ТОШКЕНТ ТЎҚИМАЧИЛИК ВА ЕНГИЛ САНОАТ ИНСТИТУТИ ХУЗУРИДАГИ ФАН ДОКТОРИ ИЛМИЙ ДАРАЖАСИНИ БЕРУВЧИ 16.07.2013.T.06.01 РАҚАМЛИ ИЛМИЙ КЕНГАШ

ЎЗБЕКИСТОН РЕСПУБЛИКАСИ ОЛИЙ ВА ЎРТА МАХСУС ТАЪЛИМ ВАЗИРЛИГИ

ТОШКЕНТ ТЎКИМАЧИЛИК ВА ЕНГИЛ САНОАТ ИНСТИТУТИ

НИГМАТОВА ФОТИМА УСМОНОВНА

ЯНГИ ПОЛИМЕР МАТЕРИАЛЛАРНИ ҚЎЛЛАШ АСОСИДА СИФАТИ ОШИРИЛГАН МАХАЛЛИЙ ЧАРМДАН КИЙИМ ТАЙЁРЛАШ ТЕХНОЛОГИЯСИНИ ИШЛАБ ЧИКИШ

05.19.04 – Тикув буюмлари технологияси (техника фанлари)

ДОКТОРЛИК ДИССЕРТАЦИЯСИ АВТОРЕФЕРАТИ

Докторлик диссертацияси автореферати мундарижаси Оглавление автореферата докторской диссертации Contents of the abstract of doctor's dissertation

Янги полимер материаллар билан сифати оширилган махаллий чармдан кийим тайёрлаш технологиясини ишлаб чикиш Нигматова Фатима Усмановна Разработка технологии изготовления одежды из местной кожи повышенного качества с применением новых полимерных материалов Nigmatova Fatima Working out the technologies of producing clothes from local leather of high quality with applying new polymer materials	3
Нигматова Фатима Усмановна Разработка технологии изготовления одежды из местной кожи повышенного качества с применением новых полимерных материалов Nigmatova Fatima Working out the technologies of producing clothes from local	3
Нигматова Фатима Усмановна Разработка технологии изготовления одежды из местной кожи повышенного качества с применением новых полимерных материалов Nigmatova Fatima Working out the technologies of producing clothes from local	3
Разработка технологии изготовления одежды из местной кожи повышенного качества с применением новых полимерных материалов	
Разработка технологии изготовления одежды из местной кожи повышенного качества с применением новых полимерных материалов	
материалов Nigmatova Fatima Working out the technologies of producing clothes from local	
Nigmatova Fatima Working out the technologies of producing clothes from local	
Working out the technologies of producing clothes from local	29
leather of high quality with applying new polymer materials	
	55
Эълон қилинган ишлар рўйхати	
Список опубликованных работ	
List of published works	79

ТОШКЕНТ ТЎҚИМАЧИЛИК ВА ЕНГИЛ САНОАТ ИНСТИТУТИ ХУЗУРИДАГИ ФАН ДОКТОРИ ИЛМИЙ ДАРАЖАСИНИ БЕРУВЧИ 16.07.2013.T.06.01 РАҚАМЛИ ИЛМИЙ КЕНГАШ

ЎЗБЕКИСТОН РЕСПУБЛИКАСИ ОЛИЙ ВА ЎРТА МАХСУС ТАЪЛИМ ВАЗИРЛИГИ

ТОШКЕНТ ТЎКИМАЧИЛИК ВА ЕНГИЛ САНОАТ ИНСТИТУТИ

НИГМАТОВА ФОТИМА УСМОНОВНА

ЯНГИ ПОЛИМЕР МАТЕРИАЛЛАРНИ ҚЎЛЛАШ АСОСИДА СИФАТИ ОШИРИЛГАН МАХАЛЛИЙ ЧАРМДАН КИЙИМ ТАЙЁРЛАШ ТЕХНОЛОГИЯСИНИ ИШЛАБ ЧИКИШ

05.19.04 – Тикув буюмлари технологияси (техника фанлари)

ДОКТОРЛИК ДИССЕРТАЦИЯСИ АВТОРЕФЕРАТИ

Докторлик диссертацияси мавзуси Ўзбекистон Республикаси Вазирлар Махкамаси хузуридаги Олий аттестация комиссиясида 20.02.2014/B2013.1.Т2 ракам билан рўйхатга олинган.

Докторлик диссертацияси Тошкент тўқимачилик ва енгил саноат институтида бажарилган.

Докторлик диссертациясининг тўла матни Тошкент тўқимачилик ва енгил саноат институти хузуридаги Фан доктори илмий даражасини берувчи 16.07.2013.Т.06.01 рақамли илмий кенгаш веб-сахифасида www.titli.uz манзилига жойлаштирилган.

Диссертация автореферати уч тилда (ўзбек, рус, инглиз) веб-сахифада <u>www.titli.uz</u> манзилига ва "ZiyoNet" Ахборот-таълим порталида www.ziyonet.uz манзилига жойлаштирилган.

Илмий Алимова Халимахон Алимовна маслахатчи: техника фанлари доктори, профессор

 Расмий
 Жилисбаева Раушан Оразовна

 оппонентлар:
 техника фанлари доктори, профессор

Қодиров Тўлкин Жумаевич техника фанлари доктори, профессор

Шипулин Юрий Геннадиевич техника фанлари доктори, профессор

Етакчи ташкилот:

Бухоро мухандислик-технология институти

Диссертация химояси Тошкент тўқимачилик ва енгил саноат институти хузуридаги 16.07.2013.T.06.01 рақамли илмий кенгашнинг «8» сентябр 2014 й. соат 14^{00} даги мажлисида бўлиб ўтади. (Манзил: 100100, Тошкент ш., Шоҳжаҳон -5, тел. (+99871)- 253-06-06, 253-08-08, факс: 253-36-17; e-mail:titlp info@edu.uz).

Докторлик диссертацияси билан Тошкент тўқимачилик ва енгил саноат институтининг Ахборот-ресурс марказида танишиш мумкин (01 рақам билан рўйхатга олинган). Манзил: 100100, Тошкент ш., Шоҳжаҳон –5, тел. (+99871)- 253-06-06, 253-08-08.

Диссертация автореферати 2014 йил «17 » июнда тарқатилди.

(2014 йил 17 июндаги № 01 ракамли реестр баённомаси).

К.Жуманиязов

Фан доктори илмий даражасини берувчи илмий кенгаш раиси, т.ф.д., профессор

А.З.Маматов

Фан доктори илмий даражасини берувчи илмий кенгаш илмий котиби, т.ф.д., профессор

М.М.Мукимов

Фан доктори илмий даражасини берувчи илмий кенгаш хузуридаги илмий семинар раиси, т.ф.д., профессор

ДОКТОРЛИК ДИССЕРТАЦИЯСИ АННОТАЦИЯСИ

Диссертация мавзусининг долзарблиги ва зарурияти. Чарм - бетакрор ташки куринишга ва юкори эксплуатацион хамда пишиклик хусусиятларига эга ноёб табиий мато сифатида шухрат козонган булиб, бугунги кунда лоакал бир нечта чарм кийим моделлари иштирок этмаган бирорта хам замонавий кийим коллекциясини топиш кийин. Чарм кийимларининг нихоятда оммабоплигига карамай, бозорга такдим этилган махаллий чармдан ишлаб чикарилган кийимлар салмоги жуда кам.

Тери хомашёси ва материалларнинг сифати турли омилларга боғлик: хайвоннинг келиб чикиши (тури, зоти, жинси, хайвоннинг ёши, насли), иклим, хайвонни яшаш ва бокиш шароити, тери олинган мавсум, хомашёни тайёрлаш ва ошлаш технологияси, консервация ва терини саклаш усули. Кўрсатилган омиллар саноат ишлаб чиқаришида кийим учун чарм материалларини танлаш ва тайёрлаш муаммосининг долзарблигини белгилайди. Осиё, Европа ва Америка қитъаларининг шимолий вилоятларида тайёрланадиган хомашё чорвачиликни турли йўналишда олиб борилиши билан ажралиб туради: гўшт ва сут, мўйна, тери ва жун толасини олиш. Марказий Осиё республикаларида эса ривожлантириш асосан гўшт етиштиришга Республикада тайёрланаётган хомашёдан ишлаб чиқарилган чармларнинг иклим шароити ва ошлаш усулларига боғлик холда юз қатлами мустахкамлик кўрсаткичининг пастлиги ва бир канча нуксонларнинг мавжудлиги сабабли ундан кийим ишлаб чиқариш ҳажмини бир мунча чеклайди. Бундай ҳолат кийимбоп махаллий терини сайқаллашга йўналтирилган илмий изланишларни деярли амалда олиб борилмаётганлиги билан ифодаланади.

Ўзбекистон Республикаси Президенти И.А.Каримов маърузаларида: "Янги қайта ишлаш қувватларини, айниқса кичик ва ўрта корхоналарни ташкил этиш, кенг кўламда меҳнат талаб қиладиган соҳаларани - йигириш, тўқувчилик, трикотаж ва тикувчилик саноатини кенг кўламда ривожлантириш, тайёр кийимлар ассортиментини кенгайтириш имконини яратади. Биз хомашё, ярим фабрикат маҳсулотлар сотишдан замонавий харидоргир тайёр маҳсулот сотишни ўрганишимиз керак"¹,- деб таъкидладилар.

Ўзбекистон чарм буюмлари саноати асосан "Ўзбекчармпойабзали" уюшмасига бирлашган ўрта ва кичик бизнес корхоналаридан иборат бўлиб, 2012 йилда бу корхоналар томонидан 212 млн. дм. кв. хромланган чарм, шу жумладан, 650000 дона йирик шохли қорамол, 1824 минг дона майда шохли мол териси тайёрланган. Махаллий чармдан рақобатбардош махсулот ишлаб чиқариш учун хомашёни қайта ишлаш, лойихалаш ва тикиш бўйича янги технологияларни яратиш ва саноатга қўллаш зарур. Кўрсатилган вазифалар ни бажариш махаллий табиий чармдан сифатли махсулотларни тайёрлашда саноат технологияларини ишлаб чиқишга янги илмий ёндошувни талаб этади.

¹ Каримов И.А. Вазирлар Маҳкамасининг мамлакатни ижтимоий-иқтисодий ривожланишининг 2006 й. якунлари ва 2007 й. иқтисодий ислоҳотларни чуқурлаштиришнинг энг муҳим устуворлигига оид мажлисидаги маърузаси. Тошкент. Ўзбекистон, 2007 й., 62-бет.

Тадқиқотнинг Ўзбекистон Республикаси фан ва технологиялар тараққиётининг устувор йўналишларига мослиги. Ушбу иш Ўзбекистон Республикаси технологияларни ривожлантиришнинг фан ва "Информацион йўналишларига: ДИТД-14 ва телекоммуникацион технологияларни ривожлантириш ва кенг қўллашни таъминловчи замонавий информацион тизимлар, бошқарувнинг интеллектуал воситалари, маълумотлар базаси ва программа махсулотларини ишлаб чикиш"; ППИ-5 - "Жамиятни ахборотлаштириш даражасини оширишга қаратилган информацион телекоммуникацион тўрлар, аппарат-дастурий технологиялар, интеллектуал бошқарув ва ўқитув тизимлари хамда усулларини ишлаб чиқиш" мос холда бажарилган.

Диссертация мавзуси бўйича халқаро илмий тадкикотлар шархи. Жахон амалиётида Италия, Жанубий Корея, Туркия, Хиндистон каби мамлакатларда чарм буюмларини ишлаб чиқариш соҳасида пойабзал, чарм атторлик ва кийимга мўлжалланган чармларни пардозлаш жараёнларида полимер материаллардан фойдаланиш бўйича етарлича тажриба тўпланган. Сунъий полимерлар чарм ишлаб чиқариш саноатида чарм чидамлилигини ошириш, сув ва иссиклик ўтказувчанлигини камайтириш, унинг ташки кўринишини яхшилаш, чарм мустаҳкамлиги ва эксплуатацион кўрсаткичларини ошириш учун кенг кўлланмокда. Чарм материалшунослиги ва кимёвий технологиясининг назарий асослари, лойиҳалаш назарияси ва информацион технологиялардан фойдаланишга асосланган қатор илмий ишлар юқори технологик махсулотлар ишлаб чиқаришта замонавий ёндашув хақида етарли даражада аниқ тасаввурни шакллантириш имконини бермокда.

Муаммонинг ўрганилганлик даражаси. Чарм буюмларини саноати ривожланишининг кўп йиллик тарихи ва унда кийим сифати бўйича халқаро стандартлар тизими талабларини кўллаш бўйича илмий ишлар хорижий олим ва мутахассислардан Х.Мотожоши, П.Упстон, П.Смежкал, Т.Хайнс, М.Брюс, Ли Куинн, С.Берт, Ж.-Ж.Лабмен ва бошкалар ишларида кўриб чикилган. Чет эл олимларидан А.Ковингтон (Дания), К.Коломазник (Чехия), Г.Райх (Германия) асосан тери коллагенининг макро- ва микроструктурасини фундаментал тадкикотлари, коллагенни хромли, альдегид ва таннидли ошловчилар билан ўзаро таъсирини ўрганиш борасида илмий изланишлар олиб боришмокда.

Пойафзалга мўлжалланган чарм технологиясининг назарий методологик асосларининг ривожланишига олимлардан М.П.Куприянов, И.М.Зурабян, М.Л.Шусторович, В.А.Фукин, Т.В.Бекк, В.И.Чурсин, А.П.Жихарев, В.А.Скатерной ва бошкалар салмокли хисса кушишмокда. Г.П.Зарецкая, Т.В.Козлова, Г.А.Бастов, Ф.М. Пармон ва бошқаларнинг илмий ишлари чарм кийимларини бадиий лойихалаш жараёнларини такомиллаштиришга бағишланган. Келтирилган тадқиқотлар асосан, чет элда, ўзга иқлим шароитида тайёрланиб, ишлаб чикилган тери хомашёси ва чарм материалларининг хусусиятларини ўрганиш билан боғлиқ. Ўзбекистон олимлари томонидан олиб тадқиқотлар пойафзал учун мўлжалланган борилган айрим хомашёдан табиий тери хусусиятларини яхшилаш муаммоларига қаратилган. Шу билан бирга, кийимга мўлжалланган чармни сайқаллаш ва кийимларни конструкция параметрлари ва чармнинг бичилиш хоссаларини эътиборга олиб, унинг кўрсаткичларини муқобиллаштириш билан боғлиқ илмий изланишлар Республикада деярли олиб борилмаган. Шунга кўра, хомашё сифатини оширишга қаратилган ва маҳаллий чармдан кийим ассортиментини тайёрлаш технологиясини ишлаб чиқишга йўналтирилган илмий ишларни олиб бориш зарурияти пайдо бўлди.

Диссертация тадқиқотининг илмий-тадқиқот ишлари режалари билан боғлиқлиги қуйидаги лойиҳаларда ўз аксини топган:

давлат илмий-техник лойихалари A–14–004 «Тикув буюмларини интеллектуал лойихалаш тизимини яратиш тамойиллари ва усулларини ишлаб чикиш» (2006-2009 й.й.); ITD- 5-39 «Web-технологиялар (IT-технология) воситасида енгил саноат ишлаб чикариш жараёнларини башорат килиш, мониторинг ва бошкарувини амалга оширувчи интеграллашган ахборот тизимларини яратиш» (2012-2014 й.й.).

Тадқиқотнинг мақсади полимер материаллар билан маҳаллий тери хомашёсини туйинтириш асосида унинг сифатини ошириш ҳамда технологик хусусиятларини эътиборга олиб, чарм сатҳидан максимал фойдаланган ҳолда кийим деталларини рационал жойлаштириш ва ассортиментини кенгайтиришнинг самарали усулларини ишлаб чиқишдан иборат.

Қуйилган мақсадга мос равишда қуйидаги **тадқиқот вазифалари** қуйилган:

маҳаллий хомашёдан кийимбоп чармни полимер тўлдирувчилар билан модификациялаш орқали унинг хоссаларини шакллантириш;

материаллар пакетининг деформацион хоссалари асосида чарм кийимларини конструкциялаш ва шаклини моделлаштириш учун илмий асосланган тавсиялар яратиш;

истеъмол механизмини ҳисобга олиб, чарм кийимлар ассортиментини саноат микёсида лойиҳалаш усулларини яратиш;

маҳаллий хомашёдан чарм кийимлари янги моделларини яратиш ва ишлаб чиқаришни технологик жиҳатдан тайёрлаш усулларини такомиллаштириш;

чарм кийимлар саноат ассортиментини лойихалаш жараёнини автоматлаштирилган тарзда қўллаш усулларини яратиш.

Тадкикот объекти сифатида махаллий чарм хомашёси, чарм материаллари, полимер тўлдирувчилар, саноатда чарм кийимини ишлаб чикишни конструкторлик-технологик жихатдан тайёрлаш жараёнлари қаралган.

Тадқиқот предмети— ахборот технологияларини қўллаган ҳолда сифати яхшиланган чармдан кийим ассортиметини лойиҳалаш усул ва воситалари.

Тадқиқот усуллари. Тадқиқот жараёнида кийимни лойиҳалаш масалаларига тизимли ёндошувнинг умумий методологияси, тавсифий назарий ва экспериментал усуллар (лойиҳавий типологик усул, кўп ўлчовли классификация, типизация, комбинаторика тарзида шакл ҳосил қилиш, чарм матералларининг технологик ва физик-механик хоссаларини стандарт синов усуллари, математик статистика, маълумотлар базасини яратиш назарияси,

алгоритмлаш ва дастурлаш усуллари) ишлатилган. Gerber программа дастурлари, Delphi, Windows XP, Microsoft Excel операцион тизимидан фойдаланилган.

Диссертация тадкикотининг илмий янгилиги куйидагилардан иборат:

чарм буюмларини тайёрлаш технологиясининг умумий стратегияси доирасида шакл хосил қилиш, декомпозиция, тўрсимон моделлаш назарияларига ва чарм буюмларига бўлган талабнинг энг мухимини аниқлашга асосланган "чарм материали-ташқи мухит-кийим" тизимида кийим саноат ассортиментини лойихалаш тамойиллари ишлаб чикилган;

маҳаллий хомашёдан тайёрланган чарм сифат кўрсаткичларини комплекс ошириш ва кийимнинг шакл барқарорлигини таъминловчи сувда эрувчан полимер композициясининг (ПК) янги таркиби таклиф этилган (IAP 2004 0445);

янги полимер композицияни табиий чарм коллагени билан ўзаро таъсир механизмини ўрганиш асосида композициянинг рационал таркиби аниқланган;

модификацияланувчи чармнинг физик-механик ва деформацион хоссаларининг назарий ва экспериментал тадкикотлари асосида пластиклик, шакл баркарорлиги ва чарм структура элементларининг харакатчанлик коэффициентлари таклиф этилди, улар воситасида материал пакети технологик хоссаларини ва кийим эксплуатацион кўрсаткичларини бошкариш имкони исботланган;

чарм кийимлари саноат ассортиментини типологик модел ёрдамида кўп мезонли муқобиллаш ва унинг структурасини турли бозор сегментлари талаблари асосида башоратлаш имконини берувчи усул ва алгоритмлар таклиф этилган (DGU 00444, DGU 00445);

истеъмолчилар учун энг афзал моделларни танлаш ва кийим ташқи кўринишининг бадиий-конструкторлик белгиларига қараб электрон эскизларни яратишнинг янги усуллари яратилган (DGU 01400, DGU 01078);

кийим деталларини андозалар жойлашмасида комбинациялаш йўли билан чармдан фойдаланиш кўрсаткичларини моделлаш ва муқобиллаш усуллари яратилган (DGU 01017, DGU 00808);

чарм кийимларини автоматлаштирилган тарзда лойихалашнинг турли жараёнини (маркетинг, дизайн, конструкторлик ва технологик хужжатларни тайёрлаш) кувватловчи интеграллашган информацион тизим таклиф этилди, сунъий интеллект усуллари воситасида уни амалга ошириш стратегияси белгиланган (DGU 01399, BGU 00233, DGU 20120071, DGU 20120188).

Тадқиқотнинг амалий натижалари қуйидагилардан иборат:

махаллий хомашёдан кийимбоп чарм сифатини бахолаш учун меъёрий хужжатлар, табиий чармни бичиш учун танлаш ва унинг хоссалари топографиясини хисобга олиб зоналарга бўлиш хамда чармни механик мустахкамлаш бўйича тавсиялар чарм кийимларининг эксплуатацион сифат кўрсаткичларини оширишни таъминлайди;

кичик корхона шароитида чарм кийимларини тикиш оқимининг мақбул ташкилий технологик схемасини хисоблашни таъминловчи тизимлар ишлаб чиқилган, кийим деталлари андозаларини чарм сиртида комбинациялаш йўли билан муқобил жойлаштириш усуллари чармдан фойдаланиш кўрсаткичларини 3-5% га ошириш имконини беради;

чарм кийимларини автоматлаштирилган усулда лойихалашга мўлжалланган модел ва алгоритмлар комплексини ўз ичига олувчи интеграллашган информацион тизимлар ишлаб чикилган, улар кийим саноат структурасини коллекциясининг окилона аниқлаб, қўллаш муддатларини қисқартириш, виртуал мухитда кийимларни лойихалаш борасида қилиш имкониятларини кенгайтиради, ахборот окилона ечим қабул ишончлилигини таъминлайди;

электрон каталог—тўпловчилар ва электрон кутубхоналар ("Чарм материаллари каталоги", "Моделлар каталоги", "Типавий моделлар андозалари каталоги", "Бичиш схемалари каталоги") ва маълумотномалар ("Чарм хоссалари ва характеристикаси", "Кийим турлари бўйича чарм сарфи меъёрлари", "Чармни бичиш схемаларига техник талаблар") ишлаб чиқилган ва уларни амалда қўллаш таклиф этилган.

Олинган натижаларнинг ишончлилиги чарм сиртидан фойдаланиш кўрсаткичлари ва кийим ассортименти структурасини муқобиллаш учун тузилган графлар назарияси ва комбинатор синтезига асосланган математик моделларнинг аниклиги ва кўрилаётган соҳа бўйича уларни баҳолаш мезонларининг адекватлилиги, ўтказилган тадқиқотларнинг ижобий натижалари ва уларнинг реал ишлаб чиқариш маълумотлари билан қиёсий таҳлилига кўра асосланган.

Тадқиқот натижаларининг назарий ва амалий ахамияти. Тадқиқот натижаларининг назарий моҳияти шундан иборатки, диссертацияда маҳаллий тери хомашёсининг сифат кўрсаткичларини комплекс ошириш ва кийимнинг шакл барқарорлигини таъминлаш мақсадида чармни янги полимер композиция билан тўйинтириш технологияси; кийимларни тайёрлаш ва эксплуатация қилиш мобайнида унга таъсир этувчи юкламалар миқдорига кўра чарм сиртидан оқилона фойдаланишни таъминловчи чармни бичиш учун танлаш усуллари ва мезонлари маҳаллий чармдан сифатли кийимларни ишлаб чиқишга қаратилган концепция асосларини ташкил этади.

Тадқиқотларнинг амалий аҳамияти таклиф этилган усулларни турли предмет соҳаларига оид буюмларни (пойафзал, трикотаж буюмлари, эркаклар, аёллар ва болалар кийимлари) лойиҳалашда бевосита қуллаш билан аниқланади. Саноат корҳонаси шароитида маҳаллий чармдан кийим тайёрлаш теҳнологияси ва саноат ассортиментини автоматлаштирилган тарзда лойиҳалаш жараёнини таъминловчи усуллар, маҳсус аҳборот, услубий ва дастурий компонентлар лойиҳа-конструкторлик ҳужжатлари сифатини ошириш, уларни электрон шаклда тақдим этиш хисобига аҳборот алмашинув жараёнларини тезлаштириш, кийим лойиҳалашда вақт ва моддий ҳаражатларни камайтириш имконини беради, уларнинг жорий этилиши корҳона самарадорлигини оширади.

