) training

includes VR simulation, saw-bone exercises, and case-based discussions [12].

Cyber-Human Frameworks


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

MAY

ANDIJON,2025

488

These frameworks integrate virtual and physical systems to create advanced training

environments.

Description: They use information-centric systems engineering (ICSE) principles to

design simulators that combine haptic feedback, immersive VR, and real-time data analysis.

These systems are particularly useful for complex procedures like femur fracture

stabilization [20].

Example: A cyber-human framework for LISS plating surgery uses haptic-based and

immersive VR systems to train residents [20].

Table:

Comparison of key simulators and technologies

Conclusion

Simulation-based training in orthopedics has evolved significantly with the integration of

advanced technologies like VR, AR, MR, and digital twins. These tools provide residents with

a safe and efficient way to acquire and refine surgical skills. While VR and immersive

technologies dominate the field, hybrid and haptic-based systems are also gaining popularity.

Despite their benefits, challenges such as high costs, technical limitations, and the need for

further validation remain. As technology advances, these simulators are expected to play an

even greater role in shaping the future of orthopedic surgical training.

References

:

1.

Хомидчонова, Ш. Х., & Мирзажонова, С. А. (2023). Основные Методы

Определения Состава Тела. Miasto Przyszłości, 36, 181-185.

Simulator/Technology Purpose

Key Features

Ci

tat

io

n

Desktop

VR

Simulators

Arthroscopic training

Computer-based,

haptic

feedback, multiple training

programs

[1]

[2

] [

14

]

Immersive

VR

Simulators

Complex procedures like

hip arthroscopy

Head-mounted

displays,

realistic environments, skill

transfer to real surgeries

[3]

[9

]

Hybrid Simulators

Combines physical and

virtual elements for realistic

training

Patient-specific models, virtual

content integration

[1

5]

Haptic-Based

Simulators

Minimally

invasive

procedures like arthroscopy

Tactile

feedback,

realistic

instrument handling

[3]

[1

7]

Digital Twins (SDTs)

Preoperative planning and

immersive training

High-fidelity

3D

models,

integration with VR systems

[4]

Multi-Modality

Workshops

Comprehensive

surgical

education

VR

simulation,

saw-bone

models, case-based discussions

[1

2]


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

MAY

ANDIJON,2025

489

2.

Тўхтаев, Ж. Т., Ботиров, Н. Т., & Нишонов, Э. Х. (2023). Болдир-ошиқ бўғими

шикастланишларини ташхислаш ва даволаш. Zamonaviy tibbiyot jurnali (Журнал

современной медицины), 1(1), 27-39.

3.

Туйчибеков, Ш., & Нишонов, Е. (2024). Морфологические основы практических

рекомендаций по конфокальным морфометрическим показателям повреждений

хвоста. in Library, 2(2), 14-17.

4.

Туйчибеков, Ш. (2023). Риск смертности при применении НПВС у детей. in

Library, 1(1), 67-71.

5.

Мусаева,

Ю.

А.

(2025).

АЛКОГОЛЛИ

ПАНКРЕАТИТДА

ЛИМФА

ТУГУНЛАРИНИНГ ГИСТОКИМЁВИЙ ЎЗГАРИШЛАРИ. MODERN EDUCATIONAL

SYSTEM AND INNOVATIVE TEACHING SOLUTIONS, 1(7), 29-31.

6.

Мирзажонова, C. A., Расулова, М. Т., & Ганижонов, П. Х. ИЗМЕНЕНИЯ

ПРОЦЕССА ГИПОКСИИ ОРГАНИЗМА ПРИ ГЕМИЧЕСКОЙ АНЕМИИ.

7.

Латибжонов, А., & Умарова, С. (2023). Технологии искусственного интеллекта в

медицине. in Library, 1(1).

8.

Иргашева,

М.

(2025).

Симуляция

в

клиническом

сестринском

образовании. Общество и инновации, 6(2/S), 107-112.

9.

Xamedxuja o‘g‘li, N. E. IMPROVEMENT OF TREATMENT METHODS FOR

CALF-ASIK JOINT INJURIES.

10.

Xamedxuja o‘g‘li, N. E. (2023). Pathogenetic Mechanisms of the Development of

Severe Functional Disorders in Injuries of the Calf-Acorn Joint. SCIENTIFIC JOURNAL OF

APPLIED

AND

MEDICAL

SCIENCES,

2(11),

427–429.

Retrieved

from

https://sciencebox.uz/index.php/amaltibbiyot/article/view/8628

11.

USING PRP IN THE TREATMENT OF ORTHOPEDIC DISEASES. (2025).

International Journal of Medical Sciences, 5(05), 209-211.

https://doi.org/10.55640/

12.

Sadriddin, P., Akhtam, R., Mahbuba, A., Sherzod, K., Gulnora, R., Orif, N., ... &

Dilshod, D. (2025). Dual-Ligand Liposomes Nano carrier with Cisplatin and Anti-PD-L1

siRNA in Head and Neck Squamous Cell Carcinoma: A Review. Journal of

Nanostructures, 15(1), 292-300.