Тадкикот натижаларининг жорий килиниши. Олинган илмий натижалар асосида кийимбоп чармларга ишлов бериш учун махаллий чармни

тўйинтириш технологияси, чармдан кийимларни лойихалаш учун ишлаб чикилган "Кийим ва бош кийимлар учун техник шартлар", "Йирик шохли мол териларидан олинган хромланган чала тайёр чарм "Wet-blue" меъёрий ("Уздавстандарт" Агентлиги, 05.07.2004, №112/005527, "Интеграллашган информацион тизимни №112/005528) ва лойихалаш" дастурий мажмуалари («TRISTAR technologies» МЧЖ, 16.04.2014) амалиётга жорий этилган. Диссертацияда олинган натижалар, инструментал воситалар комплекси, интеграллашган информацион тизим учун информацион программа таъминоти «АНКА» қушма корхонаси (далолатнома, 27.10.2010), "VIVATEKS" масъулияти чекланган жамияти (далолатнома, 27.06.2008й.) ва «CHARM-ATTOR» масъулияти чекланган жамият фаолиятига (далолатнома 27.06.2011й. қайд этилган) жорий этилиб, йиллик иқтисодий самарадорлик 30 млн. сўмни ташкил этган.

Ишнинг апробацияси. Тадқиқот натижалари 15 та илмий-амалий анжуманлар, шу жумладан 6 та халқаро анжуманларда, хусусан «Тўқимачилик ва енгил саноатни ривожлантиришда ёш олимлар» (Иваново, 2001); «Инсонни хаёт фаолияти мухитини шакллантиришда шахсий истеъмол предметларини роли» (Москва, 2002); «Техника ва технологияларда математик усуллар» (Кострома, 2004); «Мода ва дизайн. Замонавий кийим ва аксессуарлар» (Ростов – Дон, 2009); World Conference on Intelligent Systems for Industrial Automation – PROCEEDINGS» (Тошкент, 2010) анжуманларда апробациядан ўтказилган.

Натижаларнинг эълон қилинганлиги. Диссертация мавзуси бўйича 79 та илмий иш, шу жумладан 14 та илмий мақола ҳалқаро журналларда ва 13 та патент чоп этилган.

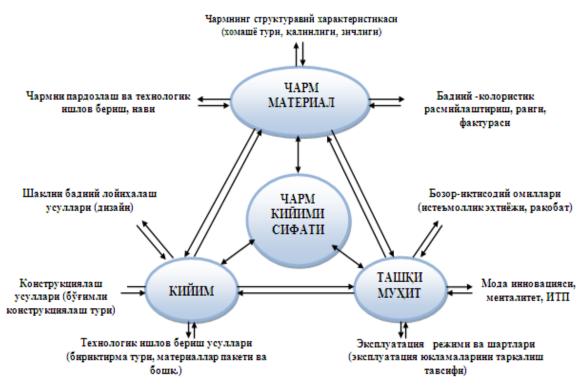
Диссертациянинг тузилиши ва ҳажми. Диссертация кириш, олтита боб, хулоса, фойдаланилган адабиётлар рўйхати, 6 та илова, 200 саҳифа матн, 80 та расм ва 32 та жадваллардан иборат.

ДИССЕРТАЦИЯНИНГ АСОСИЙ МАЗМУНИ

Кириш қисмида диссертация мавзусининг долзарблиги ва зарурияти вазифалари, тадқиқот объекти максади ифодаланган, тадкикотнинг Ўзбекистон Республикаси фан ва технологияларни йўналишларига ривожлантиришнинг мухим мослиги келтирилган, тадқиқотнинг илмий янгилиги ва амалий натижалар баён этилган, олинган натижаларнинг ишончлилиги асосланган, тадқиқот натижаларининг илмий ва амалий ахамияти ёритилган, тадкикот натижаларини амалиётга кўллаган муассасалар рўйхати, эълон қилинган ишлар ва диссертация тузилиши бўйича маълумот берилган.

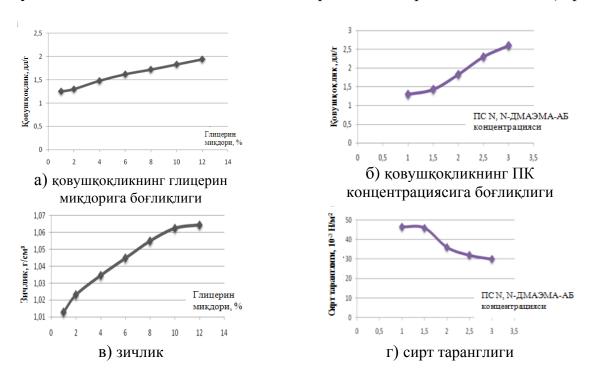
Биринчи бобда Ўзбекистонда тайёрланадиган чарм хомашё юзидаги жуда кўп микдордаги нуксонлари, тери пишиклигининг пастлиги, бўш структураси билан тавсифланиб, ундан ишлаб чикарилган чармлар эса кийимга мўлжалланган чармларга кўйиладиган талабларга жавоб бера олмаслиги кўрсатилган.

Маҳаллий чармдан кийимларни лойиҳалашнинг мавжуд усуллари таҳлили кўрсатишича, чарм яримфабрикатининг эксплуатацион ва деформацион хоссалари топографиясини комплекс ўрганиш, уни рационал ишлатиш, кийим деталларини шаклбарқарорлигига қўйиладиган талаблар билан пакет материалининг ўзаро боғлиқлигини ўрганиш, конструкциялаш ва технологик ишлов бериш усуллари билан боғлиқ илмий ишланмалар чекланган бўлиб, буюмларни автоматлаштирилган тарзда лойиҳалаш усулларни ривожлантириш зарурати аниқланди.

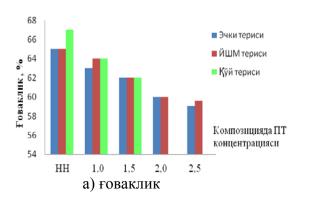

Умуман, ўтказилган адабиётлар таҳлили шуни кўрсатдики, маҳаллий чармдан кийимларни лойиҳалашда бир томондан, ассортиментнинг асосий хоссалари ва аломатларини, иккинчи томондан эса, ички ва ташқи бозорда буюмларга бўлган эҳтиёж ва рақобатбардошликни аниқловчи ҳамда кийимларни умумий сифати нуқтаи назаридан ўзаро боғлиқ бўлган омиллар воситасида ишлаб чиқиш имконини берувчи яҳлит ёндошув мавжуд эмаслигини ўрганиш асосида илмий тадқиқот вазифалари белгиланди.

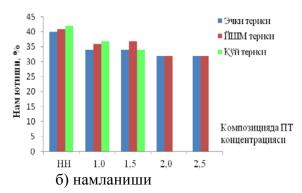
Иккинчи боб маҳаллий тери хомашёсини полимер материаллар билан туйинтириш технологисини яратишга ва кийим ассортиментини лойиҳалаш учун кийимбоп чарм материаллари хоссаларини шакллантиришга бағишланган. Ишда материаллар пакети, тикув буюми ва атроф-муҳит омилларининг ўзаро боғлиқлиги таҳлилидан келиб чиқиб, чармдан кийим саноат ассортиментини (КСА) «Чарм материали-ташқи муҳит-кийим» кўп поғонали тизими асосида лойиҳалаш жараёни таклиф этилган (1-расм). Ушбу тизим лойиҳалаш объекти – кийим ассортиментининг сифат кўрсаткичларини аниҳловчи бир-бирига боғлиқ элементларнинг (тери хомашёси ва материалларни қайта ишлаш технологияси; эксплуатация қилиш шароити ва режимлари; буюмларни конструкциялаш ва технологияси) мураккаб комплексидан иборатдир.

Таркибида N,N-диметиламиноэтилметакрилат полимер тўртламчи тузи, аллилбромид (ДМАЭМА:ТТ+АБ) ҳамда глицерин бўлган янги сувда эрувчан полимер композиция (ПК) ва унинг воситасида маҳаллий хомашёдан кийимбоп чармларга ишлов бериш технологияси таклиф этилди. Тадқиқотлар «PAN A ТЕСН» Ўзбек-Корейс қўшма корхонаси шароитида олиб борилди. ПК нинг ковушқоқлиги, сирт таранглиги ва зичлиги аниқланди (2-расм). Ўтказилган тадқиқот натижалари кийимбоп чармларни модификациялаш учун полимер композициясининг оқилона таркибини танлашга имкон берди, (% улуш): 2,0 - политўртламчи туз; 10 – глицерин ва 88 – сув.


Таклиф этилган полимер композиция асосидаги шимдирилувчи грунт халқобга мойил эчки, кўй ва йирик шохли қорамолнинг (ЙШМ) чала тайёр чармларида синовдан ўтказилди. ДМАЭМА:ТТ+АБ асосидаги ПК билан модификацияланган кийимбоп чарм намуналари структурасининг ўзгаришлари инфракизил, ультрабинафша спектроскопия, парамагнит резонанс, микроскопик ва сорбцион усулларини кўллаш билан ўрганилди.

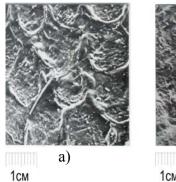
Сув буғининг сорбцияси ва чала тайёр чармнинг сорбцион хусусиятлари аниқланди. ПК билан ишлов бериш эчки, қуй ва қорамол чармларидаги жами ғоваклар ҳажмини камайишига олиб келиб, композициядаги ДМАЭМА:ТТ+АБ концентрациясига боғлиқлиги маълум булди.




1-расм. «Чарм материали-ташқи мухит-кийим» тизими элементларининг ўзаро боғликлик схемаси

Чала тайёр чармларга 2% концентрацияли ДМАЭМА:ТТ+АБ билан ишлов берилганда, унинг ғоваклиги ўртача 5-6% (абс.), намланиши 32-40% гача ва буг ўтказувчанлиги 13-15% га камайиши экспериментал тарзда исботланди (3-расм).

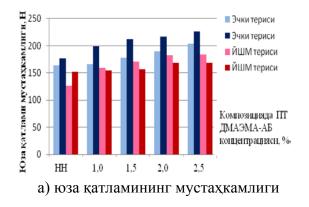
2-расм. ДМАЭМА:ТТ+АБ асосидаги полимер композицияси физик-кимёвий кўрсаткичларининг глицерин ва полимер тузи концентрациясига боғлик ўзгариши. Политўртламчи туз микдори -2,0%

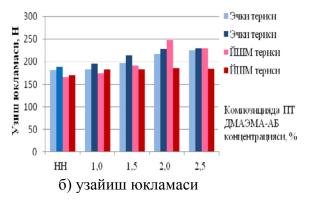


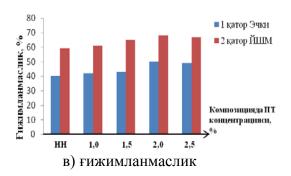
3-расм. ДМАЭМА: TT+АБ асосидаги ПК билан ишлов берилган кийим чармларини бахолаш натижалари

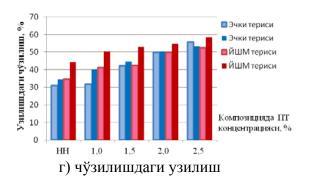
Ишлов берилган чармларнинг ғоваклигини камайиши, шубҳасиз, дерма толалараро бўшлиқларини полимер туз заррачалари билан тўлишидан содир бўлади ва бу холатни чарм намуналарининг микрофотографиялари тасдиқлади (4-расм).

Экспериментал тадқиқотлар асосида қайд этилишича, янги полимер композиция билан модификацияланган чарм намуналарининг физик-механик, технологик ва эксплуатацион кўрсаткичлари назорат намуналарига нисбатан анчагина яхшиланди (5-расм).








- а) назорат намуна (сирт кўриниши)
- б) 2 % ПКли намуна (сирт кўриниши)
- в) назорат намуна (кўндаланг кесими)
- г) 2 % ПКли намуна (кўндаланг кесими)

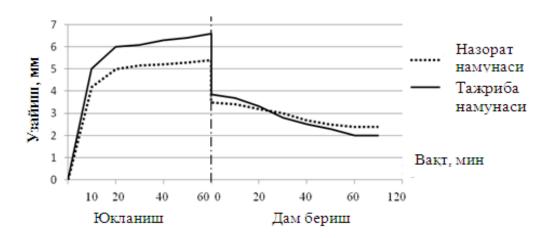
4-расм. Эчки чарми намуналарининг электрон микрофотографиялари. 200 марта катталаштирилган. 1 см.да 50 мкм.

1-қатор – умуртқа поғонаси бўйлаб 2-қатор – умуртқа чизиғига кўндаланг

3-қатор - умуртқа поғонаси бўйлаб 4-қатор – умуртқа чизиғига кўндаланг

5-расм. ДМАЭМА: TT+АБ асосидаги ПК билан модификацияланган чарм намуналарини хоссаларини механик ва эксплуатацион ўзгариши диаграммаси

Учинчи бобда махаллий модификацияланган теридан чармни хисобга одам деформацион хоссаларини олиб, фаолияти харакат компонентларининг кийимга динамик жихатдан мувофиклигини таъминлаш тамойиллари куриб чикилган. Таклиф этилаётган усуллар чарм кийимлари моделлаштириш конструкцияси ва шаклини асосини, тикув буюмлари андозалари бажариш жойлашмасини коидалари ва деталларни автоматлаштирилган тарзда чармга жойлаштириш усулларини ташкил этади.


Чарм анизотроп материал бўлиб, кийимнинг оптимал конструктив тузилиши чарм материалларининг деформацион хоссалари билан белгиланади. Экспериментал тадкикотларнинг кўрсатишича, эчки ва ЙШМ чармларининг синов намуналарига янги ДМАЭМА:ТТ+АБ асосидаги ПК билан ишлов бериш уларнинг деформацион хоссаларини яхшилашга хизмат килади (6-расм).

ПК да политуртламчи туз концентрациясининг 1,0 дан 2,0 гача ортиши, унинг тўлик деформациясини ташкил этувчи эластик-қайишқоқ қисми улушини пластик деформация ортишига, унга мувофик равишда эса, қайишқоқлик камайишига олиб келиб, ШУ билан бирга хоссасининг яхшиланиши эвазига шакл сакланишини таъминлайди. Бунинг сабаби полимер композицияси чармга сингдирилганда унинг толаларига ўтириб, чарм структурасида фазовий тўр хосил килади, ва пировардида композиция ва чарм структураси элементлари орасида боғларни ортишига олиб келиб, чўзилиш кучлари таъсиридаги кайишкок деформацияни юксалтиради. Айни пайтда композицияда полимер туз концентрациясини 2,5%дан ортиши бикрлик ва пластик деформация улушини кескин купайишига олиб келиб, эксплуатация жараёнида кийимбоп чармларнинг шакл бақарорлигида салбий акс этади. Шунинг учун, ПК таркибида ДМАЭМА:ТТ+АБ рационал концентрацияси 2% хисобланади.

Модификацияланган чарм намуналарида ҳосил бўладиган ўзгаришлар, аввало, дерма структура элементларининг ҳаракатчанлик даражасида ва чармнинг деформацион ҳоссаларида намоён бўлади.

Кийимни кийиш жараёнида деталларга интенсив юклама берилганда чарм

холатини бахолаш учун тўлик деформацияга (ε_n) нисбатан қайтмас деформация улушини кўрсатувчи ($\varepsilon_{n_{\pi}}$) пластиклик коэффициенти (Π) қўлланилди:

6-расм. 2 % концентрацияли ДМАЭМА:ТТ+АБ ПК билан ишлов берилган эчки чармининг кундаланг йуналишдаги чузилиш эгри деформацияси

$$\Pi = \frac{\varepsilon_{n\pi}}{\varepsilon_n} \cdot 100\%$$
(1)

Табиий чарм структура элементларининг ҳаракатчанлик коэффициенти (K_n) таклиф этилиб, унинг қиймати қайишқоқ (ε_y) ва эластик $(\varepsilon_{\ni n})$ деформациялар улушини тўлиқ деформацияга нисбати билан топилади:

$$K_n = \frac{\mathcal{E}_y + \mathcal{E}_{yn}}{\mathcal{E}_n} \cdot 100\% \tag{2}$$

Модификацияланган кийимбоп чармлар учун K_n ҳисобланган ҳийматининг кўрсатишича (1-жадвал), таркибида 2% ли ПТТ бўлган ПК билан ишлов берилган намуналар учун K_n ҳиймати 70%, назорат намуналари учун эса 56% ни ташкил этди.

Кийимбоп чарм хоссаларини баҳолаш учун яна бир кўрсаткичшаклбарқарорлик коэффициенти (K_{ϕ}) таклиф этилди, унинг қиймати ҳаракатчанлик коэффициенти (K_n) ва ғижимланмаслик кўрсаткичи (K_c) кўпайтмаси билан аниқланиб, қуйидаги боғланиш орқали ифодаланади:

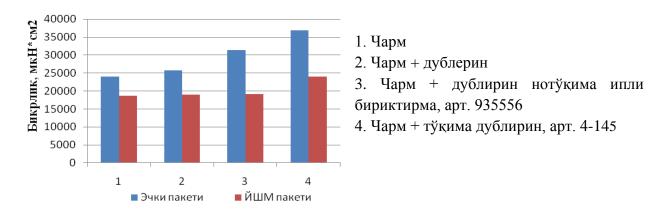
(3)

$$K_{\phi}=K_{n}$$
 K_{c}

Олинган (2) ва (3) ифодалар чарм материалларида содир бўладиган жараёнларни башорат этиш ва шакл барқарорлигига микдорий бахо бериш имкониятини берди. Назарий ва экспериментал тадқиқотлар асосида шакл барқарорлик камайиш коэффициентининг кучланиш катталиги, тўлик деформация ε_n , мувозанатдаги қайишқоқлик модули E_3 ва ғижимланмаслик қўрсаткичи K_c га боғликлиги исботланди, бу эса кийим пакети хоссаларини ўзгартириш хисобига буюм шаклини бошқариш имконини беради.

Берилган шаклни сақлай олиш қобилияти нафақат чарм хоссалари, балки буюм пакети ичига кирувчи материалларга ҳам боғлиқ. Экспериментал тарзда аниқландики, чарм тури ва кийим пакети қатламларининг сони, қотирмалаш зонаси буюм деталларига қуйиладиган талабларга, шунингдек, уларнинг бикрлик, қалинлик ва кайишқоқлик курсаткичларига ҳам боғлиқдир. Айни бир хил чармларга турли елим қотирмалар ёпиштирилганда, уларнинг бикрлиги ва қовушқоқ-қайишқоқлик хоссалари узгаради (7-расм). Модификацияланган чармдан кийим тикиш учун пакет материаллари таркибини танлаш буйича тавсиялар ишлаб чиқилди.

1-жадвал Кийимбоп чарм деформацион хоссаларининг ДМАЭМА:ТТ+АБ асосли ПК таркибига боғлиқ ўзгариши (эчки чарми)


No	Композиция-	Умуртқа	Мувоза-	Плас-	Чарм струк-	Шакл бар-
Π/Π	даги полимер	поғонасига	натдаги	тиклик	тураси элеме-	қарорлик
	тузи миқдори, %	нисбатан	қайишқоқ	коэффи	нтларининг	коэффици-
		йўналиш	лик	циенти,	ҳаракатчанлик	енти, Кф
			модули	П, %	коэффициенти	•
			E_3 , МПа		Кп, %,	
1	Назорат намуна		147	43,3	56,7	22,68
2	ДМАЭМА:	Умуртқа	208	52	48,0	20,16
	ТТ+АБ, 1%		200		, .	20,10
3	1,5%	чизиғи бұқтаб	94	33,8	66,2	28,51
4	2,0%	бўйлаб	71	30	70,0	35,0
5	2,5%		71	46,2	53,8	26,5
6	Назорат намуна		167	57,1	42,9	17,16
7	1%	Умуртқа	77	38,9	61,1	23,6
8	1,5%	чизиғига	100	40,0	60,0	23,91
9	2,0%	кўндаланг	77	35	65,0	32,5
10	2,5%		88	44,4	55,6	26,2

Тензометрик тадқиқотлар ўтказилиб, унинг маълумотлари буюмни эксплуатация қилиш даврида материалга таъсир этувчи деформацион юкламанинг кучи ва қийматини ҳисобга олиб, кийим конструкциясини зоналарга ажратиш, кийим деталларини чармга автоматлаштирилган тарзда жойлаштириш схемаларини яратиш имконини берди.

Кийим конструкциясининг динамик жиҳатдан ҳаракатчан участкаларига тўғри келувчи деформация катталиги, кучланиш қиймати ва йўналишини аниқлаш услуби модификацияланган чармдан тикилган аёллар пиджагининг пакетида ўтказилган тензометрик тадқиқотларга асосланган.

Хусусан, динамик эффектининг (гавда ўлчовларининг катталашиши) катта киймати кузатиладиган кийим участкаларида чарм-материали энг кўп таранглашади. Энг катта чўзилиш деформацияси кўлни букканда ва туширганда тирсак бўғинида (T= 2921,67- 3125,51 сH), ундан кейин ўмиз кисмида, кўлни олдинга узатганда елка бўғинида (T= 2585,81- 2766,22 сH) ва

энг кам даражада енг қиямасида кузатилади. Эксперимент натижаларига статистик ишлов берилиб, топилган тарангликнинг ўртача оғиш қийматлари, нотекислик коэффициенти, дисперсия ва тажриба хатоликлари, вариация (ўзгарувчанлик) коэффициенти қийматлари олинган натижаларни юқори ишончлилигини кўрсатади.

7-расм. ДМАЭМА:ТТ+АБ ПТ асосидаги ПК билан ишлов берилган чарм кийими материаллари пакетининг қаттиқлик кўрсаткичи, ПТ концентрацияси 2%

Ўтказилган тадқиқотлар асосида кийимни эксплуатацияси пайтида унга таъсир қилувчи деформацион юкламанинг катталигига қараб кийимнинг турли қисмлари уч зонага ажратилди: 1-катта деформациялар зонаси; 2- ўрта ва 3-кичик деформациялар зонаси. 1- ва 2- деформация зоналарига тегишли ҳамма катта ва ўрта андозалар ўта масъулиятли, ва 3- зонага мос келувчи ўрта ва кичик андозалар масъулияти камларга ажратилди. Катта деформацияларга тегишли қисмларини фақат чармнинг энг мустаҳкам қисмларидан, қолган қисмларини эса бўйин ва чекка участкалардан бичиш тавсия этилади.

Диссертациянинг **тўртинчи боби** истеъмолчилар хулқ-атвори назарияси ва лойиха типологияси тамойилларини ривожлантириш асосида махаллий хом ашёдан чарм кийимлари саноат ассортиментини (КСА) лойихалаш усулларини яратишга бағишланган.

Чармдан КСА лойиҳалаш жараёнини оқилона ташкил этиш мақсадида унга иерархик структура кўринишдаги комплекс лойиҳалаш объекти (ОП) сифатида (8-расм) қараш таклиф этилди: 1- саноат ассортиментининг комплекс объект сифатида шаклланиши; 2- ассортимент гуруҳлари (АГ); 3- ассортимент бирликлари (АЕ); 4- кийим белгилари (ПО). Кийим ассортименти структурасининг математик модели барча декомпозиция даражаларида кетма-кет шаклланади ва қуйидаги кўринишда бўлади:


$$O\Pi \in A\Gamma_{1,\dots,\kappa} \in AE_{1,\dots,n} \in \PiO_{1,\dots e} \tag{4}$$

АЕ лойихалаш мақсади ПО сони ва уларнинг ўзгариш чегарасини аниқлашга олиб келади. Мақсадли функция умумий кўринишда қуйидагича аниқланади:

$$G = F(x_i, y_i, z_i, s_k), x_i \in X, y_i \in Y, z_i \in Z, s_k \in S,$$
(5)

бу ерда G - ассортимент бирлиги; x_i , z_j , y_l , s_k - материал-ашёвий, функционал, ижтимоий-эргономик ва эстетик белгиларнинг умумлашган вектори. X_i

(i=1,2,...,n) — АЕ эргономик белгилари функцияси; Z_j (j=1,2,...,m) — эстетик белгилари функцияси; Y_l (l=1,2,...,q) — чарм хоссалари функцияси; $S_k(k=1,2,...,r)$ — истеъмол вазияти параметрларининг ўзгаришини характерлайди. Ушбу белгиларнинг йиғиндиси кийимни реал модели хоссаларида жамланиб, берилган вазият учун ассортимент гурухларининг структура-морфологик турли—туманлигини ва турларини шакллантиради. Ҳар бир истеъмолчининг янги белгиларни танлаш тамойили истеъмолчи талабларини максимал даражада (маъқуллик шкаласи) қондирувчи, минимал ҳаражатлар ва (5) чекламани ҳисобга олувчи кийим вариантини танлашдан иборатдир.

8-расм. Кийим саноат ассортиментини – лойиха объектларини декомпозиция килиш иерархик структура схемаси

КСА структурасини шаклланишига аҳамиятли таъсир кўрсатувчи энг муҳим омиллардан бири ташқи муҳитни характерловчи истеъмол вазияти (ИВ) параметри ҳисобланади (1-расм). Инсон яшаши мумкин бўлган, жой, вақт, температура режими ва бошқа параметрлар билан аниқланувчи ҳар қандай ИВ учун ўзига хос кийим ва элементлар тўплами (5) мувофиқ келади.

Турли ташқи мухит шароитида инсон хатти-харакатини моделлаштиришнинг методологик кўрсатмалари лойихавий тамойилларини мухитли ёндошув асбоби сифатида кўллаш ва чарм КСАни «вазиятли-типологик лойихалаш» усулини ишлаб чикиш имконини берди. Юқоридагига мувофиқ холда аниқ ИВ учун рационал кийим ассортиментини саралаш куйидаги боскичларни ўз ичига олади: истеъмолчи функционал типажини (энг оммабоп ИВ ва уларни комбинацияси) моделлаштириш; истеъмолчи эхтиёжини бахолашнинг асосий холатларини аниклаш; кийим оқилона тўпламларини ва/ёки базавий комплектларини тузиш; КСАни шакллантириш. Масаланинг бундай қўйилишида ИВ ни моделлаштириш ғояси принципиал бўлиб, КСА энг макбул номенклатурасини (унинг алохида буюм ва гурухлари) аниклашда дастлабки компонентдир. КСА барча гурух, тур ва хилларини ишлаб чикиш учун база ва максадли мўлжал бўлиб хизмат килувчи ИВ типологияси яратилди.

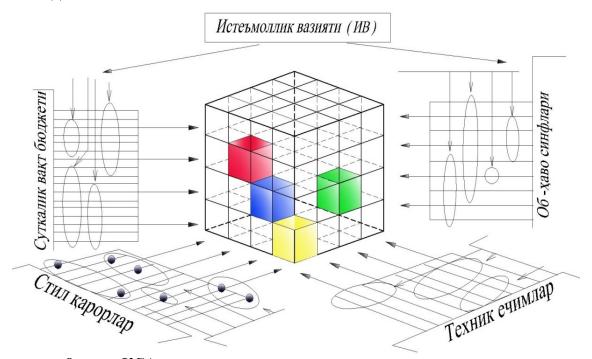
Кийим бадиий-конструкторлик белгиларини (БКБ) ва ИВ типологиясини кўллаб КСА ни лойихалаш услуби ривожлантирилди, бу эса ўз навбатида, ижтимоий тадқиқотлар натижалари асосида энг оммавий ИВ ни аниклаш ва

уларнинг тўпламини гурухлаш алгоритмини хамда кийим коллекцияси структурасини хисоблаш дастурини яратиш имконини беради.

Бу усулларнинг янгилиги берилган химоя хужжатлари билан тасдикланди.

КСАни оқилона лойиҳалаш вазифаси барча белгилари бўйича кийин формаллаштирилувчи масалалар синфига тегишли бўлиб, уларни рақамли шаклда такдим этиш, сонли усуллар билан ечиш мумкин эмас ва масала ечимининг аник алгоритми олдиндан номаълумдир. КСА ни типологик модел сифатида кўп мезонли мукобиллаш масаласи ечими шакллантирилиб, унинг структураси турли классификациялар билан ҳосил бўлган кўп ўлчовли фазо сифатида шундай ифодаланадики, унда ҳар бир объект, масалан, ассортимент бирлиги турли тартибда шаклланган бир неча типологик қаторларда (синфланиш тизимида) бир вақтни ўзида маълум жойни эгаллайди. Типологик ўк моделлари куйидагилардир: (pc_i) истеъмол вазият вариантлар ўки; (tp_i) техник-технологик ечим вариантлар ўки; (cp_i) лойиҳаланадиган моделнинг услубий ечимлари ўки; истеъмолчи хатти-ҳаракатининг хиллари (бозор сегментлари) (9-расм).

$$\Pi C = \sum_{i=1}^{n} pc_{i}; \quad CP = \sum_{i=1}^{n} cp_{i}; \quad TP = \sum_{i=1}^{n} tp_{i},$$
 (6)


Типологик модел ўқлари КСА белгилари характеристикасини ифодаловчи шкала сифатида хизмат қилади. Аниқ ассортимент бирлиги (AE_i) хар бир ўк: ПС, TP ва CP бўйлаб координата ўқларининг кесишувидан хосил бўлади. $A\Gamma$ доирасидаги AE_i жамланмаси ассортимент коллекциясини хосил қилади. КСА ни муқобиллаш мезони сифатида алохида сегмент талаблари (Π); буюм таннархи (T) ва мода инновациялари танланди. Келтирилган (T, T, T) характеристикалар бўлажак кийимнинг комплекс сифат кўрсаткичлари ва бозор рақобатбардошлигини аниқлаб, мураккаб тизим - ишлаб чиқаришнинг хисобот кўрсаткичларига (махсулот ишлаб чиқариш хажми, фойда ва бошқалар) таъсир кўрсатади.

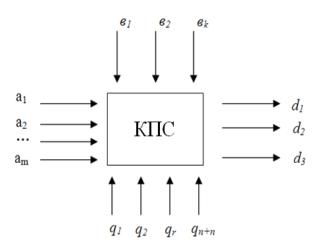
КСА структурасини типологик модел ёрдамида аниқлаш масаласини икки босқичда ечиш таклиф этилади. Биринчи босқич натижаси - АГ таркиби сонини - КСА турлари жамланмасини- AE_i номенклатурасини топиш ва чеклаш. AE_i тури объектга ҳар-хил назар ва қарашлар, маълум бир ижтимоий-маданий муҳитда олиб бориладиган фаолият ва техник ечимларнинг мажмуи ҳисобланади. У ёки бу таклиф истеъмолчи хулқ-атвори билан ифодаланувчи буюртмага жавоб бўлиб, буюм мақсади ва ташқи кўринишида мужассамланади. Агар бу техник ечим ақалли битта истеъмол вазияти (ёки уларнинг комбинацияси) билан тўқнашмаса, унда AE_i ҳосил бўлмайди (9-расм).

Бу холат ушбу техник таклиф талаб этилмаслигини (ёки хозирча талаб этилмаётганлигини) англатади. Натижада, кераксиз ва оддий мантиксиз техник ечимлар сараланади ва релевант (энг макбул) кўринишлар танлаб олинади.

Иккинчи боскичда кийим белгиларига қараб АБ шакллантирилади: БКБ, технологик ишлов бериш усуллари ва материал хоссаллари шаклланади.

Моделлар X_i (i=1,2,...,n) ичидан БКБ ва техник чекланмалар бўйича АЕ сохаси, кейин берилган БКБ кодларига қараб, йўл қўйилиши мумкин бўлган БКБ бирикмаси вариантлари ва ҳар бир БКБ бирикмаси учун ишлов бериш усуллари ажратиб олинади. K={ $X_{oкon}$ } аниклаш масаласи саноатга татбик этишга мўлжалланган моделлар коллекциясини шакллантириш масаласи сифатида ечилади. Қайд этиш лозимки, K аниклаш чегараси Π^{κ} , T^{κ} , M^{κ} оптимал мезонга етмагунга қадар кўплаб КБни саралаш орқали топилади. Натижада, айни масаланинг ечими сифатида КСАни охирги вариантлари жадвал кўринишида шаклланади.

9-расм. КСА типологик моделини геометрик интерпретацияси


Таъкидлаш жоизки, ассортиментни шакллантиришда маълум вакт оралиғида типологиялар кесишуви процедураси турли ўк йўналиши бўйлаб хар сафар ўтказилиши шарт. Яратилган типологик моделнинг афзаллиги ҳам мана шунда: у қотиб қолган ассортимент рўйхати бўлмай, балки ассортимент шаклланишининг тез мослашувчан усули ҳисобланади.

Таклиф этилган КСА вазиятли лойихалаш усули муаллифнинг кўп сонли лойиха ишланмалари ва аёллар устки чарм кийимлари ассортиментининг рационал структурасини ишлаб чикишда синовдан ўтган ва «Назаркина Иголкина», «Анка» ХК ларида татбик этилган.

Бешинчи бобда автоматлаштирилган тарзда лойиҳалаш шароитида чармни бичиш схемаларини ишлаб чиқиш имкониятига эга бўлган кийим деталлари андозаларини чармга муқобил жойлаштириш жараёнларини моделлаштириш усуллари кўриб чиқилган.

Чарм корхоналарининг рентабеллигини ошириш кийим ишлаб чиқаришда материал сарфини камайтириш билан узвий боғлиқ бўлиб, бунга чарм майдонидан мақсадли равишда ва тўлиқ фойдаланишни яхшилаш ва тайёрловбичув жараёнида ахборот технологияларни қўллаш эвазига эришиш мумкин.

Ўрганилаётган тайёрлов-бичув ишлаб чиқариши кўп параметрли система — КПС объекти сифатида мураккаб объектлар синфига тегишли эканлиги кўрсатилди (10-расм). Жойлаштириш схемасининг самарадорлиги чармнинг бичилиш хоссалари (нави, қалинлиги, конфигурацияси, чарм майдони, чармни умумий майдонига нисбатан чепракнинг солиштирма оғирлиги) ва кийим моделларининг хоссалари (бўлиниш турлари, сони, ўлчами ва деталларнинг масъуллик омиллари) билан аниқланади. КПС ичида ахборотни босқичмабосқич ўзгартирилиши ва ҳар бир ташкилий-технологик жараёнда унинг физикавий акс эттирилиши назорат этилувчи параметрлар $Q = \{q_1, q_2, ..., q_r, ..., q_{r+m}\}$ ва тасодифий омилларга $B = \{b_1, b_2, ..., b_k\}$ боғлиқ. Чиқиш параметрларини баҳолаш учун $D = \{d_1, d_2, ..., d_3\}$ қўлланилади (андозалараро чиқиндиларнинг қиймати - d_1 , чармдан фойдаланиш коэффициенти- d_2 , жойлашма майдони - d_3).

10-расм. Бичиш жараёнини конструкторлик-технологик тайёрлаш модели

Автоматлаштирилган лойиҳалаш учун бичиш жараёнининг ахборот модели ва маълумотлар базаси яратилди. Ахборот модели бошқарувининг асоси сифатида хомашё хусусиятини ва тикув буюми деталлари конструкциясини инобатга олувчи қатор электрон каталоглар: «Чарм матераллари каталоги», «Моделлар каталоги», «Намунавий комплект андозалари каталоги», «Бичиш схемаси каталоги» ҳамда маълумотномалар: «Чарм хоссалари ва характеристикалари маълумотномаси», «Чарм бумлари тури бўйича сарф меъёри маълумотномаси» ва «Бичиш схемасини тузишга оид техник шартлар» яратилди.

Табиий чармдан мақсадли фойдаланиш масалалари кўрилди. Кийим бичишда турли майдон ва навдаги чармлар кўлланилгани сабабли, чармда кийим деталларини жойлаштириш пойабзал учун қабул қилинган ўзаро жойлаштириш тизимига бўйсунмайди. Турли размер ва навлардаги муайян чармдан фойдаланиш фоизи ўзгарувчан катталик бўлиб, уни граф назарияни кўллаб, комбинаторли масалани ечиш оркали анчагина ошириш мумкин.

Жойлашмани шакллантириш ушбу ҳолатда G(N,K,D) граф орқали бажарилади, бу ерда N-битта чарм майдонига жойлашадиган деталлар тўплами, К-бир комплектдаги деталлар сони, D-чармдан фойдаланиш кўрсаткичи орқали

ифодаланадиган бир дона чармда j-чи жойлашма вариантининг солиштирма нархи. Изланаётган жойлашма структурасининг (топология) сифати граф масаласи билан аникланиб, ишлатилаётган чармнинг минимал майдонлари йигиндиси оркали ифодаланувчи структурали функция билан, модел учун чарм сарфининг нархи эса, граф тўри билан бахоланади. Кўпгина деталларнинг ўзаро жойлашуви R комбинаторлик фазосидаги ижозат этилган Z ечимларни шакллантиради. Лойихалаш натижаси асосида шундай фазо ости z⊆Z тушуниладики, унда барча нукталар структурали функциядан экстремум — минимумга олиб келади. Чарм бичилиш хоссаларининг турли-туманлиги ва деталларнинг масъуллик омилини хисобга олиб, чармдан фойдаланиш кўрсаткичини минималлаштириш масаласи ечилган. Бичиладиган моделлар сонига чекловлар интервалларда корхонанинг ишлаб чикариш дастурига мувофик берилади. Чарм ресурсларига чеклов эса корхонага келган чарм сони ва турига мувофик равишда ифодаланади.

Чармни бичиш масаласининг математик интерпретацияси қуйидагичадир: хар бири S_i , i=1,m орқали ифодаланган чарм тановар жамланмаси шаклланган бўлсин; бу ерда m - ҳар бир партиядаги тановар миқдори. Барча материалларни P_i майдонли қатор деталларга маълум миқдорда $Nj,\ j=1...k$ жойлаштириш талаб этилади.

Хар бир жойлашма схемаси чарм чекка қолдиқлари суммаси ва чарм майдонидан фойдаланиш фоизи хақидаги маълумотга кўра бахоланади. Агар, тановарни жойлаштириш схемаси моделнинг аниқ P_i майдонли комплект андозалари билан берилса, унда ҳар бир модел учун қуйидагини ёзиш мумкин:

$$\mathbf{M}_{i} \qquad \qquad \mathbf{:} \sum_{i=1}^{n} n_{i} \cdot \mathbf{P}_{i} \leq \sum_{i=1}^{m} S_{i},$$

(7)

бу ерда n - M_i моделнинг S_i -чарм тановарида жойлашувчи деталлари сони, m – тановар (заготовка) сони.

Маълумки, андозалар комплекти масъулиятли деталлар андозалари ва масъулияти кам деталлардан иборат бўлади:

$$n = n_i^1 + n_i^{11} ,$$

(8)

бу ерда, $n_i^{\ 1}$ – масъулиятли деталлар сони; $n_i^{\ 11}$ – масъулияти кам деталлар сони.

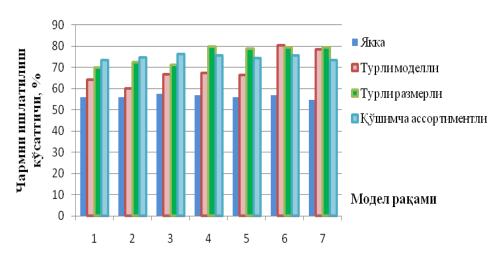
Агар, $P_i^{\ 1}$ - битта чармда жойлашувчи масъулиятли деталлар майдони, $P_i^{\ 11}$ - масъулияти кам деталларнинг майдони бўлса, унда:

$$n_i^{\ 1}$$
 . $P_i^{\ 1}$ \leq S_{ir}

(9)

$${n_i}^{11}$$
 , ${P_i}^{11} \leq \ S_i$ $\bar{}$ S_{ir}

бу ерда, S_{ir} - N_i - тановарнинг чепрак қисми юзаси. Жойлаштирилган деталлар сонини бичиш режасига мослиги қуйидаги шарт орқали изохланади:


$$\sum_{i=1}^{n} n_i \leq N; \tag{10}$$

бу ерда, N – модель керакли андозалари сони (N= 1...3).

Чарм чепрак қисмини тавсифловчи муқобиллик функционали:

Бу шарт эса шарт чарм чекка қисмларини тавсифловчи муқобиллик функционалидир.

Табиий чармни бичиш масаласини математик интерпретация қилиш йўли билан бўлинишлар сони, кийим размери, детал шакли билан фарк қилувчи кийим деталлари ва кўшимча ассортимент андозаларининг комбина-цияли жойлашуви самарадорлиги исбот қилинди (11-расм). Ишончли натижалар олиш ва бошқа омиллар таъсир этмаслиги мақсадида экспери-ментал жойлашмалар бир хил конфигурацияли чарм макетларида бажарилди.

11-расм. Чармдан фойдаланиш курсаткичларининг турли хил комбинацияли жойлашмаларда ўзгарувчанлик диаграммаси

Юзаси 90 дм² гача бўлган каттароқ чармларга деталлар кичик ўлчовли чармларга нисбатан яхши жойлашади, кичик майдонли ва паст навли чармларни бичиш учун эса буюм асосий бўлаклари сонини кўпроқ қилиб лойихалаш тавсия этилади. Шу билан бирга, битта жойлашмада ўзаро ўхшаш горизонтал ва вертикал бўлинишли кийим модели деталларини жойлаштириш мақсадга мувофиқ.

Таклиф этилган алгоритмлар чарм материалларида кийим детал андозаларини автоматлаштирилган тарзда жойлаштириш тизими усуллари асосини ташкил этди.

Чарм кийими деталларининг, бичиш самарадорлиги нуқтаи назаридан оқилона ечимларини излаш мақсадида чарм кийимининг шакл ҳосил қилувчи белгилари устида ретроспектив тадқиқотлар ўтказилиб, уларни тизимлаш ва моделлаштириш асосида шакл ҳосил қилувчи структуравий элементлар аниқланди, типавий ва унификацияланган деталлар шакллари башоратланди. Олинган натижаларга асосланиб, кийим модели эскизини автоматлаштирилган

тарзда лойихалаш учун ахборот таъминоти таркиби ва структураси ишлаб чикилди.

Дастурлаштирилган шакл ҳосил қилиш ва комбинаторли синтез усулларига асосланган ҳолда чармдан кийим модели электрон эскизларини яратиш технологияси таклиф қилинди ва татбиқ этилди. Лойиҳалаш объекти ($O\Pi$) сифатида: тугалланган техник эскиз (TЭ), йиғма бирликлар (CE), деталлар (Π), материал ва кийим конструкцияси белгилари (Π MK) кўриб чиқилган.

Модель эскизининг намунавий ечими тўпламлар назариясига (теория множеств) асосланиб, куйидаги кўринишда такдим этилди:

$$[T\mathcal{F}] \in CE_1, \dots, \subset \mathcal{I}_1, \dots, \in \Pi MK_{1,\dots,i}$$

$$(13)$$

Конструкциянинг элементар қисми: йиғма бирлик ва деталлар, материал ва конструкция белгиларидан ҳосил бўлади. Бу ҳолда белгилар бевосита эскиз элементларига (бўйин ўмизи шакли, силуэт, бўлинишлар ва бошқ.), материал белгиларига (материал хоссалари, ранги, гули ва бошқ.) ва технологик ишлов бериш белгиларига (чок турлари, намлаб-иситиш операциялари) ҳам тегишли бўлиши мумкин.

 $O\Pi$ тўпламидаги хар бир лойихаланувчи моделни расман қуйидагича ифодалаш мумкин:

$$T \ni_{i} \subseteq U \Pi M K_{j} (f_{ij}, M_{ij}, TO_{ij}),$$

$$(14)$$

бу ерда, $i = I - O\Pi_i$ ($T\mathcal{I}_i$, \mathcal{I}_i , CE_i) сони; j- $O\Pi_i$ таркибидаги шакл хосил қилувчи белгилар (КДП); $\Pi M K$ I_j - j- чи $O\Pi_i$ таркибидаги кийим конструкцияси ва материал белгилари; $f_{ij} = (f^l_{ij}, f^2_{ij}, ..., f^{Kij}_{ij})$ - j- чи элементнинг шакл белгилари хақидаги маълумотлар; $M_{ij} = (M^l_{ij}, M^l_{ij}, ..., M^l_{ij})$ - j- чи элементнинг материал белгилари; $TO_{ij} = (TO^l_{ij}, TO^l_{ij}, ..., TO^l_{ij})$ - j- чи элементнинг технологик ишлов бериш белгилари ҳақидаги маълумотлар.

TЭнинг (13)- математик модели дизайн автоматлаштирилган тизимида лойихалаш учун алгоритм, информацион ва дастурий таъминоти турли мўлжалдаги кийимлар (чарм кийимлари, трикотаж буюмлари) ташқи кўринишининг рационал ечимларини шакллантиришга мосланган.

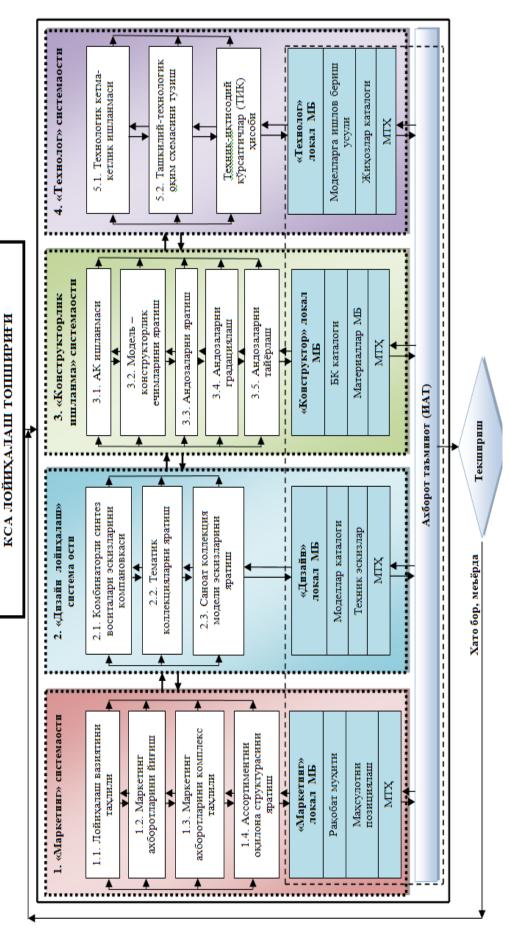
моделларни бадиий-конструкторлик белгилар бўйича истеъмолчилар истагини хисобга олиб автоматик тарзда излаш ва синтез килиш масаласи ечими шакллантирилди. Таклиф этилган жаъми усуллар кийим моделлари электрон эскизини яратиш технологияси асосларини хосил килади автоматлаштирилган режимда моделларнинг ва саноат коллекцияси структурасини лойихалаш имконини беради. Таклиф этилган дастурий Республикаси интеллектуал мулк Агентлиги **У**збекистон махсулотларга патентлари (№DGU 00444, №DGU 00445, №DGU 01078, №DGU 01570) олинган.

Дастурий воситаларни апробациядан ўтказиш шуни кўрсатдики, уларни кўлланилиши буюмларни ишлаб чикаришни кўпайтириш, буюмни лойихалаш муддатини ва бичиш операциясида банд ишловчилар сонини кискартириш

хамда иш хажмини 30%га камайтиришга олиб келди. Иктисодий самарадорлик 7136067 сўмни ташкил этади.