13.

Ravshan o'g'li, K. S., & Mavlonjon o’g’li, Q. J. (2024). Review Of The Use Of

Tomosynthesis For The Diagnosis Of Injuries And Diseases Of The Musculoskeletal

System. Frontiers in Health Informatics, 13(6).

14.

Gochadze, A. L., & Irgasheva, M. D. (2016). Using clinical interactive games on

lessons in medical colleges. Актуальные проблемы гуманитарных и естественных наук, (5-

6), 26-28.

15.

Alpersovna, M. Y., & Erkinjon o‘g‘li, L. A. (2025). ALKOGOLLI PANKREATIT:

SABABLARI, BELGILARI VA DAVOLASH USULLARI. ZAMONAVIY TA'LIMDA FAN

VA INNOVATSION TADQIQOTLAR JURNALI, 3(2), 17-22.

16.

Abjalilovna, M. S. (2024). GIPOKSIYA VA GIPOKSIYAGA MOSLASHUV

MEXANIZMLARI. THE THEORY OF RECENT SCIENTIFIC RESEARCH IN THE FIELD

OF PEDAGOGY, 2(21), 329-332.

References

Хомидчонова, Ш. Х., & Мирзажонова, С. А. (2023). Основные Методы Определения Состава Тела. Miasto Przyszłości, 36, 181-185.

Тўхтаев, Ж. Т., Ботиров, Н. Т., & Нишонов, Э. Х. (2023). Болдир-ошиқ бўғими шикастланишларини ташхислаш ва даволаш. Zamonaviy tibbiyot jurnali (Журнал современной медицины), 1(1), 27-29

Туйчибеков, Ш., & Нишонов, Е. (2024). Морфологические основы практических рекомендаций по конфокальным морфометрическим показателям повреждений хвоста. in Library, 2(2), 14-17.

Туйчибеков, Ш. (2023). Риск смертности при применении НПВС у детей. in Library, 1(1), 67-71.

Мусаева, Ю. А. (2025). АЛКОГОЛЛИ ПАНКРЕАТИТДА ЛИМФА ТУГУНЛАРИНИНГ ГИСТОКИМЁВИЙ ЎЗГАРИШЛАРИ. MODERN EDUCATIONAL SYSTEM AND INNOVATIVE TEACHING SOLUTIONS, 1(7), 29-31.

Мирзажонова, C. A., Расулова, М. Т., & Ганижонов, П. Х. ИЗМЕНЕНИЯ ПРОЦЕССА ГИПОКСИИ ОРГАНИЗМА ПРИ ГЕМИЧЕСКОЙ АНЕМИИ.

Латибжонов, А., & Умарова, С. (2023). Технологии искусственного интеллекта в медицине. in Library, 1(1).

Иргашева, М. (2025). Симуляция в клиническом сестринском образовании. Общество и инновации, 6(2/S), 107-112.

Xamedxuja o‘g‘li, N. E. IMPROVEMENT OF TREATMENT METHODS FOR CALF-ASIK JOINT INJURIES.

Xamedxuja o‘g‘li, N. E. (2023). Pathogenetic Mechanisms of the Development of Severe Functional Disorders in Injuries of the Calf-Acorn Joint. SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES, 2(11), 427–429. Retrieved from https://sciencebox.uz/index.php/amaltibbiyot/article/view/8628

USING PRP IN THE TREATMENT OF ORTHOPEDIC DISEASES. (2025). International Journal of Medical Sciences, 5(05), 209-211. https://doi.org/10.55640/

Sadriddin, P., Akhtam, R., Mahbuba, A., Sherzod, K., Gulnora, R., Orif, N., ... & Dilshod, D. (2025). Dual-Ligand Liposomes Nano carrier with Cisplatin and Anti-PD-L1 siRNA in Head and Neck Squamous Cell Carcinoma: A Review. Journal of Nanostructures, 15(1), 292-300.

Ravshan o'g'li, K. S., & Mavlonjon o’g’li, Q. J. (2024). Review Of The Use Of Tomosynthesis For The Diagnosis Of Injuries And Diseases Of The Musculoskeletal System. Frontiers in Health Informatics, 13(6).

Gochadze, A. L., & Irgasheva, M. D. (2016). Using clinical interactive games on lessons in medical colleges. Актуальные проблемы гуманитарных и естественных наук, (5-6), 26-28.

Alpersovna, M. Y., & Erkinjon o‘g‘li, L. A. (2025). ALKOGOLLI PANKREATIT: SABABLARI, BELGILARI VA DAVOLASH USULLARI. ZAMONAVIY TA'LIMDA FAN VA INNOVATSION TADQIQOTLAR JURNALI, 3(2), 17-22.

Abjalilovna, M. S. (2024). GIPOKSIYA VA GIPOKSIYAGA MOSLASHUV MEXANIZMLARI. THE THEORY OF RECENT SCIENTIFIC RESEARCH IN THE FIELD OF PEDAGOGY, 2(21), 329-332.