Олтинчи боб чармдан КСА лойихалашнинг турли боскичларида қарор қабул қилиш жараёнини қувватловчи автоматлаштирилган тизим яратишга бағишланган.

«Чарм материали - ташқи мухит - кийим» тизимининг ўзаро боғлиқ элементларининг комплекс тахлили ва лойихалаш жараёнларини тизимлаштириш асосида табиий чармдан КСА автоматлаштирилган тарзда барча боскичларининг мақсадли бирлигини интеграциялашган ахборот тизимининг (ИАТ) концептуал модели таклиф этилди. ИАТ функцияси: қарор қабул қилиш жараёнини автоматик қувват-лаш ва лойихавий-технологик мухитда буюмни лойихалашнинг узлуксиз циклини шакллантириш, лойиха ечимларини ишлаб чикаришга жорий этилгунига қадар излаш ва синтез қилиш. ИАТ архитектураси ўзаро боғлиқ қуйи тизимлардан $C_i(i=1,k)$ иборат бўлади. Бу ерда k- ИАТ таркибидаги куйи тизимлар сони. Хар бир куйи тизим объектли-ориентирланган булиб, уларга лойихалаш/бошкариш учун ахборот оқими кириб келади (12-расм).


Интеграциялашган маълумотлар базаси (МБ) уларни ўзаро боғловчи бўғин хисобланади. Ҳар бир боскичдаги кирувчи ахборот интеграллашган ва локал база элементларидан иборат (маркетинг, дизайн-лойихалаш, конструкторлик ва технологик тайёргарлик боскичлари, МБ).

Таклиф этилган МБ MICROSOFT Access маълумотлар базасини бошқарув тизимининг реляцион турида, Corel DRAW 8 билан боғлиқ равишда яратилиб, маълумотларни Интернет орқали хам керакли форматда чоп этишни таъминлай олади. ИАТ учун фойдаланувчи интерфейс яратилди. Ахборот таъминоти 15 та каталог, каталог ости ва 16 та маълумотномаларни ўз ичига олади. МБ таркиби учун ЎзР Интеллектуал мулк агентлигининг ижобий қарори олинган (BGU 00233).

Ишлаб чиқаришни технологик жихатдан тайёрлаш жараёнларини автоматлаштириш мақсадида чарм буюмларига технологик ишлов бериш усуллари тизимлаштирилди. Табиий чармдан устки кийимларни тайёрлаш бўйича меъёрий-техник материаллар «ЧАРМПОЙАБЗАЛИ» ассоциацияси корхоналарига жорий этиш учун қабул қилинди.

Ахборот тизими доирасига кирувчи кичик тизимлар учун дастурий таъминот ва функционал модуллар менюси яратилди (маркетинг ахборот тизими, эскиз ва конструкцияни моделлаш, чармда андозаларни жойлаштириш, чарм кийимлар ишлаб чиқаришни технологик тайёрлаш, электрон ахборот алмашинуви тизими). Бунда, замонавий график интерфейсни яратиш бўйича AutoCAD, Delphi, Windows XP, Microsoft Excel, Microsoft Access мухити бой имкониятларидан, Gerber (АҚШ) дастурий махсулотларидан фойдаланилди. Тикув ишлаб чикаришда интеграллашган лойихалашнинг тизимини этишлан автоматлаштирилган жорий самарадорлик 27738552 сўмни ташкил этди (2010 йил нархларида).

Шундай қилиб, назарий, тажрибавий тадқиқотлар асосида ва замонавий ахборот технологияларини қўллаб «Чарм материал - ташқи муҳит - кийим» тизими доирасида табиий маҳаллий чарм хомашёсидан кийим ассортиментини тайёрлаш технологияси ишлаб чиқилди.

12- расм. Чармдан КСА автоматлаштирилган лойихалаш учун интеграллашган ахборот тизимининг концептуал модели

ХУЛОСА

Диссертация ишида маҳаллий чарм хомашёсидан кийим ассортиментини ишлаб чикиш технологияси соҳасида ўтказилган назарий ва тажрибавий тадкикотлар асосида тайёр кийим сифатини ва ишлаб чикариш жараёнларининг самарадорлигини ошириш мақсадида янги усуллар ва технологик ишланмалар таклиф этилди. Илмий тадкикот ишининг энг муҳим натижалари қуйидагилар:

- 1. Глицерин иштирокидаги аллилбромид билан N,N диметиламиноэтилметакрилат политўртламчи тузи асосидаги янги сувда эрувчан полимерли композиция ва уни махаллий хомашёдан кийимбоп чармларни пардозлаш жараёнида кўллаш усуллари махаллий чармнинг пишиклиги ва эксплуатацион кўрсаткичларини оширишни таъминлайди.
- 2. Табиий чарм коллагени билан полимер композициянинг ўзаро таъсир механизми ўрганилиб, уни кийимга мўлжалланган табиий чармни тўйинтириш учун композицияга қўйиладиган талабларга мувофик келувчи окилона таркиби аникланган (IAP 03747) бўлиб, уни чармни пардозлаш жараёнида кўллаш чарм навини оширишни таъминлайди.
- 3. Сувда эрувчан полимер композициясини пардозлаш жараёнида қўллаш модификацияланган чарм микростуктурасини зичлаштириш эвазига унинг структуравий ва физик-механик хоссаларини яхшиланишига олиб келди. Назорат намунага нисбатан узайишдаги мустаҳкамлик 15-20 %, намланиш -8 %, буғ ўтказувчанлик 9-11 % га ортди. Бўйлама ва кўндаланг йўналишдаги умумий, шу жумладан, қайишқоқ—эластик деформация улушининг бўйлама ва кўндаланг йўналишда ортиши 20 -25 % ни ташкил этди. Кўрсатилган омиллар чарм материалини бичишда қирқилувчанлигини 17-20 % камайтиради.
- 4. Янги полимер композиция билан модификацияланган кийим чармларининг шакл барқарорлиги кўрсаткичи кучланиш катталиги, тўлик деформация, мувозанатдаги қайишқоқлик модули ва чарм структуравий элементларининг ҳаракатланиш коэффициентига боғликлиги тасдиқланган. Шу асосда чарм материаллари сифатини бахолаш учун таклиф этилган K_{ϕ} шакл барқарорлик коэффициенти кийим пакети хоссаларини ўзгартириш ҳисобига буюм шаклини бошқариш имконини беради.
- 5. Чармга кийим деталларини автоматлаштирилган режимда комбинацияли жойлаштириш усули, чарм материалларининг турли бичилиш хоссаларини ва буюм конструктив—технологик ечимларини инобатга олувчи мукобил жойлаштириш алгоритмлари (DGU 01017, DGU 00808) чармдан фойдаланиш кўрсаткичларини 3-5% га ошириш имконини беради.
- 6. Кийим бадиий–конструктив белгиларига қараб истеъмолчилар истагини ўрганиш асосида кийим ташқи кўриниши график элементларининг маълумотлар базаси ва кийим эскизини яратиш алгоритмини ўз ичига олувчи чарм кийими моделининг электрон эскизини шакллантириш учун яратилган технология (DGU 01400, DGU 01570) саноат коллекциясининг оқилона структурасини аниқлаб, ишлаб чиқаришга қўллаш муддатларини қисқартириш, виртуал мухитда кийимларни лойихалаш борасида оқилона ечим қабул қилиш имкониятларини кенгайтиради.

7. Янги полимер материалларни қўллаш билан сифати оширилган махаллий чармдан саноат корхонаси шароитида кийим тайёрлаш технологияси ва саноат ассортиментини автоматлаштирилган тарзда лойихалаш жараёнини таъминловчи усуллар, махсус ахборот, услубий ва дастурий компонентлар «ANKA», «PAN A TECH» қўшма корхоналари ва «CHARM-ATTOR» масъулияти чекланган жамият шароитида тадбиқ этилган, диссертация натижаларини ишлаб чиқаришга қўллаш бўйича олинган далолатномалар иқтисодий самарадорликни тасдиқлайди.

НАУЧНЫЙ СОВЕТ ПО ПРИСУЖДЕНИЮ УЧЕНОЙ СТЕПЕНИ ДОКТОРА НАУК 16.07.2013.Т.06.01 ПРИ ТАШКЕНТСКОМ ИНСТИТУТЕ ТЕКСТИЛЬНОЙ И ЛЕГКОЙ ПРОМЫШЛЕННОСТИ

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

ТАШКЕНТСКИЙ ИНСТИТУТ ТЕКСТИЛЬНОЙ И ЛЕГКОЙ ПРОМЫШЛЕННОСТИ

НИГМАТОВА ФАТИМА УСМАНОВНА

РАЗРАБОТКА ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ОДЕЖДЫ ИЗ МЕСТНОЙ КОЖИ ПОВЫШЕННОГО КАЧЕСТВА С ПРИМЕНЕНИЕМ НОВЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

05.19.04 – Технология швейных изделий (технические науки)

АВТОРЕФЕРАТ ДОКТОРСКОЙ ДИССЕРТАЦИИ

Тема докторской диссертации зарегистрирована за № 20.02.2014/B2013.1.T2 в Высшей аттестационной комиссии при Кабинете Министров Республики Узбекиста.

Докторская диссертация выполнена в Ташкентском институте текстильной и легкой промышленности.

Полный текст докторской диссертации размещен на веб-странице научного совета 16.07.2013.Т.06.01 по присуждению ученой степени доктора наук при Ташкентском институте текстильной и легкой промышленности по адресу www.titli.uz.

Автореферат диссертации на трех языках (узбекский, русский, английский) размещен на вебстранице по адресу www. titli.uz и Информационно-образовательном портале "ZiyoNet" по адресу www.ziyonet.uz.

Научный Алимова Халимахон Алимовна консультант: доктор технических наук, профессор

Официальные Жилисбаева Раушан Оразовна оппоненты: доктор технических наук, профессор

Кадыров Тулкин Джумаевич доктор технических наук, профессор

Шипулин Юрий Геннадиевич доктор технических наук, профессор

Ведущая Бухарский инженерно-технологический **организация:** институт

Защита диссертации состоится «8 » сентября 2014 г. в 14^{00} часов на заседании научного совета 16.07.2013.T.06.01 при Ташкентском институте текстильной и легкой промышленности по адресу: 100100, г. Ташкент, ул. Шохжахон-5, тел. (+99871)- 253-06-06, 253-08-08, факс: 253-36-17; e-mail:titlp_info@edu.uz.

С докторской диссертацией можно ознакомиться в Информационно-ресурсном центре Ташкентского института текстильной и легкой промышленности (регистрационный номер 01). Адрес: 100100, г.Ташкент, ул. Шохжахон-5, тел. (+99871)- 253-06-06, 253-08-08.

Автореферат диссертации разослан « 17 » июня 2014 года (протокол рассылки № 1 от 17 июня 2014 г.).

К.Жуманиязов

Председатель научного совета по присуждению учёной степени доктора наук д.т.н., профессор

А.Маматов

Ученый секретарь научного совета по присуждению учёной степени доктора наук, д.т.н., профессор

М.Мукимов

Председатель научного семинара при научном совете по присуждению учёной степени доктора наук, д.т.н., профессор

АННОТАЦИЯ ДОКТОРСКОЙ ДИССЕРТАЦИИ

Актуальность и востребованность темы диссертации. Сегодня трудно найти коллекцию, где нет хотя бы несколько моделей одежды из кожи — уникального природного материала, обладающего своеобразным красивым внешним видом, имеющего высокие показатели надежности и эксплуатационных свойств. Несмотря на огромную популарность кожаной одежды доля отечественной продукции, представленной на рынке, находится на крайне низком уровне.

Качество кожевенного сырья и материалов, зависит от различных происхождения (вид. порода, пол, возраст животного, наследственность), климата, условий обитания и кормления животного, сезона, в котором животное было забито, а также технологии заготовки и выделки методов консервирования и хранения шкур. Такая факторная обусловленность актуализирует проблему подготовки и выбора кожматериалов производстве. В отличие одежды промышленном заготавливаемого северных областях Азиатского, Европейского континентов, скотоводство имеет различную Американского где направленность: мясо-молочное, меховое, кожевенное, для получения волокна шерсти, особенностью заготовки кожсырья в республиках Центральной Азии является развитие животноводства в основном мясного направления. И не случайно, кожа, вырабатываемая из сырья, заготавливаемого в республике, изза низких прочностных свойств лицевого слоя и ряд дефектов сырьевого и производственного происхождения, обусловленных климатическими условиями, в незначительном объеме используется для производства швейных Это объясняется тем, что научно-исследовательские направленные на облагораживание местной кожи одежного практически не проводятся.

Президент Республики Узбекистан И.А.Каримов в своем докладе отметил: «Создание новых перерабатывающих мощностей, особенно малых и средних предприятий даст возможность в широких масштабах развить трудоемкие отрасли - прядильные, ткацкие и отделочные производства, трикотажную, швейную и кожевенно-обувную промышленность, расширить ассортимент готовых изделий. Мы должны научиться торговать не сырьем, не дешевыми полуфабрикатами, а современной, пользующейся спросом готовой продукцией» ¹.

Кожевенная промышленность Узбекистана представляет собой целый ряд предприятий среднего и малого бизнеса экономики, в основном объединенных в ассоциацию "Узбекчармпойабзали". Так, в 2012г. в Узбекистане этими предприятиями было произведено 212 млн. кв.дм хромовых кож, в том числе

¹ Каримов И.А. Доклад на заседании Кабинета Министров, посвященной итогам социальноэкономического развития страны в 2006 году и важнейшим приоритетам углубления экономических реформ в 2007 году. Ташкент. Узбекистан, 2007г., стр.62.

650000 шт. крупного рогатого скота, 1824 тыс. шт. мелкого рогатого скота. Для создания отечественных качественных конкурентоспособных изделий из кожи необходимо разработка и внедрение новых технологий переработки местного сырья, а также проектирования и изготовления.

Решение указанных задач требует разработки принципиально новых научных подходов к технологии промышленного изготовления качественных изделий из местной натуральной кожи.

Соответствие исследования приоритетным направлениям развития науки и технологий Республики Узбекистан. Диссертация выполнена в соответствии с приоритетными направлениями развития науки и технологий Республики Узбекистан: ДИТД—14 - «Современные информационные системы, обеспечивающие развитие и широкое внедрение информационных и телекоммуникационных технологий, разработка программных продуктов»; ППИ-5 - «Разработка информационных технологий, телекоммуникацинных сетей, аппаратно-программных средств, методов и систем интеллектуального управления и обучения, направленных на повышение уровня информатизации общества».

Обзор международных научных исследований по теме диссертации. В мировой практике производства кожаных изделий таких стран, как Италия, Южная Корея, Турция, Индия и др. накоплен достаточный опыт использованию полимерных материалов в процессах отделки обувных, кож. Синтетические кожгалантерейных, одежных полимеры производстве применяются кожи ДЛЯ повышения износостойкости, выравнивания свойств кожи по топографическим участкам, повышения водостойкости, термостойкости, улучшения ее внешнего вида, увеличения ее прочностных, эксплуатационных характеристик. Многочисленные работы по использованию теоретических основ материаловедения технологии кожи, теории проектирования и информационных технологий позволяют сформировать достаточно четкое представление о современных подходах к способам производства высокотехнологичной и наукоемкой продукции.

Степень изученности проблемы. Многолетняя история развития промышленного производства изделий из кожи, реализованная в соответствии с требованиями системы международных стандартов надежности и качества одежды, рассмотрены в работах таких зарубежных ученых и специалистов, как Х.Мотожоши, П.Упстон, П.Смежкал, Т.Хайнс, М.Брюс, Ли Куинн, С.Берт, Ж.-Ж. Лабмен и др.

Фундаментальные исследования макро- и микроструктуры коллагена кож, изучение взаимодействия коллагена с хромовыми, альдегидными и таннидными дубителями реализованы в научных работах зарубежных ученых К. Коломазник (Чехия), А. Ковингтон (Дания) и Г. Райх (Германия).

Значительный вклад в развитие теоретико-методологических основ технологии кож для обувного производства внесли научные исследования, выполненные под руководством ученых М.П.Куприянова, И.М.Зурабяна, М.Л.

Шусторовича, B.A. Фукина, Т.В.Бекк, В.И. Чурсина, А.П.Жихарева, В.А.Скатерного и др. Научные работы Г.П.Зарецкой, Т.В.Козловой, Г.А. Бас-Ф.М.Пармон др. посвящены совершенствованию художественного проектирования одежды из кожи. Эти работы в основном изучением свойств кожсырья и материалов зарубежного производства, заготавливаемых в других климатических условиях. Отдельные немногочисленные исследования ученых Республики посвящены проблемам улучшения свойств натуральных кож из местного сырья в основном для обуви. Вместе с тем, научные исследования, связанные с облагораживанием кожсырья одежного назначения, оптимизацией показателей использования кожи с учетом ее раскройных свойств и параметров конструкции одежды в Республике почти не проводились. В связи с этим назрела необходимость проведения научных исследований, направленных на повышение качества сырья и разработки технологии создания ассортимента одежды из кожи местного производства.

Связь диссертационного исследования с планами научно-исследовательских работ, отражена в следующих проектах:

государственный научно-технический проект A–14–004 "Разработка методов и принципов создания системы интел-лектуального проектирования швейных изделий" (2006-2009 гг.);

ITD-5-39 «Разработка интегрированной информационной системы прогнозирования, мониторинга и управления производственными процессами в легкой промышленности с использованием Web-технологий» (2012-2014 гг.).

Целью исследования является повышение качества местного кожсырья путем наполнения полимерными материалами и разработка эффективных способов рационального размещения деталей одежды, расширение ее ассортимента с учетом технологических свойств и максимального использования площади кожи.

Для реализации поставленной цели определены следующие задачи исследования:

сформировать необходимые свойства одежных кож из местного сырья путем модификации ее полимерными наполнителями;

разработать научно-обоснованные рекомендации для моделирования формы и конструкции одежды из кожи на основе деформационных свойств пакета материалов;

разработать методы проектирования промышленного ассортимента одежды из кожи с учетом механизмов ее потребления;

совершенствовать методы разработки новых моделей и техноло-гической подготовки производства кожаной одежды из местного сырья;

разработать методы автоматизированной поддержки процессов проектирования промышленного ассортимента одежды из кожи.

Объектом исследования являются местное кожсырье, кожматериалы, полимерные наполнители, процессы конструкторско-технологической подготовки производства кожаной одежды.

Предмет исследования - методы и средства проектирования ассортимента одежды из облагороженной местной кожи с использованием современных информационных технологий.

Методы исследований. В диссертационной работе использована общая методология системного подхода к проектированию одежды, методы теоретического и экспериментального характера (методы проектной типологии, многомерной классификации, типизации, комбинаторного формообразования, стандартные методы испытания физико-механических и технологических свойств кожматериалов, математической статистики, теории создания баз данных, алгоритмизации и программирования). Использованы программные продукты Gerber, операционная среда Delphi, Windows XP, Microsoft Excel.

Научная новизна диссертационного исследования заключается в следующем:

разработаны в рамках общей стратегии технологии создания кожаных изделий принципы проектирования промышленного ассортимента одежды в системе «кожматериал - внешняя среда - одежда», базирующаяся на теории формообразовании, декомпозиции, сетевом моделировании и ранжировании приоритетности требований к кожаным изделиям;

разработан метод облагораживания кожи одежного назначения с новым составом водорастворимой полимерной композиции, обеспечивающий комплексное повышение показателей качества кож из местного сырья и устойчивость формы одежды (IAP 03747);

установлен механизм взаимодействия новой полимерной композиции с коллагеном натуральных кож и определен ее рациональный состав;

предложены коэффициенты пластичности, формоустойчивости и подвижности структурных элементов модифицированных кож на основе теоретических и экспериментальных исследований физико-механических свойств, доказана возможность регулирования технологических свойств пакета материалов и эксплуатационных показателей одежды;

предложены методы и алгоритмы многокритериальной оптимизации промышленного ассортимента одежды из кожи с помощью типологической модели, позволяющие прогнозировать его структуру с учетом требований различных сегментов рынка (DGU 00444, DGU 00445);

разработаны новые методы выбора предпочтительных моделей и создания электронных эскизов в зависимости от художественно-конструктивных признаков внешнего вида одежды (DGU 01400, DGU 01078);

разработаны способы моделирования и оптимизации показателей использования кожи путем комбинирования деталей одежды в раскладке (DGU 01017, DGU 00808);

предложена интегрированная информационная система (ИИС), осуществляющая поддержку различных этапов автоматизированного проектирования одежды из кожи (маркетинг, дизайн, конструкторская и технологическая подготовка), определена стратегия ее реализации методами исскуственного интеллекта (DGU01399, BGU00233, DGU02510, DGU 02617).

Практические результаты исследования заключаются в следующем:

разработаны нормативно-технические документы для оценки качества местной кожи одежного назначения, методика подбора натуральной кожи и зонирования ее площади для раскроя с учетом топографии ее свойств; рекомендации по механическому упрочнению кожи в условиях промышленных предприятий, обеспечивающие повышение эксплуатационных показателей одежды;

разработана методика расчета организационной технологической схемы потока по изготовлению кожаной одежды в условиях малых предприятий, методика комбинированного размещения лекал деталей одежды на коже в раскладке, позволяющая повысить показатели использования кожи на 3-5%;

предложена интегрированная информационная система, включающая в себя комплекс моделей, алгоритмов и программных средств, предназначенных для автоматизированного проектирования кожаных изделий, позволяющие определить рациональную структуру промышленной коллекции одежды с учетом потребительских предпочтений, сократить время проектирования изделий и принятие рациональных проектных решений в виртуальном режиме;

разработаны электронные каталоги-накопители с библиотеками: «Каталог кожматериалов», «Каталог моделей», «Каталог комплектов лекал типовых моделей», «Каталог схем раскроя» и справочников: «Справочник характеристик и свойств кож», «Справочник норм расхода кож по видам изделий», «Технические требования к составлению схем раскроя» и рекомендации по их внедрению.

Достоверность полученных результатов обосновывается корректностью математических моделей по оптимизации структуры ассортимента и показателей использования кожи, базирующихся на теории графов и комбинаторном синтезе, их адекватностью по известным критерям оценки в рассматриваемой предметной области.

Теоретическая и практическая значимость результатов исследования. Теоретическая значимость результатов работы состоит: в разработке технологии облагораживания кожи новой полимерной композицией и подборе оптимальной рецептуры для ее обработки; методов и критериев выбора натуральной кожи для раскроя с учетом зонирования всей поверхности и требований формоустойчивости по степени воздействия нагрузок во время изготовления и эксплуатации одежды, определяющие основу концепции развития производства качественной одежды из местной кожи.

значимость проведенного исследования состоит возможности непосредственного использования предложенных методов проектирования изделий В различных предметных областях (обувь, трикотажные изделия, мужская, женская и детская одежда); технологии изготовления одежды из местной кожи в условиях производства и методов автоматизированного проектирования промышленного ассортимента; информационные, методические и программные компоненты, позволяющие качество проектно-конструкторской документации и ускорить

процессы обмена информацией за счет применения системы электронного документооборота, уменьшить временные и материальные затраты при проектировании кожаных изделий, внедрение которых повысит эффективность работы предприятия.

Внедрение результатов исследования. На основании полученных научных результатов предложена технология облагораживания местной кожи; разработаны нормативные документы: «Технические условия для одежды и головных уборов», «Полуфабрикат кожевенный хромированный «WET-BLUE» из шкур крупного рогатого скота» внедренные в Агентство «Уздавстандарт» 05.07.2004, (Агентство «Уздавстандарт», №112/005527, $N_{2}112/005528$); регламент работу «Интегрированная технологический на программы информационная система проектирования», внедренный на предприятие «TRISTAR technologies» (16.04.2014, OOO«TRISTAR technologies»).

Полученные в диссертации результаты, комплекс инструментальных средств, информационное, программное и методическое обеспечение интегрированной информационной системы внедрены в деятельность совместного предприятия «АНКА» (акт от 27.10.2010), обществ с ограниченной отвественностью "VIVATEKS» (акт от 27.06.2008г.), «СНАRM-АТТОЯ» (акт от 27.06.2011) с годовой экономической эффективностью более 30 млн. сум.

Апробация работы. Результаты исследования доложены на более 15 научно-технических конференциях, в том числе 6 международных: «Молодые ученые-развитию текстильной и легкой промышленности» (Иваново, 2001); потребления формировании предметов личного В жизнедеятельности (Москва, 2002); международной человека» научной конференции «Математические методы в технике и технологиях» (Кострома, 2004); «Мода и дизайн. Современная одежда и аксессуары 2009» (Ростов на Дону, 2009); «World Conference on Intelligent Systems for Industrial Automation – PROCEEDINGS» (Ташкент, ноябрь, 2010).

Опубликованность результатов. По теме диссертации опубликовано 79 научных трудов, в том числе 14 научных статей в международных журналах, 13 патентов.

Структура и объем диссертации. Диссертация состоит из введения, шести глав, заключения, списка литературы, 6 приложений и содержит 200 страниц текста, включает 80 рисунков и 32 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обосновывается актуальность и востребованность темы диссертации, формулируются цель и задачи, а также объект и предмет исследования, приводится соответствие исследования приоритетным направлени-ям развития науки и технологий Республики Узбекистан, излагаются научная практические результаты обосновывается новизна И исследования, достоверность полученных результатов, раскрывается теоретическая практическая значимость полученных результатов, приведен список внедрений в практику результатов исследования, сведения по опубликованным работам и структуре диссертации.

первой приводятся результаты исследования главе состояния существующих методов проектирования одежды ИЗ местной кожи, показывающие ограниченность научных разработок, связанных с комплексным эксплуатационных топографии И деформационных кожевенного полуфабриката, его рациональным использованием, требований формоустойчивости деталей одежды и взаимосвязи с пакетом материалов, методов конструирования, технологической обработки и автоматизированного проектирования изделий.

Показано, что кожевенное сырье, заготавливаемое в Узбекистане, характеризуется наличием большого количества лицевых пороков, рыхлой структурой и пониженной прочностью шкур, а выработанные из них кожи не соответствуют требованиям, предъявляемым к одежным кожам.

В целом, проведенный обзор показал почти на отсутствие единого подхода, позволяющего с общих качественных позиций проектировать ассортимент одежды из местной кожи во взаимосвязи факторов, определяющих основные свойства и признаки ассортимента, с одной стороны, конкурентоспособность и спрос изделий на внутреннем и внешнем рынке с другой, сформулированы задачи научного исследования.

Вторая посвящена разработке технологии глава облагораживания формированию местного кожсырья свойств кожматериалов ДЛЯ ассортимента одежды. В проектирования работе, исходя взаимосвязи пакета материалов, швейного изделия и факторов окружающей среды, предложен процесс проектирования промышленного ассортимента одежды (ПАО) из кожи осуществлять на основе многоуровневой системы «Кожматериал-внешняя среда-одежда» (рис.1), являющаяся концепции «Сырье-материал-одежда». Данная система представляет собой сложный комплекс взаимосвязанных элементов (технологии выделки кожсырья и материалов; режимов и условий эксплуатации; конструкции и технологии обработки изделий), определяющих показатели объекта проектирования-ассортимента одежды условиях промышленного В производства.

Предложена новая водорастворимая полимерная композиция (ПК), содержащая поличетвертичную соль N,N-диметиламиноэтилметакрилата с аллилбромидом (ПС ДМАЭМА АБ), в сочетании с глицерином и технология обработки одежных кож из местного сырья.

Исследования проведены в условиях Узбекско-Корейского СП «PAN A TECH». Определены вязкость, поверхностное натяжение и плотность ПК (рис.2). Результаты проведенных экспериментальных исследований позволили выбрать рациональный состав полимерной композиции для модификации кож

одежного назначения, (% масс): поличетвертичная соль - 2,0; глицерин - 10, вода 88.

Испытания пропитывающего грунта на основе предлагаемой полимерной композиции проводились на полуфабрикатах одежной козлины, овчины и крупного рогатого скота (КРС), имеющие склонность к отдушистости. Применением инфракрасной и ультрафиолетовой спектроскопии, парамагнитного резонанса, микроскопическими и сорбционными методами исследования изучены структурные изменения образцов одежных кож, модифицированных полимерной композицией на основе ПС N,N-ДМАЭМА АБ.

Рис.1. Схема взаимосвязи элементов системы «Кожматериал-внешняя среда-одежда»

Определены сорбция паров воды и сорбционные характеристики полуфабрикатов кож. Установлено, что обработка ПК ведет к уменьшению суммарного объема пор кожи козлины, КРС и овчины и зависит от концентрации ПСN,N-ДМАЭМААБ в композиции.

Экспериментально доказано, что обработка полуфабрикатов кожи 2% концентрацией ПС ДМАЭМА АБ в ПК приводит к уменьшению пористости в среднем на 5-6% (абс.), уменьшению намокаемости кожи в пределах 32-40%, уменьшению паропроницаемости на 13-15% (рис.3).

Уменьшение пористости обработанных кож, очевидно, происходит из-за наполнения межволоконного пространства дермы частицами полимерной соли, что видно на микрофотографиях образцов кожи (рис. 4).

На основе экспериментальных исследований установлено, что физикомеханические, технологические и эксплуатационные показатели образцов кож, модифицированных новой полимерной композицией, значительно улучшились по сравнению с контрольным (рис. 5).

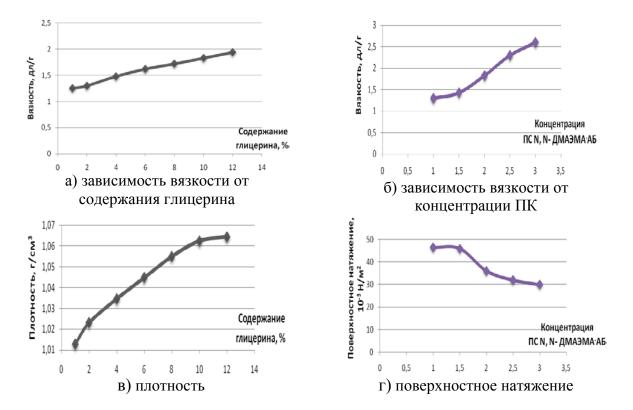


Рис. 2. Изменение физико-химических показателей ПК на основе ПС ДМАЭМА АБ, в зависимости от концентрации глицерина и полимерной соли

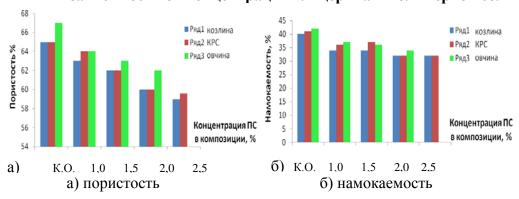
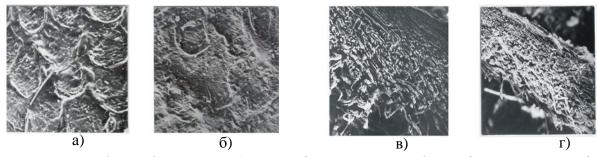



Рис. 3. Результаты оценки одежных кож, обработанных ПК в на основе ПС N, N- ПС ДМАЭМА АБ

- а) контрольный образец (поверхность)
- б) обработанный с ПК 2% (поверхность)

в) контрольный образец (поперечный срез) г) обработанный с ПК 2% (поперечный срез)

Рис.4. Электронные микрофотографии поверхности и граничного слоя поперечного среза кожи козлины. Увеличение в 200 раз, на 1 см 50 мкм.

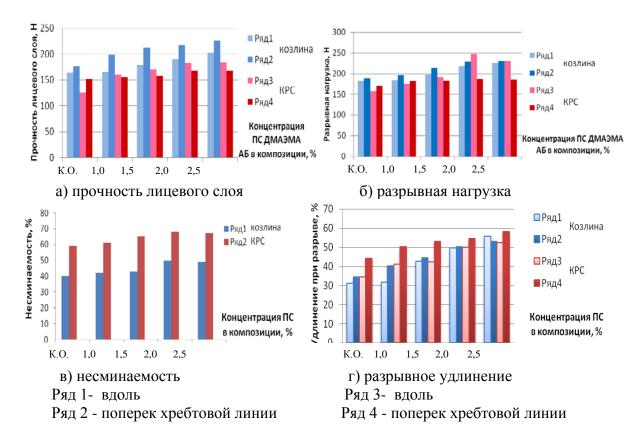


Рис. 5. Диаграмма изменения механических и эксплуатационных свойств образцов кож, модифицированных ПК на основе ПС ДМАЭМА АБ

В третьей главе работы рассмотрены принципы обеспечения динамического соответствия одежды двигательному компоненту деятельности человека с учетом деформационных свойств модифицированных кож из местного сырья. Предлагаемые приемы образуют основу моделирования формы и конструкции кожаной одежды, правила выполнения раскладок и методов размещения деталей швейного изделия на коже при автоматизированном проектировании.

Кожа является анизотропным материалом, и оптимальное конструктивное строение одежды из нее определяется деформационными свойствами кожматериалов. Экспериментальные исследования показали, что обработка опытных образцов кож козлины и КРС, предлагаемой ПК на основе ПС N,N-ДМАЭМА АБ, способствует улучшению их деформационных свойств (рис.6).

При увеличении концентрации от 1,0 до 2,0% происходит повышение упруго-эластической составляющей полной деформации. доли соответственно, уменьшение доли пластической, что обеспечивает сохранность формы за счет лучших упругих свойств. Это связано с тем, что полимерная композиция, оседая на волокнах, образует в структуре кожи пространственную сетку, которая приводит к повышению связей между структурными элементами кожи и композиции, и следовательно, развитию упругой деформации под воздействием силы растяжения. Но в тоже время повышение концентрации полимерной соли в композиции до 2,5 % резко увеличивает долю пластической деформации неблагоприятно жесткость, что И сказывается на формоустойчивости одежных кож в процессе эксплуатации. Поэтому рациональной концентрацией является состав, содержащий 2% ПС N,N-ДМАЭМА АБ.

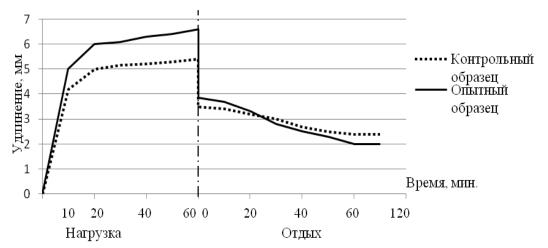


Рис 6. Кривые деформации растяжения козлины, обработанной ПК с концентрацией ПС ДМАЭМА АБ – 2% в продольном направлении

Для оценки состояния кожи, подвергающейся интенсивным нагрузкам на детали одежды в процессе носки, был использован коэффициент пластичности (Π), показывающий долю необратимой деформации (ε_{nn}) по отношении к полной (ε_{nn}):

$$\Pi = \frac{\varepsilon_{nn}}{\varepsilon_n} \cdot 100\%$$
(1)

Предложен коэффициент подвижности (K_n) структурных элементов натуральной кожи, определяемый как отношение упругой (ε_y) и эластической ($\varepsilon_{\mathfrak{I},n}$) составляющих деформации к полной:

$$K_n = \frac{\varepsilon_y + \varepsilon_{yn}}{\varepsilon_n} \cdot 100\% \tag{2}$$

Расчетные значения K_n для модифицированных одежных кож приведенные в табл.1 показывают, что для образцов, обработанных ПК, содержащей 2% ПС, значение K_n составляет 70%, а контрольных – 56%.

Для оценки эксплуатационных свойств одежной кожи предложен следующий показатель - коэффициент формоустойчивости (K_{ϕ}), являющимся производным коэффициента подвижности (K_n) и показателя несминаемости (K_c), определяемый зависимостью:

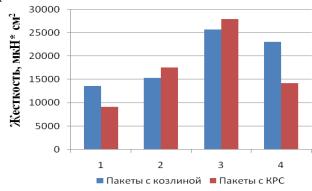
$$K_{\phi}=K_{n}$$
 K_{c} ,

(3)

Полученные зависимости (2) и (3) позволили описать процессы, происходящие в кожматериалах, и дать количественную оценку их формоустойчивости. Теоретически доказана и экспериментально подтверждена зависимость коэффициента формоустойчивости от величины напряжения, полной деформации ε_n , равновесного модуля упругости E_3 и показателя

несминаемости K_c , что дает возможность управления формой изделия за счет регулирования свойств пакета одежды в соответствии с заданными требованиями.

Таблица 1 Изменение деформационных свойств одежной кожи в зависимости от концентрации ПК на основе ПС ДМАЭМА АБ (козлина)


$N_{\underline{0}}$	Концентрация	Направление	Модуль	Коэффи	Коэффициент	Коэффи-
п/п	полимерной	относительно	упругости	-циент	подвижности	циент
	соли в	хребтовой	равновес-	пластич	структурных	формоус-
	композиции, %	линии	ный	ности,	элементов,	тойчивости,
			E_3 , МПа	П, %	Кп, %,	K_{Φ}
1	Контрольный		147	43,3	56,7	22,68
2	1% ПС	Вдоль	208	52	48,0	20,16
	ДМАЭМА АБ					
3	1,5%		94	33,8	66,2	28,51
4	2,0%		71	30	70,0	35,0
5	2,5%		71	46,2	53,8	26,5
6	Контрольный		167	57,1	42,9	17,16
7	1%		77	38,9	61,1	23,6
8	1,5%	Поперек	100	40,0	60,0	23,91
9	2,0%		77	35	65,0	32,5
10	2,5%		88	44,4	55,6	26,2

Способность сохранять заданную форму обуславливается свойствами как кожи, так и материалов, входящих в пакет изделия. Экспериментально установлено, что вид кожи и количество слоев материалов в пакете, зона дублирования определяются требованиями к отдельным деталям изделия, а также показателями жесткости, толщины и упругостью этих материалов. При дублировании одной и той же кожи различными клеевыми прокладками меняются жесткость и вязкоупругие свойства пакета (рис.7). Разработаны рекомендации по выбору состава пакета материалов для одежды из модифицированной кожи.

Проведены тензометрические исследования, в которых полученные данные позволили выделить зоны конструкции одежды с учетом величины и интенсивности воздействия деформационных нагрузок на материал при эксплуатации изделий, разработать схемы укладки деталей швейного изделия на коже при автоматизированном проектировании.

На участках одежды, где наблюдается большая величина динамического эффекта (увеличение размеров тела) материал испытывает наибольшее натяжение. Так наибольшие деформации растяжения наблюдаются в рукаве при сгибании и разгибании руки в локтевом суставе (T= 2921,67- 3125,51 сH), следом за ним на участке проймы при отведении верхних конечностей в плечевом суставе (T= 2585,81-2766,22 сH), менее всего на окате рукава (T=1845,61– 1974,37сH).

Найденные, статистической обработкой результатов эксперимента, среднее значение отклонения натяжения, коэффициент неровноты, дисперсии и

- 1. Кожа
- 2. Кожа + дублирин тканевый, арт. 86040
- 3. Кожа + дублирин нетканый нитепрошивной, арт. 935556
- 4. Кожа + дублирин тканевый, арт. 4-145

Рис.7. Показатель жесткости пакета материалов одежды из кожи, обработанных ПК на основе ПС ДМАЭМА-АБ, концентрация ПС 2%

ошибки опыта, коэффициент вариации показывают высокую достоверность полученных данных. На основе проведенных исследований выделены три зоны разной степени интенсивности воздействия деформационных нагрузок на различные участки изделия при эксплуатации: 1- зона больших деформаций; 2-зона средних деформаций; 3- зона малых деформаций. Все крупные и часть средних лекал, имеющих 1- и 2-ю зоны деформаций, отнесены к ответственным, а все мелкие и часть средних лекал, имеющих 3-ю зону – к менее ответственным. Участки, относящиеся к зоне больших деформаций, рекомендуется кроить только из наиболее прочной чепрачной части кожи, остальные участки как из чепрачной, так и периферийных частей кожи.

Четвертая глава диссертации посвящена созданию методов проектирования промышленного ассортимента кожаной одежды из местного сырья на основе развития теории поведения потребителей и принципов проектной типологии.

С целью рациональной организации процесса проектирования ПАО из кожи предложено рассматривать его как комплексный объект проектирования (ОП) в виде иерархической структуры (рис.8): 1- формирование промышленного ассортимента, как комплексного объекта; 2- ассортиментных групп (АГ); 3- ассортиментных единиц (АЕ); 4 - признаков одежды (ПО).

Математическая модель структуры ассортимента одежды формируется последовательно на всех уровнях декомпозиции и имеет следующий вид:

$$O\Pi \in A\Gamma_{1,\dots,\kappa} \in AE_{1,\dots,n} \in \PiO_{1,\dots e}$$
 (4)

Задача проектирования АЕ сводится к определению перечня и границ ПО. Целевая функция в общем виде будет определяться:

$$G = F(x_i, y_i, z_j, s_k), x_i \in X, y_i \in Y, z_j \in Z, s_k \in S,$$
(5)

где G- ассортиментная единица; x_i , z_j , y_l , s_k - обобщенный вектор материально-сырьевых, функциональных, социально-эргономических и эстетических

признаков. X_i (i=1,2,...,n) - есть функция эргономических признаков AE; Z_j (j=1,2,...,m) – функция эстетических признаков;

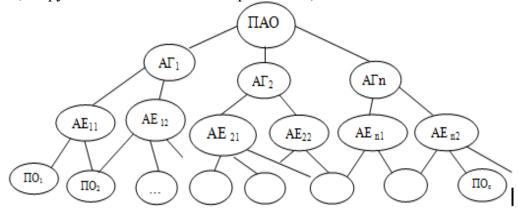


Рис.8. Иерархическая структурная схема декомпозиции объектов проектирования – промышленного ассортимента одежды

 Y_l (l=1,2,...,q) — функция свойств кожматериала; S_k (k=1,2,...,r) — характеризует изменение параметров потребительской ситуации. Совокупности этих признаков, воплощаясь в свойствах реальных моделей одежды, формируют структурно-морфологическое разнообразие групп и видов ассортимента для заданных ситуаций. Принцип выбора каждым потребителем нового элемента заключается в выборе варианта одежды, максимально удовлетворяющей требованиям потребителя (шкалы предпочтений) при минимуме стоимостных затратах и с учетом ограничений (5).

Одним из существенных факторов, значимо влияющих на формирование структуры ПАО, являются параметры потребительской ситуации (ПС), характеризующую внешнюю среду (рис.1). Для каждой ПС, в которой может оказаться человек, определяемая местом, временем, температурным режимом и другими параметрами, соответствует свой набор одежды или ее элементов (5). Методологическая установка на моделирование поведения различных условиях внешней среды позволила использовать проектной типологии в качестве инструмента средового подхода и разработать метод «ситуационно-типологического проектирования» ПАО из кожи. В соответствии с ней задача выбора рационального ассортимента для конкретной ПС моделирование потребительского включает следующие этапы: функционального типажа (наиболее популярных ПС и их комбинаций); определение основных позиций оценок потребительского спроса; разработка рациональных наборов и/или базовых типо-комплектов одежды; формирование ПАО. В предложенной постановке принципиальным является положение о моделировании ПС, как исходного компонента для установления рациональной номенклатуры ПАО (его групп и отдельных изделий). Разработана типология ПС, которая служит базой, целевым ориентиром для создания ПАО всех групп, видов и разновидностей.

Развита методология проектирования ПАО с использованием художественно-конструктивных признаков (ХКП) и типологии ПС, позволяющая разработать алгоритм расчета наиболее популярных ПС и их

сгущений в группы по результатам социологического исследования и программу расчета структуры коллекции одежды, новизна которых подтверждена выдачей охранных документов.

По совокупности признаков задача проектирования рационального ПАО относится к классу трудноформализуемых, то есть задач, которые нельзя представить в числовой форме и решать численными методами, и точный алгоритм решения которых заранее не известен. Сформулировано решение задачи многокритериальной оптимизации ПАО как типологической модели, которой представляет собой многомерное пространство, образованное различными классификациями таким образом, что каждый объект, например, ассортиментная единица, занимает определенное место одновременно в нескольких типологических рядах (системах классификации), сформированных по различным основаниям. Осями типологической модели являются: ось вариаций потребительских ситуаций (pc_i) ; ось вариаций техникотехнологических решений (tp_i) ; ось вариаций стилевых проектируемых моделей (cp_i) ; типы потребительского поведения (сегменты рынка) (рис.9).

$$\Pi C = \sum_{i=1}^{n} pc_i; \quad CP = \sum_{i=1}^{n} cp_i; \quad TP = \sum_{i=1}^{n} tp_i,$$
 (6)

Оси типологической модели служат шкалами, задающими характеристики признаков ПАО. Конкретные ассортиментные единицы (AE_i) образуются путем пересечения координат от каждой позиции осей: ПС, ТР и СР. Набор AE_i в рамках $A\Gamma$ образует ассортиментную коллекцию. Критериями оптимизации ПАО выбраны требования отдельных сегментов (Π); себестоимость изделий (T) и модные инновации (M).

Приведенные характеристики (П, Т, М), в конечном итоге определяют комплексный показатель качества будущего изделия и конкурентоспо-собность на рынке, оказывая влияние на отчетные показатели (объем выпуска продукции, прибыль и др.) более сложной системы - производства.

Задачу определения структуры ПАО с использованием типологической модели предлагается решить в два этапа. Результатом первого этапа будет нахождение и ограничение числа состава $A\Gamma$ - видовых совокупностей ПАО - номенклатуры AE_i . Вид AE_i является средоточием различных предпочтений на объект, деятельностью в определенной социо-культурной среде и техни-ческих решений. То или иное предложение является как бы ответом на заказ, выраженный типом потребительского поведения, и воплощается во внешнем виде и назначении изделия. Если это техническое решение не встречается ни с одной ПС (или их комбинаций), то вид AE_i не образуется (рис.9).

Это означает, что данное техническое предложение остается невостребованной (или пока невостребованной). Так отсеиваются не нужные или просто бессмысленные технические решения, в результате чего или производится отбор релевантных видов.

На втором этапе формируется AE по признакам одежды: XKП, виды технологической обработки и свойства материалов. Из пространства моделей X_i (i=1,2,...,n) по XKП и техническим ограничениям выделяется область AE,

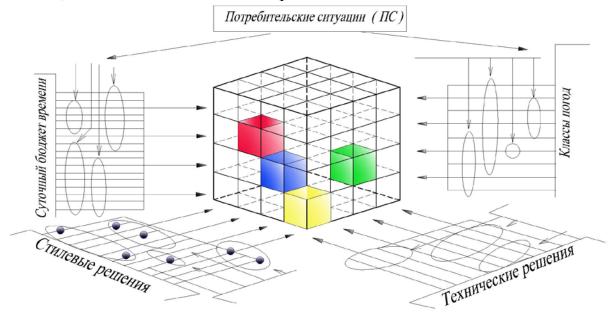


Рис. 9. Геометрическая интерпретация типологической модели ПАО

далее по кодам заданных ХКП допустимые варианты сочетаний ХКП, и допустимые методы обработки в каждом из сочетаний ХКП. Задача определения $K=\{X_{\text{окон}}\}$ решается как задача формирования коллекции моделей для промышленного внедрения. Отметим что область определения К решается перебором множества ПО до тех пор, пока не будет достигнута оптимальность по критериям $\Pi^{\kappa}, T^{\kappa}, M^{\kappa}$. В результате решения данной задачи формируется таблица окончательных вариантов ПАО.

Следует отметить, что при формировании ассортимента на данный отрезок времени процедура пересечения типологий в направлении различных осей должна проводиться всякий раз. В этом состоит и преимущество разработанной типологической модели: она является методом гибкого формирования ассортимента, а не застывшим ассортиментным перечнем.

Предлагаемый метод ситуационного проектирования ПАО апробирован в многочисленных проектных разработках автора и реализован при разработке рациональной структуры ассортимента женской верхней одежды из кожи для ЧФ «Анка» и «Назаркина Иголкина».

В пятой главе рассматриваются методы моделирования процессов оптимального размещения лекал деталей одежды на коже, позволяющие спроектировать варианты схем раскроя в условиях автоматизированного проектирования.

Повышение рентабельности кожевенных предприятий тесно связано с снижением расхода кожевенных материалов при производстве одежды, что может быть достигнуто путем улучшения использования их по площади и целевому назначению, а также применения ИТ в подготовительно-раскройном производстве. Показано, что изучаемый процесс подготовительно-раскройного

производства как объект многопараметри-ческой системы — МС (рис.10), относится к классу сложных объектов. Эффективность схем размещения определяется раскройными свойствами кожи (сорт, толщина, конфигурация, площадь кожи, удельный вес чепрака в общей площади кожи), и моделей одежды (вид членения, количество, размер и фактор ответственности деталей).

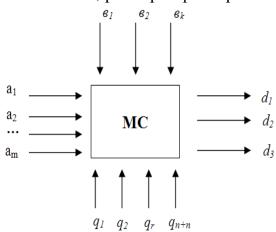


Рис.10. Модель конструкторско-технологической подготовки процессов раскроя

Поэтапное преобразование информации внутри МС и ее физическое отображение в каждом организационно- технологическом переходе зависит также от контролируемых параметров $Q=\{q_1,q_2,...,q_r,...,q_{r+m}\}$, и случайных факторов $B=\{b_1,b_2,...b_k\}$. Для оценки выходных параметров используется $D=\{d_1,d_2,...,d_3\}$ (величина межлекальных отходов- d_1 , коэффициент использования кожи- d_2 , площадь раскладки- d_3).

Разработана информационная модель процессов раскроя и база данных автоматизированного проектирования. Как основа управления информационной разработаны модели ряд электронных каталогов, учитывающие особенности сырья и конструкции деталей швейного изделия: «Каталог кожматериалов», «Каталог моделей», «Каталог комплектов лекал типовых моделей», «Каталог схем раскроя» и справочников: «Справочник характеристик и свойств кож», «Справочник норм расхода кож по видам изделий», «Технические требования к составлению схем раскроя».

Рассмотрены вопросы целевого использования натуральной кожи. В связи с тем, что для раскроя одежды используется несколько кож разных сортов и площади, размещение на кожах деталей не может подчиняться единой системе взаимоукладываемости, принятой для обуви. Процент использования конкретных кож разных сортов и размеров явлется переменной величиной, которую можно значительно увеличить решением комбинаторной задачи с использованием теории графов.

Формирование раскладок в этом случае представляется графом G (N, K, D), где N- множество деталей, размещаемых на одну кожу с их площадью, К-количество деталей в одном комплекте, а D- удельная стоимость j-го варианта раскладки на одной коже, которая может быть выражена через показатель использования кожи. Качество искомой структуры (топологии) раскладки,

оценивается структурной функцией через сумму минимума площади используемой кожи, которая определяется графом задачи, а стоимость расхода кож на модель - графом сети. Множество взаиморасположений деталей R и формируют комбинаторное пространство Z допустимых решений. Под результатом проектирования понимается такое подпространство z ⊆ Z, все точки которого приводят структурную функцию в экстремум-минимум. Решается задача минимизации показателя использования кожи с учетом неоднородности раскройных свойств кожи и фактора ответственности деталей. Ограничения на выпуск кроя моделей задаются в интервалах согласно производственной программы предприятия. Ограничения ресурсов жох описываются соотношениями количества поступающих кож по видам.

Математическая интерпретация задачи раскроя кожи заключается в следующем. Пусть сформирован набор кожзаготовок, каждый из которых обозначается через S_i , i=1,m; где m - количество заготовок в каждой партии. Весь материал необходимо раскроить на ряд деталей с площадью P_i , i=1...n, в определенном количестве Nj, j=1...k.

Каждая схема размещения оценивается исходя из информации по сумме концевых остатков кожи и проценту использования полезной площади. Если схема размещения заготовки задана комплектом лекал модели с известной площадью $P_{\rm i}$, то для каждой модели можно написать:

$$M_{i}: \sum_{i=1}^{n} n_{i} \cdot P_{i} \leq \sum_{i=1}^{m} S_{i},$$
 (7)

где n - количество деталей модели $\,M_i,\,$ укладываемой на кожзаготовке $\,S_i,\,$ m - число заготовок.

Известно, что комплект лекал состоит из лекал ответственных деталей и менее ответственных деталей :

(8) где $n_i^{\ 1}$ - количество ответственных деталей; $n_i^{\ 11}$ - количество менее ответственных деталей.

Если $P_i^{\ 1}$ площадь ответственных деталей, укладываемых на одной коже, а $P_i^{\ 11}$ - площадь менее ответственных деталей, то имеем:

$$n_i^{\ 1} \qquad \qquad . \qquad P_i^{\ 1} \qquad \qquad \leq \qquad \qquad S_{ir}$$

(9)

$$n_i^{11} \cdot P_i^{11} \leq S_i \cdot S_{ir}$$

где $S_{\rm ir}$ - площадь чепрачной части $N_{\rm i}$ той заготовки.

$$\sum_{i=1}^{n} n_i \leq N; \tag{10}$$

где N - количество необходимых лекал модели (N= 1...3)

Условие (10) задает соответствие числа размещенных деталей плану раскроя. Условие (11) - функционал оптимальности, характеризующий чепрачную часть. Условие (12) - функционал оптимальности, характеризующий периферийную часть кожи.

Путем математической интерпретации задачи раскроя кожи доказана эффективность комбинированных раскладок моделей одежды на коже, отличающихся количеством членений, размерами изделия, формой деталей и изделий сопутствующего ассортимента (рис.11).

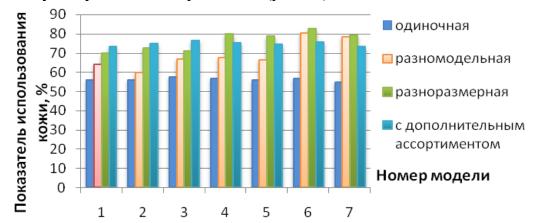


Рис. 11. Диаграмма изменчивости показателей использования кожи в комбинированных раскладках различных видов

Для получения достоверных результатов и исключения влияния других факторов экспериментальные раскладки выполнялись на макетах кож одной конфигурации. При комбинации с деталями сопутствующих изделий площадь их деталей должна быть в 10-15 раз меньше площади кожи.

Установлено, что на кожах с увеличенной площадью до 90дм² детали изделий укладываются лучше, по сравнению с кожей малых размеров, а для раскроя кож низких сортов и малой площади разумнее проектировать изделия с большим количеством членений основных деталей. Причем целесообразнее размещать в одной раскладке детали моделей со схожими горизонтальным и вертикальным членениями.

Предложенные алгоритмы составили основу инструментальных средств для системы автоматизированного размещения лекал деталей одежды на кожевенных материалах.

С целью поиска рациональных решений деталей одежды из кожи, эффективных с позиций их раскроя, проведены ретроспективные исследования формообразующих признаков одежды из кожи, систематизация и моделирование которых позволили выделить структурные элементы формообразования, прогнозировать форму типовых и унифицированных деталей. На основе полученных результатов разработана структура и состав информационного обеспечения для эскизного проектирования моделей одежды в автоматизированном режиме.

Основываясь на методах программированного формообразования и комбинаторного синтеза, предложена и реализована технология создания

электронных эскизов моделей одежды из кожи. В качестве объекта проектирования (OII) рассматриваются: законченный технический эскиз (TЭ), сборочные единицы (CE), детали (\mathcal{I}) , признаки материалов и конструкции одежды (ΠMK) .

Модель типового решения эскиза модели в теоретико-множественном виде представлена как:

$$[T\mathcal{F}] \in CE_1, \dots, \subset \mathcal{I}_1, \dots, \in \Pi MK_{1,\dots,j}$$

$$(13)$$

Образование элементарной части конструкции: сборочной единицы и детали, производится из признаков (*ПМК*) посредством их компоновки. При этом признаки могут относиться непосредственно к элементам эскиза (форма горловины, силуэтная форма, членение и др.), к признакам материала (свойства материала, цвет, рисунок и др.) и признакам технологической обработки (виды швов и ВТО).

Каждая модель проектирования из множества ОП формально может быть представлена как: $_{m_i}$

$$T \ni_{i} \subseteq U \qquad \Pi M K_{j} \qquad (f_{ij}, \qquad M_{ij}, \qquad T O_{ij}),$$

$$(14)$$

где i = I- число $O\Pi_i$ ($T\mathcal{G}_i$, \mathcal{A}_i , CE_i); i- число формообразующих признаков (КДП) в составе $O\Pi_i$; ПМК I_j - j- й признак материалов и конструкции одежды в составе $O\Pi_i$; $f_{ij} = (f^l_{ij}, f^2_{ij}, ..., f^{Kij}_{ij})$ - сведения о признаках формы j- го элемента; $M_{ij} = (M^l_{ij}, M^2_{ij}, ..., M^{Kij}_{ij})$ - сведения о признаках материала j- го элемента; $TO_{ij} = (TO^l_{ij}, TO^2_{ij}, ..., TO^{Kij}_{ij})$ - сведения о признаках технологической обработки j- го элемента.

Модель создания TЭ (13), алгоритм его проектирования в САПР-дизайн информационное и программное обеспечение адаптированы для формирования рациональных решений внешнего вида моделей одежды различного назначения (одежда из кожи, трикотажные изделия).

Сформулировано решение задачи автоматизированного поиска и синтеза оригинальных моделей с учетом потребительских предпочтений по ХКП. В совокупности предложенные приемы образуют основу технологии создания электронного эскиза моделей одежды, позволяющая спроектировать структуру промышленной коллекции моделей в автоматизированном режиме. На предложенные программные продукты получены свидетельства Агентства интеллектуальной собственности Республики Узбекистан (DGU 00444, DGU 00445, DGU 01078, DGU 01570).

Апробация программных средств показала, что их применение позволит увеличить выпуск изделий, сократить сроки проектирования изделий и число работников, занятых на операции раскладки, снизить трудоемкость до 30%. Предполагаемый годовой экономический эффект составит около 7136067 сум.

Шестая глава посвящена разработке автоматизированной системы поддержки принятия решений на различных этапах проектирования ПАО из кожи.

На основе структуризации процессов проектирования и комплексного анализа взаимосвязи элементов системы «Кожматериал-внешняя среда-одежда» предложена концептуальная модель интегрированной информационной системы (ИИС), обеспечивающую целевое единство всех этапов автоматизированного проектирования ПАО из натуральной кожи.

Функции ИИС: автоматизированная поддержка принятия решений и формирование сквозного цикла проектирования изделия в единой проектнотехнологической среде, поиск и синтез проектных решений до внедрения их в производство. Архитектура ИИС для автоматизированного проектирования состоит из совокупности взаимосвязанных подсистем C_i ($i = \overline{1,k}$). Здесь k- число рассматриваемых подсистем в составе ИИС. Каждая подсистема представляет объектно-ориентированную подсистему, на вход которой поступает информационный поток на проектирование/управление (рис.12).

Интегрированная база данных (БД) является связующим звеном между ними. Входной информацией каждого из этапов являются элементы интегрированной и локальных БД маркетинга, дизайн-проектирования, конструкторской подготовки и технологии.

БД разработана на базе реляционной СУБД MICROSOFT Access, имеет связь с Corel DRAW 8, а также обеспечивает публикацию данных в формате, доступном Интернет. Разработан пользовательский интерфейс. Информационно-справочный аппарат включает в себя 15 каталогов, подкаталогов и 16 справочников. На состав БД получено свидетельство Агентства интеллектуальной собственности РУз (BGU 00233).

С целью автоматизации процессов технологической подготовки производства систематизированы методы технологической обработки изделий из кожи. Разработаны нормативно-технические материалы по изготовлению верхней одежды из натуральной кожи, принятые для внедрения предприятиями Ассоциации «ЧАРМПОЙАБЗАЛИ».

Разработана программное обеспечение и структура пользовательских меню функциональных модулей, входящих в конфигурацию информационной системы: маркетинговая информационная система, моделирование эскизов, конструкции, раскладка лекал на коже, технологическая подготовка производства, электронного документооборота. система При использованы богатые возможности среды AutoCAD, Delphi, Windows XP, Microsoft Excel, Microsoft Access, программные продукты Gerber (США) по созданию современного графического пользовательского интерфейса. Годовая экономическая эффективность от внедрения интегрированной САПР в швейное производство составляет 27738552 сум.

Таким образом, на основе теоретических, экспериментальных исследований и применения современной информационной технологии в рамках системы «Кожматериал - внешняя среда - одежда» разработана технология создания ассортимента одежды из местного кожсырья.

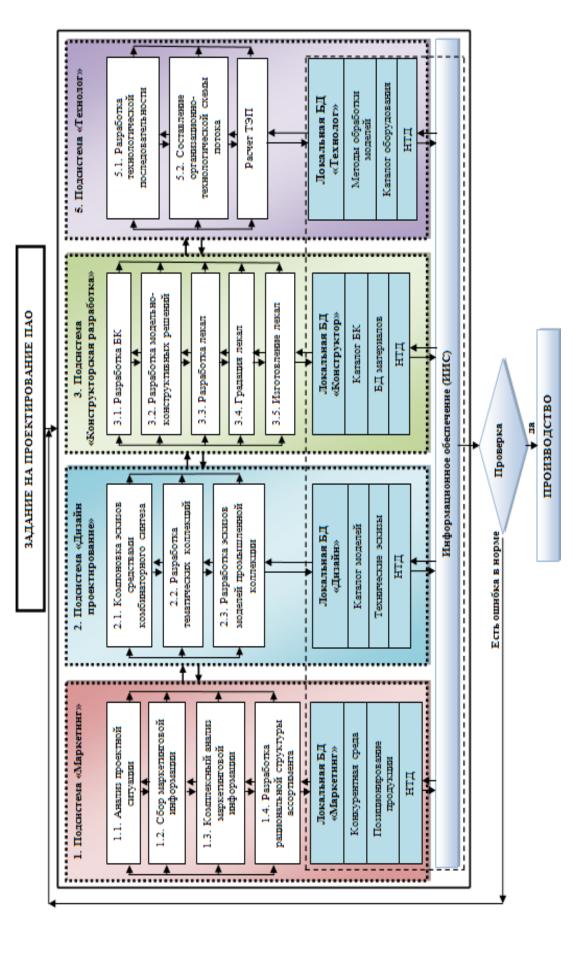


Рис. 12. Архитектура интегрированной информационной системы автоматизированного проектирования ПАО из кожи

ЗАКЛЮЧЕНИЕ

В диссертационной работе на основе теоретических и экспериментальных исследований в области технологии разработки ассортимента одежды из местного кожсырья, предложены новые методы и технологические разработки, имеющие существенное значение для повышения эффективности процессов производства и качества готовых изделий. Основными результатами научно-исследовательской работы являются:

- 1. Предложен новый состав водорастворимой полимерной композиции на основе поличетвертичной соли N,N- диметиламиноэтилметакрилата с аллилбромидом в сочетании с глицерином и технология для обработки им одежных кож из местного сырья.
- 2. Установлен механизм взаимодействия полимерной композиции с коллагеном натуральных кож, определен её рациональный состав, (% масс): поличетвертичная соль 2,0; глицерин 10, вода 88, отвечающий требованиям, предъявляемым к композициям, применяемым в процессе отделки натуральных кож одежного назначения (IAP 03747).
- 3. Использование в процессах отделки водорастворимой полимерной улучшило структурные И физико-механические модифицированных кож путем уплотнения ее микроструктуры. По сравнению с контрольными увеличилась прочность при растяжении намокаемость - 8%, паропроницаемость - 9-11%. Рост общей, в том числе доли упруго-эластической составляющей деформации в продольном и поперечном направлениях составил 20-25%. Указанные факторы способствовали уменьшению прорубаемости кожматериала на 17-20%.
- 4. Установлена зависимость формоустойчивости от величины напряжения, полной деформации, равновесного модуля упругости и коэффициента подвижности структурных элементов одежной кожи, модифицированных новой полимерной композицией. Предложен коэффициент формоустойчивости K_{ϕ} кожматериалов, позволяющий управлять формой изделия за счет регулирования свойств пакета изделий.
- 5. Разработан метод комбинированного размещения деталей одежды на коже в автоматизированном режиме, предложен и реализован алгоритм оптимального размещения, учитывающий неоднородность раскройных свойств кожматериала и конструктивно-технологическое решение моделей изделий (DGU 01017, DGU 00808).
- 6. На основе изучения потребительских предпочтений по художественно-конструктивным признакам разработана технология формирования электронных эскизов моделей одежды из кожи, включающая разработку базы данных графических элементов внешнего вида и алгоритм создания эскиза изделия (DGU 01400, DGU 01570).
- 7. Разработана технология изготовления одежды из местной кожи повышенного качества с применением новых полимерных материалов и методы, алгоритмы, информационные, методические и программные

компоненты, обеспечивающие процессы автоматизированного проектирования промышленного ассортимента внедренные одежды, на совместном «AHKA», «PAN A TECH», 000«CHARM-ATTOR». предприятиях Экономическая эффективность результатов диссертации подтверждены актами внедрения в производство.

SCIENTIFIC COUNCIL on AWARD of SCIENTIFIC DEGREE of DOCTOR of SCIENCES 16.07.2013.T.06.01 at TASHKENT INSTITUTE OF TEXTILE AND LIGHT INDUSTRY

MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE REPUBLIC OF UZBEKISTAN

TASHKENT INSTITUTE OF TEXTILE AND LIGHT INDUSTRY

NIGMATOVA FATIMA

WORKING OUT THE TECHNOLOGIES OF PRODUCING CLOTHES FROM LOCAL LEATHER OF HIGH QUALITY WITH APPLYING NEW POLYMER MATERIALS

05.19.04 – Technology of garments (technical sciences)

ABSTRACT

OF DOCTORAL DISSERTATION

The subject of doctoral dissertation is registered Supreme Attestation Commission at the Cabinet of Ministers of the Republic of Uzbekistan in number 20.02.2014/B2013.1.T2.

Doctoral dissertation is carried out at Tashkent institute of textile and light industry.

The full text of doctoral dissertation is placed on web-page of Scientific council 16.07.2013.T.06.01 at the TITLI to the address www.titli.uz.

Abstract of dissertation in three languages (Uzbek, Russian, English) is placed on web-page to address www.titli.uz and Information-educational portal "ZiyoNet" to the address www.titli.uz and Information-educational portal "ZiyoNet" to the address www.titli.uz and Information-educational portal "ZiyoNet" to the address www.titli.uz and Information-educational portal "ZiyoNet" to the address www.titli.uz and Information-educational portal "ZiyoNet" to the address www.titli.uz and Information-educational portal "ZiyoNet" to the address www.titli.uz and Information-educational portal "ZiyoNet" to the address www.titli.uz and Information-educational portal "ZiyoNet" to the address www.titli.uz and Information-educational portal "ZiyoNet" to the address www.titli.uz and Information-educational portal "ZiyoNet" to the address www.titli.uz and Information-educational portal "ZiyoNet" to the address of the work of the address of the work of the work

Scientific Alimova Halimahon

consultant: doctor of technical sciences, professor

Official Zhilisbaeva Raushan

opponents: doctor of technical sciences, professor

Qadirov Tulqin

doctor of technical sciences, professor

Shipulin Yuriy

doctor of technical sciences, professor

Leading organization

Bukhara technological-engineering institute

Defense of dissertation will take place in "08" september 2014 at 14^{00} o'clock at a meeting of the scientific council 16.07.2013.T.06.01 at the Tashkent institute of textile and light industry (Adress: 100100, Tashkent, str. Shohjahon-5, tel. (99871)-253-06-06, 253-08-08, fax:253-36-17; e-mail: titlp_info@edu.uz).

Doctoral dissertation could be reviewed at the Information-resource center of Tashkent institute of textile and light industry (registration number 01). Adress: 100100, Tashkent, str. Shohjahon -5, tel. (998 71)- 253-06-06, 253-08-08.

Abstract of dissertation sent out on "17" of june 2014 year (mailing report № 01, on "17" of june 2014 year)

K.Jumaniyazov

Chairman of scientific council on award of scientific degree of doctor of sciences, doctor of technical sciences, professor

A.Mamatov

Scientific secretary of scientific council, doctor of technical sciences, professor

M.Muqimov

The chairman of scientific seminar under scientific council, doctor of technical sciences, professor

ANNOTATION OF DOCTOR DISSERTATION

Topicality and demand of the subject of dissertation. It is hardly to find collection where you may see some models from leather- unique natural material which has peculiar beautiful appearance and has high indicators of stability and exploitation features. In spite of high popularity of leather clothes, the share of native production, presented in the market is in law level.

The quality of leather raw material depends on different factors: origin (types, breed, sex, age of the animal, heritage), climate, conditions of eiving, feeding of the animal, season in which animal was killed, as well as technologies of preparation and dressing the leather, methods of tinning and keeping pelts. Such kind of factors make actual the problem of preparation and choice of leather materials for the clothes in the industrial manufacture. Unlike of raw material, prepared in the northern regions of Asia, European and American continents, where preeding has different directions: meat-diary, fur, leather, for getting fibers from the wool, the feature of preparation leather raw material in the republics of Central Asia meat direction is the main in stock breeding. Therefore, the leather produced in the republic, because of its low durability face layers and tne number of defects raw and manufacture origin, caused by climate conditions in insignificant quantity are used for producing sewing goods. It means that scientific researches directed to developing local leather for clothing are not partically carried out.

The president of Republic Uzbekistan I.A.Karimov in the report has noted: "Creating new processing enterprises, especially small and middle enterprises gives opportunity in the widescale to develop this branch of industry- spinning, weaving and finishing industry as well as knitting, sewing and leather footwear industry, to enlarge assortment of ready goods. We should learn to trade not only raw material, cheap semi- finished products but also modern, requirable ready goods" ¹.

Leather industry in Uzbekistan is a range of enterprises of middle and small business of economy, mainly united in association "Uzbekcharmpoyafzal". So in 2012 in Uzbekistan enterprises of "Uzbekcharmpoyafzal" were made the leather for 2012 mln square dm. of chromium leather, as well as 650000 of cattle, 1824 of small cattle. For creating native high quality goods from leather it is necessary to work out and inculcate new technologies of conversion of local raw material and projecting and producing.

Solving above- mentioned tasks requires to work out new scientific approaches to the technologies of industrial manufacturing high quality goods from natural leather

Conformity of research on priority directions on development of science and technologies of the Republic of Uzbekistan. The present work is done according to priority directions of development of science and technologies of the Republic of Uzbekistan DITD-14 "Modern from local manufacture.informational systems providing the development and wide inculcating informational and TV-

¹ I.A.Karimov. The report on the meeting of the Cabinet of Ministers dedicated to the results of social-economical development of the country in 2006 and the main prioreties of deepening economical reforms in 2007. Tashkent. Uzbekistan, 2007 y., p.62.

communicational technologies, working out programm products (2006-2008 yy.)", PPI-5 "Working out informational technologies, TV- communicational nets, apparatus- programm means, methods and system intellectual management and education, directed on improving the level of informatization of society" (2012- 2014 yy.).

International review of scientific researches on theme of dissertation. In world practice the production of leather goods in such countries as Italy, South Korea, Turkey, Indian and others. It was gained enough experience on using polymer materials in the process of trimming footwear, leather clothes. Synthetic polymer is widely used in producing of leather for improving tearness, equalizing the features of leather on topographic areas, improving water persistent, termo persistent, improving its appearance, increasing its solidity, exploitation features. Majority of work on using theoretical bases of material study and chemical technology of leather, theory of projecting and information technology allow to form well presentation about modern approaches to the means of producing high technology and scientific production. Despite of numerous issues, occurred in last decades the problem of producing quality leather and goods from local raw material seems less to study.

Degree of study of problem. Long history of development industry of producing goods from leather, realized according to the demands of the system of international standards of stability and the quality of clothes, studied in the works of such foreign scholars and specialists as X.Motojoshi, P.Upston, P.Smejkal, T.Hains, M.Bruce, Lee Queen, C.Bert, Labman J-J and others. Fundamental researches of macro and microstructures collagen of leather, to learn interaction of collagen with chromium, algegid and tanninum doubles realized in scientific works of foreign scholars. K.Kolomaznik (Chech), A.Kovington (Denmark) and G.Raih (Germany). Significant share to the development of theoretical- methodical bases of technology of the leather for footwear manufacture put scientific researches, are done under the head of scholars M.P.Kupriyanov, I.M.Zurabyan, M.L.Shustorovich, V.A.Fukin, T.V.Bekk, V.I.Chursin, A.P.Zhikharev, V.A.Skaternoy and others. Scientific works of G.P.Zaretskaya, T.V.Kozlova, G.A.Bastov, F.M.Parmon and others dedicated to improving of processes artistic designing of clothes from leather. These works are linked to studing the features of leather raw material and materials of foreign manufacture, prepared in other climate conditions. Some few researches of the scholars of the Republic dedicated to the problems of perfecting the properties of natural leather from local raw material especially for foot wear. At the same time scientific researches linked with developing leather raw material for clothing, optimizing the indicators of using the leather with accounting of its cut out features and parameters of clothes construction was almost held in our Republic. In this connection it is high time to carry out scientific researches, oriented to improving the quality of raw material

and work out technologies of creating cloth assortment from leather of local production.

Connection of dissertational research with the plans of scientific- research works. Work is performed under the state scientific and technical projects on the

themes: A-14 -004 "Development of methods and principles of establishing the system of intelligent design garments" (2006 – 2009 yy); ITD 5-39 "Development of an integrated information system for forecasting, monitoring and control of production processes in the light industry using WEB- TECHNOLOGIES" (2012-2014 yy).

Purpose of research is to improve the quality of local raw material with the help of filling polymer materials and work out effective ways of pational placing clothing details, enlarging its assortment in account of technological features and maximal usage of the leather area.

Tasks of research:

the formation of the essential properties of garment leather from local raw materials by modifying its polymeric excipients;

development of scientific recommendations for modeling shapes and designs of leather garments based on the deformation properties of package materials;

development of methods for designing industrial range of leather garments based on the mechanisms of its consumption;

improvement of methods for developing new models and technological preparation of production of leather garments from local raw materials;

development of methods for automated support of the design range of industrial leather garments.

Object of research are products and leather materials, the range of local hides; processes of design and technological preparation of production of leather garments.

Subject of research – using the methods and tools for designing assortment of clothes from refined leather with usage of modern international technologies.

Methods of research. In this thesis the general methodology is used a systematic approach to design clothing, methods of theoretical and experimental (methods of project typologies, multi-dimensional classification, typing, combinatorial formation, standard test methods for mechanical and technological properties of leather material, mathematical statistics, theory of creation of databases algorithmization and programming). It is used software Gerber, operating environment Delphi, Windows XP, Microsoft Excel.

Scientific novelty of dissertational research consists in the following:

within the overall strategy of creating leather products technology developed principles of industrial design range of garments in the "Leather material - environment - Clothing" based on the theory of morphogenesis, decomposition, network simulation and ranking priority requirements for leather goods;

first proposed method of a water-soluble polymer composition provides a comprehensive enhancement of quality leathers from local raw materials and stability of uniforms (IAP 03747);

electron- microscope researches and spectroscope is installed the mechanism of correlation of polymer composition with collagen of natural leather and identified its rational content;

theoretical and experimental researches of physic- mechanical features, is offered the coefficient of flexibility, form stability and mobility of structural elements

of modificated leathers it is proved the opportunity of regulating technological features of package materials and expoiting indicators of clothing;

it is offered new method and algorithms og multi-critical optimization of industrial assortment of clothes from leather with the help of typological model, which allowed to forecast its structure in account with requirements of different segments of the market (DGU 00444, DGU 00445);

it is worked out new method of choice preferable models and creating electron sketch in depend on artistical- constructive features of appearance of clothes (DGU 01400, DGU 01078);

it is worked out means of modeling and optimization of indicators leather using by combining the details of clothes in apportion (DGU 01017, DGU 00808);

it is offered the integrated informational system created the support of different stages of automated designing of clothes from leather (marketing, design, constructing and technological preparation), it is identified the strategy of its realization by methods of artificial intellect (DGU01399, BGU00233, DGU02510, DGU 02617).

Practical results of research consist in the following:

it is offered normative- technical documents for evaluating the quality of local leather for clothes, method of selection of natural leather and to make zone its area for cutting due to topography features; recommendations on mechanical solidity of leather in the term of enterprises;

it is worked out the method of calculating organizational technology scheme of stream on producing leather clothes in the term of small enterprises, method of combining the pattern of the detail of clothes on the leather in cutting;

it is created integrated information system, including the complex of models algorithms and program means, used for automated projecting of sewing goods, algorithm and program of calculating rational structure of industrial collection of clothes its account of customer desire on the feature of appearance;

it is formed electron catalogue with libraries: "Catalogue of leather material", "Catalogue of models", "Catalogue the set of curve of typological models", "Catalogue of cutting out scheme" and reference books "Reference book of characteristics and features of leather", "Reference book of norms leather expenses on the types of goods", "Technical demands to compose of cutting out scheme".

Reliability of obtained results is proved that they are based on detailed analysis of certain technology of producing the clothes from the leather with applying modern methods IK-, UF-, and PMR, spectroscope for installing mechanisms of interaction polymer composition with collagen of natural leather, correctness of mathematical models on optimization structure of assortment and indicators of cutting, based on the theory of graphs and combining the synthesis and their identity of known criterias of evaluation in discussed area, positive results carring out experiments comparative analysis, received results with real facts.

Theoretical and practical value of results of research. The scientific significance of the results of work is to develop a set of models, methods and tools designed for computer-aided design clothes based on the properties of ennobled local hides and marketing. The principal novelty of the research results confirmed thirteen patents on the composition of the water-soluble composition, industrial design and

software products. The practical significance of this study is the possibility of direct usage of the proposed methods of product design in various subject areas (shoes, knitted goods, men's, women's and children's clothing), the development of technology modification hides apparel destination of polymer composition; recommendations for modeling shapes and designes clothes considering cutting properties of the skin; apparel manufacturing technology from the local leather of an industrial enterprise; developing methods and specific component methodical, information, software, computer-aided design process assortment of clothing from local leather in rough industrial environments.

Realization of results. It is worked out normative documents "Technical conditions for clothes and head wear", "Semi product of leather chromium "WET-BLUE" from pelts of cattle" (Agency "UzDavstandart" 05.07.2004, №112/005527, №112/005528); technological reglament to work of programm "Integrated informational system of designing" (16.04.2014, LLC "TRISTAR technologies").

Received dissertation results, complex of instrumental means, information, programm and methodical supply of integrated system found its application in the term of industrial enterprises joint venture "ANKA" (Act inculcating from 27.10.2010), Limited liability company "VIVATEKS" (Act of inculcating from 27.06.2008), "CHARM- ATTOR" (Act of inculcation from 27.06.2011 y), with annual economic effect more than 30 mln sums for year.

Approbation of work. Fundamentals and results of the thesis reported, discussed and assessed positively in a number of international and national scientific conferences, scientific seminars (over 15), including the International Scientific and Technical Conference: "Young scientists development of textile and light industry" (Ivanovo, 2001); International scientific conference "The role of personal items of consumption in shaping the environment of human life" (Moscow, 2002); International Scientific Conference "Mathematical Methods in Engineering and Technology" (Kostroma, 2004); International scientific and practical conference "Fashion and design. Modern clothing and accessories 2009" (Rostov-on-Don, 2009); Sixth International Conference «World Conference on Intelligent Systems for Industrial Automation - PROCEEDINGS» (Tashkent, November, 2010).

Publication of results. Due to the theme of dissertation it was published 79 scientific works, as well as 14 scientific articles in international magazines and 13 patents.

Structure and volume of dissertation. Dissertation is consisted of introduction, six chapters, conclusion, bibliography and 6 appendices, contents 200 text pages and includes 80 figures, 32 tables.

MAIN CONTENS OF DISSERTATION

In the introduction is proved the actuality and insistence of the theme of dissertation, formulated aim and tasks and subject and object of the research, it is given conferity of research on priority directions of development the science and technologies of the Republic of Uzbekistan, as well as is shown scientific novelty and practical results of research, is based the reliability of received results, exposed

theoretical and practical significance of received results, is shown the lists of inculcation in the practice of research results, information on published works and structure of dissertation.

In the first chapter it is analysed the results of existing methods of designing clothes of local leather shows the limitations of scientific research related to the study of complex topography and deformation properties of the operational semi- leather on the area, its rational use, dimensional stability requirements of garment components and interconnections with the package materials, methods of construction and processing, identified the need to the development of methods for computer-aided design products.

It is shown that raw material produced in Uzbekistan, characterized by a large number of facial blemishes, loose structure and reduced strength of hides and leather produced from them does not meet the requirements of the leather clothes.

In the mean time, the review showed the absence of a common approach, allowed common quality products to design a range of clothing from local leather in correlation of factors that determine the basic properties and features of the range, on one hand, demand and competitiveness of products in the domestic and foreign markets on the other, having formulated problems of scientific research.

The second chapter is devoted to the development of technology upgrading local hides and formating properties from leather material for designing cloth assortment. In this work, basing on analysis the relationship of the package materials, garment and environmental factors, is proposed the design process of the leather, industrial assortment of cloth- (IROC) based on a tiered system of "External environment Leather - material envirorment – Clothes" (Fig.1), a development of the concept of "raw - material clothes".

This system is a complex set of interrelated elements (technology tanning hides and materials; modes and exploiting conditions, design and processing tecnology products), defining the parameters of quality of design object - range of garments in industrial production.

A new water-soluble polymer composition (PC) containing polyyauaternium salt N, N- dimethylaminoethylmethacrylate with allyl bromide (PS DMAEMA AB), in combination with glycerol and garment leather processing technology from local raw materials. Investigations were carried out in the conditions of the Uzbek- Korean joint venture "PAN A TECH". Defined viscosity, surface tension and density of the PC (Fig. 2).

The results of experimental studies allowed to choose rational polymer composition for modifying leather apparel destination (weight %): polyquaternium salt - 2.0; glycerin - 10, water 88.

Impregnating the soil test based on the proposed polymer composition were performed on semi-finished garment goatskin, sheepskin and cattle (cattle), have a tendency to passion of the soul. Using infrared and ultraviolet spectroscopy, EPR, and sorption methods microscopic study examined the structural changes of garment leather samples modified with a PC-based PS N,N-DMAEMA AB.

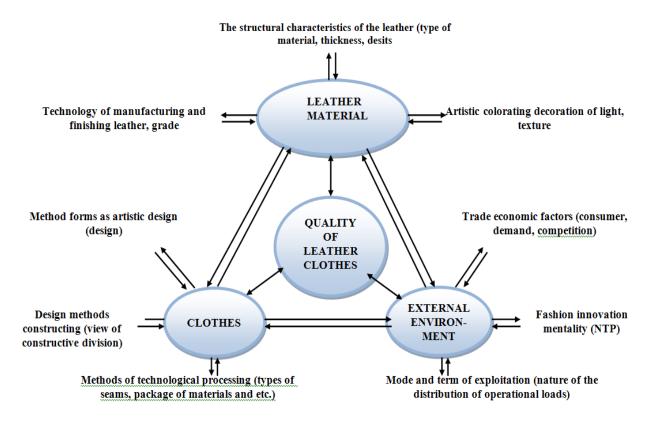


Fig.1. The diagram of the relationship of elements of the "Leather Material - External environment - Clothes"

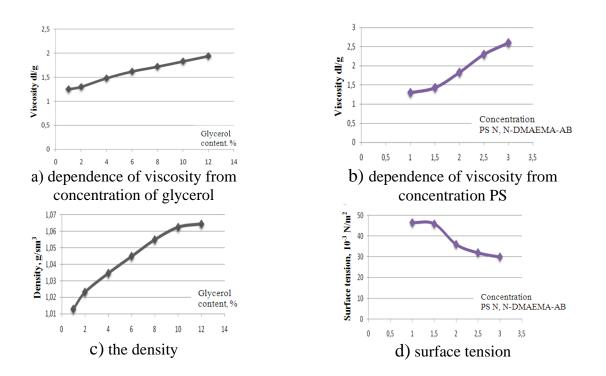


Fig. 2. Changes in the physical and chemical parameters of the polymer composition based on PS DMAEMA AB, depending on the concentration of glycerol and the polymer salt Polyquaternary salt content 2,0 %

Defined sorption of water vapor sorption characteristics and semi-finished leather. It was established that the treatment leads to decrease in the PC of the total

pore volume goatskin leather, cattle and sheep is dependent on the concentration of PS N,N- DMAEMAAB the composition. It is proved experimentally that the treatment of the leather semi PS concentration of 2% AB DMAEMA PC reduces the average porosity of 5-6% (absolute) sop reduce leather range 32-40% decrease to 13-15% for water vapor permeability (fig. 3).

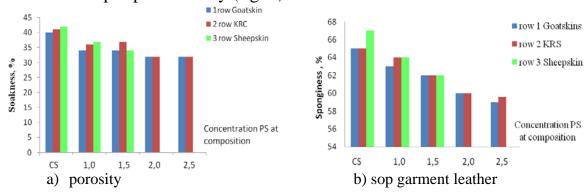


Fig.3. Results and evaluation treated PC-based PS N, N-SS DMAEMA AB

Reducing the porosity of the treated skin, probably occurs due to inter-fiber space filling particles dermis polymeric salts, as seen in the micrographs of skin samples (fig. 4).

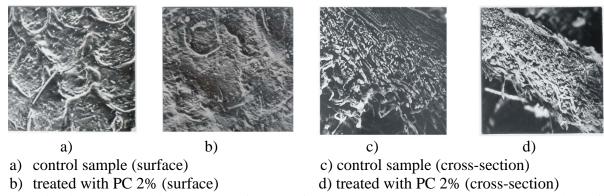
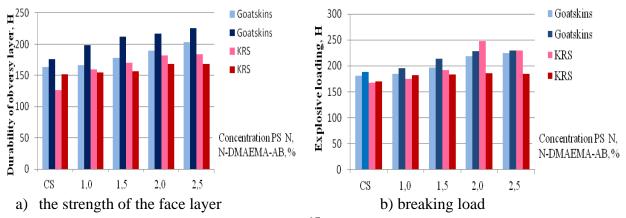
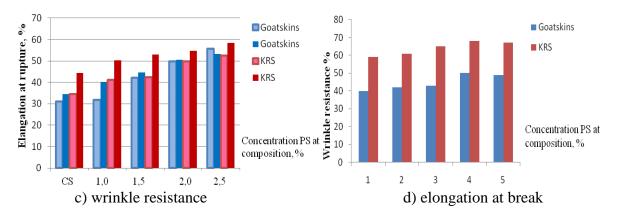




Fig. 4. Electron micrographs of the surface and the boundary layer cross-section of the goatskin. Image 200 times per 1 sm of 50 mkm.

On the basis of experimental studies have shown that physical and mechanical, technological and operational parameters of samples of leathers new modified polymer composition significantly improved compared to the control (fig. 5).

Row 1- along the spinal line Row 2- across the spinal line Row 3- along the spinal line Row 4- across the spinal line

Fig. 5. Chart of changing in the mechanical and exploiational properties of leather samples, modified PC based on PS DMAEMA AB

In the third chapter is considered principles of dynamic matching clothes motor components of human activity, taking into account the deformation properties of the modified leather from local raw materials. The proposed modeling is formed the basis of the shape and design of leather clothing, rules and methods for performing layouts organize garment parts by leather -aided design .

Leather is an anisotropic material, and the optimum structure of constructive clothes from it determined deformation properties of leather materials. Experimental studies have shown that treatment of prototypes goatskin leather and cattle, the proposed PC- based PS N,N- DMAEMA AB, improves their deformation properties (fig. 6).

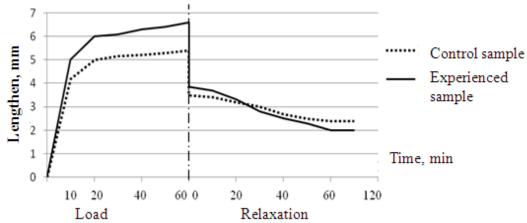


Fig. 6. Tensile strain curves of goatskin treated PC AB DMAEMA PS concentration - 2% in the longitudinal direction

When the concentration of 1.0 to 2.0% increases in the proportion increasing elastic component of the total deformation, and accordingly, reduction in the proportion of plastic provides dimensional stability due to better elastic properties. This is due to the fact that the polymer composition, settling into the fibers forms a three-dimensional network structure of the leather, which leads to increase in bonds

between the structural elements of the skin and composition, and therefore, the elastic deformation under the influence of tensile force is developed. But at the same time increasing the concentration of salt in the polymer composition to 2.5% sharply increases the amount of plastic deformation and stiffness, which adversely affects the dimensional stability of garment leather during operation. Therefore, a rational concentration formulation containing 2% PS N, N- AB DMAEMA.

To assess the skin condition undergoing intense pressures on items of clothing during wear, the coefficient of plasticity has been used (P) indicating the proportion of irreversible deformation ($\varepsilon_{n\eta}$) in relation to the total (ε_n):

$$\Pi = \frac{\mathcal{E}_{n\pi}}{\mathcal{E}_n} \cdot 100\% \tag{1}$$

Proposed mobility coefficient (K_n) structural elements of genuine leather defined as the ratio of the elastic (ε_y) and elastic $(\varepsilon_{\mathfrak{I},n})$ components of the deformation to the full:

$$K_n = \frac{\varepsilon_y + \varepsilon_{yn}}{\varepsilon_n} \cdot 100\%$$

(2)

Calculated values of K_n for the modified garment leathers are listed in Table 1 shows that the samples treated with the PC, containing 2% PS, the value of K_n is 70%, and control- 56%.

Table 1
Changing the deformation of properties of garment leather, depending on the concentration of PC -based PS DMAEMA AB (goat)

No	The concent-	Direction	Equilibriu	Plastic	Mobility ratio	Formstabi-
p/p	ration of saltin	comparativel	m	coeffici	of structural	lity
	the polymer	y to the cap	Modulus	ent, Π,	elements,	coefficient,
	composition, %	line	E_3 , МПа	%	Кп, %,	${ m K}_{\Phi}$
1	Control	Along	147	43,3	56,7	22,68
2	1% PS N, N-		208	52	48,0	20,16
	DMAEMA-AB					
3	1,5%		94	33,8	66,2	28,51
4	2,0%		71	30	70,0	35,0
5	2,5%		71	46,2	53,8	26,5
6	Control	Across	167	57,1	42,9	17,16
7	1%		77	38,9	61,1	23,6
8	1,5%		100	40,0	60,0	23,91
9	2,0%		77	35	65,0	32,5
10	2,5%		88	44,4	55,6	26,2

For the evaluation of the properties of garment leather proposed the following figure- dimensional stability factor (K_{ϕ}) is a derivative of mobility ratio (K_n) and creasing index (K_c) , defined by the relationship:

$$K_{\phi} = K_n$$
 K_c

The obtained dependences (2) and (3) allow to describe the processes of occurring in leather materials, and to quantify their dimensional stability. Proved theoretically and experimentally confirmed the dependence of the loss of dimensional stability of the voltage values of the total strain ϵ_n , equilibrium modulus E_3 and wrinkle resistance index K_c , which enables controlling the shape of the product by adjusting the properties of the package of clothing in accordance with specified requirements.

(3)

Ability to maintain given shape is caused by the properties of both the skin and the materials contained in the package of the product. Established experimentally that the appearance of the leather and the number of layers of materials in the packet zone duplication due to the requirements to individual components of the product and stiffness, thickness and elasticity of these materials. When duplicating the same leather with adhesive pads vary stiffness and viscoelastic properties of the package (fig. 7). The recommendations on the choice of materials for clothing package of modified leather.

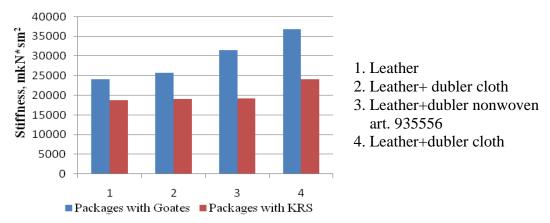


Fig. 7. Indicator of rigidity package of materials leather clothes processed PS based on PS-DMAEMA AB, PS concentration of 2%

It is worked out tenzometrical researches in which the data obtained allowed to allocate areas of clothing design, taking into account the magnitude and intensity of exposure to the material deformation loads during operation of products, circuit layout design details on the skin garment with computer-aided design.

In areas of clothing, where there is a large amount of dynamic effects (increase in body size) material is tested the greatest tension. So the greatest tensile strain observed in the sleeve in flexion and extension arm at the elbow (T= 2921.67-3125.51 cH), followed it on a plot of armhole upper extremities in abduction of the shoulder joint (T= 2585.81- 2766, 22 cH), least of all on the round sleeves (T= 1845.61- 1974.37 cH). Having found, the statistical processing of the experimental results, the mean deviation of tension Unevenness coefficient, variance, and the experimental error, the coefficient of variation indicates high reliability of the data.

Based on these studies, three zones of varying intensity impact deformation

loads on different parts of the product during operation: 1- large deformation of zone; 2- zone of medium deformations; 3- small area. All large and medium-sized portion of the patterns with 1- and 2-th zones of deformation, referred to responsible and all small and medium-sized portion of the patterns with the third zone- to less responsible. Sectors belonging to the zone of large deformations, is recommended to cut only the most durable dorsal part of the leather, the remaining portions of both, dorsal and peripheral parts of the leather.

The fourth chapter of the dissertation is devoted to the creation of industrial design techniques range of leather garments from local raw materials on the basis of the theory of consumer behavior and the principles of design typology.

On the aim of rational organization of the design process of the leather, industrial range of clothing- (IROC) suggested considering it as a complex object design (OD) in a hierarchical structure (fig. 8): 1 - formation of industrial range, as a complex object; 2 - product groups (PG); 3- Assortment units (AU); and 4- signs fashion (SF).

The mathematical model of the structure is formed sequentially range of garments at all levels of decomposition and has the following form:

$$O\Pi \in A\Gamma_{1,\dots,\kappa} \in AE_{1,\dots,n} \in \PiO_{1,\dots,e} \tag{4}$$

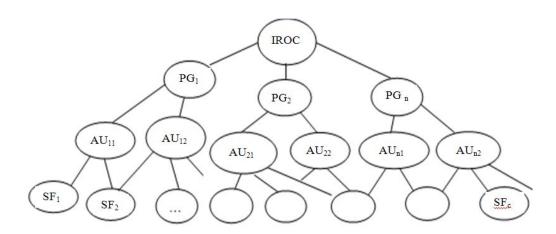


Fig. 8. Hierarchical block diagram of decomposition of design objects - industrial assortment of garments

AE design problem reduces to determine the boundaries of the list and software. The objective function in general will be determined by:

$$G = F(x_i, y_i, z_i, s_i), x_i \in X, y_i \in Y, z_i \in Z, s_i \in S,$$
(5)

where G- assortment unit; x_i , z_j , y_l , s_k - generalized vector of raw material, functional, social, ergonomic and aesthetic features. X_i (i=1,2,...,n) - function of ergonomic features AE; $Z_j(j=1,2,...,m)$ - a function of aesthetic attributes; Y_1 (l=1,2,...,q) - function properties leather material; S_k (k=1,2,...,r)- characterizes the change in the parameters of the consumer situation. Combination of these attributes embodied in the properties of real models of clothes, form structural and morphological diversity among species and range for given situations. Selection of principle every consumer is a new element in the choice of clothing options, the most satisfying customer

requirements (preference scale), with a minimum of cost and cost within the constraints (5).

One of the significant factors that significantly influence is the formation of the structure of industrial range of clothing- (IROC), are the parameters of consumer situation (CS), which characterizes the environment (Fig. 1). For each consumer situation, in which a person may be determined by place, time, temperature and other parameters, corresponds to a set of clothes or its elements (5).

Methodological setting for modeling human behavior in different environmental conditions allowed the use the principles of design as a tool of typology environmental approach and develop the method of "opportunistic typological design" industrial range of clothing- (IROC) leather. In accordance with it the task of choosing the rational range for a particular CS includes the following stages: modeling of consumer functional facial features (most popular CS and their combinations), the definition of the basic positions estimates of consumer demand, the development of rational sets and/or base – Tip of outfits, forming, industrial range of clothing- (IROC). The proposed formulation is principled position on the modeling of the CS as a source component for establishing a rational nomenclature, industrial range of clothing- (IROC) (its groups and individual items). Typology of the CS, which serves as the base, creating a benchmark for all PAT groups, species and varieties.

Having developed design methodology uses industrial range of clothing-(IROC) artistic and structural features (ASF) and the typology of the CS, which allows to develop an algorithm of calculation of the most popular of the PS and their concentration in the group on the results of the survey and calculation program structure collection of clothes, the novelty of which grant confirmed.

By the combination of features rational design problem belongs to the class industrial range of clothing- (IROC) hard forming, tasks that cannot be represented in numerical form and solved by numerical methods, and accurate algorithm for the solution of which is not known beforehand. Having formulated the solution of multicriteria optimization industrial range of clothing- (IROC) as a typological model, the structure of multi-dimensional space is formed by different classifications so that each object, such as assortment unit, has a definite place in several typological series (classification of systems) formed on various grounds. Axes of typological model is: axis variations in consumer situations (pc_i); axis variations of technical and technological solutions (tp_i); axis variations of stylistic solutions designed models (cp_i); types of consumer behavior (segments) (Fig. 9).

$$\Pi C = \sum_{i=1}^{n} pc_{i}; \quad CP = \sum_{i=1}^{n} cp_{i}; \quad TP = \sum_{i=1}^{n} tp_{i},$$
 (6)

Axis scales of typological models defines the characteristics of signs (IROC). Specific assortment unit (AUi) formed by the intersection of the coordinate axes of each position: PS, TP and SL. Set within AUi AG forms of assortment collection. Optimization criteria selected (IROC) requirements of individual segments (P); product costs (T) and latest innovations (M).

These characteristics (P, T, M), ultimately determines the complex index of

future product quality and competitiveness in the market, affected to the reporting indicators (volume of output, income, etc.) more complex system - production.

The task of determining the structure of industrial range of clothing- (IROC) using typological model is proposed to solve in two stages. The first stage is to find and limit the number of AG - species populations industrial range of clothing-(IROC) - AUi nomenclature. View AUi is the center of various preferences object, activity in certain socio-cultural environment and technical solutions. Proposal response to the order, expressed type of consumer behavior, and is embodied in the appearance and usage of goods. If this solution does not occur with any of the SS (or combinations thereof), the view AUi not formed (Fig. 9).

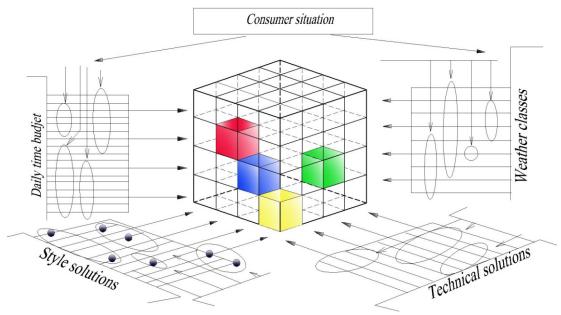


Fig. 9. Geometrical interpretation of the typological model (IROC)

This means that the technical proposal remains unclaimed (or until unclaimed). So unnecessary eliminated or simply meaningless technical solutions, resulted in the selection of relevant species produced.

At the second stage the clothing featured on AU: ASF, types processing and properties of materials. Space models of X_i (i=1,2,...,n) for ASF and technical constraints, the area of AU, then by ASF codes specified allowable combinations of options ASF and permissible methods of treatment in each of the combinations of ASF. Problem of determining $K=\{X_{OKOH}\}$ solved as a problem of collection of models for industrial implementation. It is noted that the domain for the decisive set enumeration software optimality criteria $\Pi^{\kappa}, T^{\kappa}, M^{\kappa}$. The solution of this problem is generated table of final versions of industrial range of clothing (IROC).

It should be noted that, when the range at the certain time in the procedure for crossing the direction of different typologies axes should be performed every time. This is the advantage of developed typological model: it is the method of forming flexible range and not frozen assortment list.

The proposed method of designing situational industrial range of clothing-(IROC) tested in numerous project developments of the author and implemented in the development of a rational structure of women's outerwear assortment of leather by the private firm «Anka" and "Nazarkina Igolkina".

The fifth chapter is discussed the modeling methods of optimal allocation parts of clothing on the leather, allowing the options to design cutting plans automatic-aided design.

Increasing the profitability tanneries closely associated with decrease in consumption of leather materials in the manufacture of clothing, which can be achieved by improving their usage by area and purpose, as well as the application of IT in the preparatory cutting production. It is shown that the process under study setcutting production as the object of a multi-parameter system - MPS (Fig. 10), belongs to a class of complex objects. Efficiency is defined layouts cutting properties of the leather (grade, thickness, shape, leather area, the proportion of the total dorsal area), and models of clothes (kind of division, the number, size and responsibility factor details).

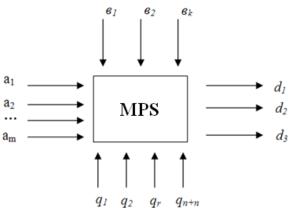


Fig. 10. Model design and technological preparation of cutting processes

Gradual transformation of information within the MPS and its physical mapping in each organizational and technological transition also depends on the monitored parameters $Q = \{q_1, q_2, ..., q_r, ..., q_{r+m}\}$, and random factors $B = \{b_1, b_2, ..., b_k\}$. To estimate the output parameters used $D = \{d_1, d_2, ..., d_3\}$ (value of pattern waste- d_1 , the utilization rate of leather- d_2 , area of layout- d_3).

The information of model and cutting processes for database-aided design. As the basis of management information model developed a number of electronic catalogues, considering features of raw materials and construction details of the garment: "Leather Materials Catalogue", "Catalogue of models", "Catalogue sets of pieces of standard models", "Catalogue cutting plans" and reference "Directory of characteristics and properties of leather", "Directory consumption rates by type of leather products", "Technical requirements for compiling cutting plans".

Worked out the questions about target usage of genuine leather. Due to the fact that the clothing is used for cutting few different varieties of leather and the square, placing the leather's parts will not obey a single system of placement adopted for shoes. The percentage of specific skins of different kinds and sizes are variable, which can significantly increase the combinatorial problems using graph theory.

The formation of layouts in this case seems as a graph G (N, K, D), where Nnumber of details is placed on one area of the leather with their K- number of parts in one set, and D- unit cost of the j-th layout pattern on one leather, which can be expressed through utilization of the leather. Quality desired structure (topology) layout structure function estimated by the sum of the minimum space is used by the leather, which is determined by the graph of the problem and the cost of fuel on the leather model- network graph. Set interposition parts R and Z form a combinatorial space of feasible solutions. By the result of the design is meant a subspace $z \subseteq Z$, all of whose points lead structural function extreme- minimum. Solving the minimization of problem in the utilization of the leather, taking into account heterogeneity of cutting properties of the skin factor and liability items. Restrictions on issue of cut models are set at intervals according to the production program of the enterprise. Resource constraints leather described ratio of incoming leathers by species.

Mathematical interpretation of the problem of cutting the leather is to follow. It is allowed that set leather pieces formed, each of which is denoted by S_i , i = 1, m; where m - number of pieces in each party. All material must be cut into a number of parts with an area Pi, $i = 1 \dots n$, in certain quantity Nj, $j = 1 \dots k$.

Each layout is assessed on the basis of information on the amount of terminal residues of the leather and the use of the percentage of usable area. If the arrangement of blanks given set of patterns specific model known area Pi, each model can be written:

$$\sum_{i=1}^{n} n_i \cdot P_i \leq \sum_{i=1}^{m} S_i,$$

(7)

where n- number of details of the model M_i, stacked on leather blank S_i, m- the number of blanks.

It is known that a set of patterns consists of patterns of responsible parts and less responsible parts:

$$n = n_i^I + n_i^{II} \tag{8}$$

 $n = n_i^{\ I} + n_i^{\ II}$ where $n_i^{\ 1}$ - number of responsible details; $n_i^{\ 11}$ - number of less responsible parts.

If P_i¹ area of responsible parts, one stacked on the leather, and P_i¹¹ - area of less responsible parts, we have:

$$n_i^{\ 1}$$
 . $P_i^{\ 1}$ \leq S_{ir}

(9)

$$n_i^{\ 11}$$
 , $P_i^{\ 11} \leq \ S_i$ $\bar{\ } S_{ir}$

where Sir – dorsal area of the Ni of the work piece.

$$\sum_{i=1}^{n} n_i \le N; \tag{10}$$

where N - number of pieces required model (N = 1 ... 3) $Sr - n_i^{-1} \ . . \ .$

(11)
$$S - Sr = n_i^{11} . P_i^{11} \rightarrow min$$

(12)

Condition (10) defines a number of outstanding items matching cutting plan. Condition (11) is -functional optimality characterizing Black-backed part. Condition (12) is-functional optimality characterizing the peripheral portion of the leather.

Mathematical interpretation by cutting the leather problem proved the effectiveness of combined layouts clothing patterns on the leather, characterized by the number of segmentations, sizes, shape of parts and products concomitant range (fig.11).

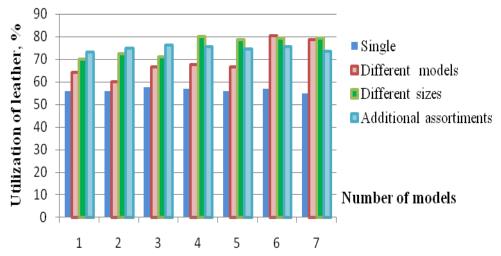


Fig. 11. Diagram variability in the using of leather in various types of combined layouts

To obtain reliable results and eliminate the influence of other factors were performed on experimental layout mock leather in one configuration. When combined with the items related products area of their parts should be 10-15 times smaller than the area of the leather.

It's found that in leather with a larger area to 90dm² details of products fits better, compared with the leather of small size, and for cutting leather low grades and a small area of reasonable design products with lots of articulation major parts. It is known that, appropriately placed in one layout parts models with similar horizontal and vertical articulations.

The proposed algorithms have formed the basis of tools for computer-aided digitizing parts of clothing to leather materials.

In order to find rational solutions parts of leather garments, effective from the standpoint of their suiting, a retrospective study of the formative features of leather garment, classification and modeling where possible to identify the structural elements forming, to predict the shape of the model and standardized parts. Based on these results, the structure and composition of information support for conceptual design of clothes in an automated mode.

Based on the methods of programmed morphogenesis and combinatorial synthesis, proposed and implemented technology for creating electronic sketches models of leather clothes. As a design object (DO) are considered: finished sketch technical $(T\mathcal{P})$, assembly units (CE), part (D), the signs of the materials and construction of clothing (ΠMK) . Model sketch typical solution patterns in the settheoretic form represented as:

$$[T\mathfrak{I}] \in CE_1, \dots, \subset \mathcal{A}_1, \dots, e \in \Pi MK_{1,\dots,i}$$

$$(13)$$

Formation of elemental part of the structure: assembly unit and details of the signs made by their layout. At the same symptoms may relate directly to the elements of the sketch (a form of throat color and shape, division, etc.) to the featured material (material properties, color, pattern, etc.) and processing characteristics (types of stitches and the wet heat treatment- (WHT). Each model designes of a variety of OP can be formally represented as:

$$T \ni_{i} \subseteq U \Pi M K_{j} (f_{ij}, M_{ij}, TO_{ij}), \tag{14}$$

where i = I - number $O\Pi_i$ ($T\mathcal{G}_i$, \mathcal{A}_i , CE_i); i - number shaping features (KDP), composed of $O\Pi_i$; ΠMK I_j - j - th feature of materials and design of clothing as part of $O\Pi_i$; $f_{ij} = (f^l_{ij}, f^2_{ij}, ..., f^{Kij}_{ij})$ - information about the signs of the form j- th element; $M_{ij} = (M^l_{ij}, M^l_{ij}, ..., M^l_{ij})$ - information about the characteristics of the material j- th element; $TO_{ij} = (TO^l_{ij}, TO^l_{ij}, ..., TO^l_{ij})$ - information about the characteristics of technological j- th processing element.

The model of TE (13), the algorithm in its design and CAD design software adapted to form rational decisions appearance of clothes for different purposes (of leather garments, knitwear).

Formulated solution of automated search and synthesis of original models with regard to consumer preferences by ASF. Together, the proposed techniques form the basis of the technology of electronic sketch clothing patterns, allowing the structure of the industrial design collection models in an automated mode. On the offered software products certificates of agency of intellectual property of Republic Uzbekistan are received (DGU 00444, DGU 00445, DGU 01078, DGU 01570).

Testing of software showed that their usage will increase the release of the products to reduce the terms of product design and the number of workers employed in the operation layout, reduce the complexity of up to 30%. Estimated annual savings amount to about 7136067 sum.

The sixth chapter is devoted to developing methods for automated support of the design of IROC leather.

On the basis of the design and structuring of complex analysis of how elements of the "external environment leather material – Clothing" industrial range of clothing-(IROC) of leather conceptual model of integrated information system (IIS), providing the desired unity of all phases of computer-aided design industrial range of clothing-(IROC) of genuine leather.

Functions IIS: automated decision support and the formation of a cross-cutting design cycle products in a single design and technological environment, search and synthesis of design decisions to put them into production. IIS architecture for computer-aided design consists of set of interrelated subsystems

 C_i ($i = \overline{1,k}$). Here k- number of subsystems comprised IIS. Each subsystem is an object-oriented subsystem, the input of which receives the flow of information on the design/control (fig. 12).

Integrated database is the link between them. The input information of each of the stages are integrated elements and local database marketing, design engineering, design and technology training.

Database was based on the developed relational database MICROSOFT Access, has relationship with Corel DRAW 8, and ensure the publication of data in a accessible format Internet. Designed user interface. Information Finding aid includes 15 directories, subdirectories and 16 directories. The composition of the database obtained positive decision of the Patent Office of Uzbekistan (BGU 00233).

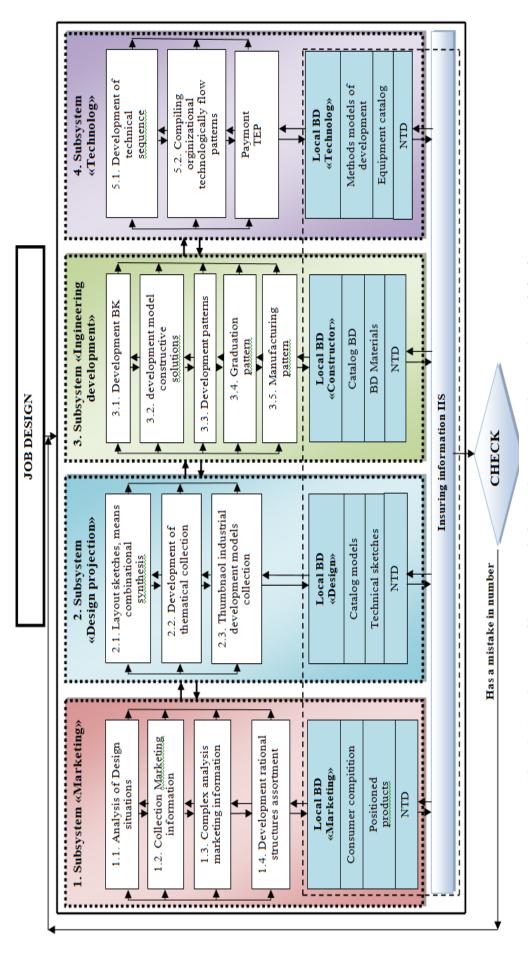


Fig. 12. Architecture of integrated information system-aided design IROC of leather

To automate the processes of technological preparation of production methods systematized processing of leather. Developed regulatory and technical materials for the manufacture of outdoor clothing of leather, taken for enterprises to JSC "CHARMPOYABZALI".

Having developed software and custom menu structure of functional modules in the configuration of the information system: marketing information system, preliminary design, layout details on the skin; technologist. While utilized fully rich environment AutoCAD, Delphi, Windows XP, Microsoft Excel, Microsoft Access software "Gerber" (USA) creates a modern graphical interface user.

Notional annual cost-effectiveness of implementing an integrated CAD garment production will be 27738552 sum.

Thus, on the basis of theoretical, experimental research and the application of modern information technology as part of the "Leather material - environment - clothes" the technology creates an assortment of clothing from local hides.

CONCLUSION

In this thesis, based on theoretical and experimental research in the field of technology development the range of garments from the local leather, new methods and technological developments that are essential to improve the efficiency of production processes and the quality of ready products. The main results of the work are:

- 1. By the way of experimental studies propose a new water-soluble resin composition on the basis of polyquaternary salts N,N- dimethylaminoethyl methacrylate with allyl bromide in combination with glycerin and technology for processing them garment leather from local materials.
- 2. Studing of the mechanism of interaction of the polymer composition with natural leather collagen by IR, UV, NMR spectroscopy, electron- microscopic studies of the physicochemical properties of aqueous solutions of the polymer composition is determined by its rational composition (wt%): polyquaternium salt- 2.0; glycerol 10 water 88, corresponding to the requirements of the compositions used in the finishing process of natural leather apparel destination (IAP 03747).
- 3. Usage in the process of finishing water-soluble polymer composition improved structural and mechanical properties of modified leather by tighting its microstructure. As compared to the control that has increased tensile strength by 15-20%; sop 8% water vapor transmission rate- 9-11%. The increase in the fraction including resiliently elastic component of deformation in the longitudinal and transverse directions of up to 20-25%. These factors contributed to decrease in hack degree leather material 17- 20%.
- 4. Proposed coefficient K_{ϕ} form-stability of leather material allows to control the shape of articles by controlling the properties of the package of products in accordance with the requirements. Established theoretically and experimentally confirmed by the dependence of the shape stability of the voltage value of the total

deformation, the equilibrium modulus of elasticity and mobility ratio of structural elements garment leather treated with the proposed polymer composition.

- 5. By strain studies of the mechanism of loss of clothing given shape and intensity of exposure to the material deformation loads during operation products installed zone varying degrees of responsibility in detail. On this basis of development the method of placing the combined parts of clothing on the leather in an automated mode, proposed and implemented algorithm for optimal placement, taking into account the heterogeneity of cutting properties leather material and constructive- technological solution models of products (DGU 01017, DG 00808).
- 6. Based on the study of consumer preferences for artistic design features developed technology of electronic sketches of clothes made of leather, including development of database of graphic elements and the appearance of a sketch algorithm products (DGU 01400, DGU 01570).
- 7. Practical significance is confirmed by results of industrial testing elements of information, software and methodological support of the integrated system in terms of a foreign enterprise (foreign enterprise) FE "ANCA», «VIVATEKS», JV «PAN A TECH», LLC «CHARM-ATTOR», LLC «TRISTAR technologies». The cost effectiveness of using the results of the dissertation is composed by saving labor and material resources, diversification, and improving product quality, productivity, reduce design time and reduce labor costs and makes more than 30 million sum per year.

ЭЪЛОН ҚИЛИНГАН ИШЛАР РЎЙХАТИ-СПИСОК ОПУБЛИКОВАННЫХ РАБОТ-LIST OF PUBLISHED WORKS

I бўлим (І часть; І part)

- 1. Нигматова Ф.У., Алимова Х. Проектирование одежды из натуральной кожи/ Изд. LAP LAMBERT Academic Publishing is a trademark of: OmniScriptum GmbH & Co. KG, Heinrich-Böcking-Str. 6-8, 66121, Saarbrücken, Germany, 2013. 333p.
- 2. Нигматова Ф.У., Алимова X. Разработка методов проектирования ассортимента одежды из натуральной кожи/ Ташкент: «Фан ва технологиялар маркази», 2013.- 304 с.
- 3. Нигматова Ф.У., Петрунина В.Г. Особенности современной технологии изготовления изделий из натуральной кожи// Проблемы текстиля.- Ташкент, 2000.- №1.- С. 45-48.
- 4. Нигматова Ф.У., Абдукаримова М.А., Лутфуллаев Р.А. Маркетинговые исследования по совершенствованию проектирования ассортимента женской одежды // Ипак.-Ташкент, 2001.- №1.-С. 36-39.
- 5. Лутфуллаев Р.А., Абдукаримова М.А., Нигматова Ф.У. Сегментирование рынка потребителей женской одежды на основе метода автоматической классификации // Олий укув юртлари ахбороти. (Известия ВУЗОВ). Ташкент, 2001. -№ 2-4. С. 21-24.
- 6. Исмаилова Р.М., Нигматова Ф.У., Аскаров М.А. Разработка полимерной композиции N,N- диметиламиноэтилметакрилата для улучшения некоторых свойств кожи//Композиционные материалы.- Ташкент, 2001.- № 2. С. 31-33.
- 7. Нигматова Ф.У., Абдукаримова М.А., Лутфуллаев Р.А. Маркетинговые исследования в Республике Узбекистан// Маркетинг.- Москва, 2001.- № 4.- С.55-58.
- 8. Исмаилова Р.М., Нигматова Ф.У., Мирзаев Н.Б., Аскаров М.А. Полимерная композиция на основе N,N- диметиламиноэтилметакрилата с аллилбромидом для обработки натуральных кож// Узбекско-химический журнал.- Ташкент, 2001.-№ 6.- С. 46-48.
- 9. Исмаилова Р.М., Нигматова Ф.У., Аскаров М.А. Создание и исследование водорастворимой полимерной композиции на основе поличетвертичной соли N,N- диметиламиноэтилметакрилата для пропитки натуральных кож // Доклады АН РУз.- Ташкент, 2001.- №10-11.- С. 49-51.
- 10. Нигматова Ф.У., Исмаилова Р.М., <u>Абдуллина Ф.Д</u>. Особенности проектирования одежды из натуральной кожи// Вестник Таш ГТУ.-Ташкент, 2002. №4.- С.136-139.
- 11. Исмаилова Р.М., Нигматова Ф.У, Абдуллина Ф.Д., Максумова А.С. Модификация натуральной кожи полимерной композицией на основе поличетвертичной соли // Химия и хим. технология. —Ташкент, 2003.- №2.- С.20-26.

- 12. Нигматова Ф.У. Концепция ассортимента кож для одежды из местного сырья // Проблемы текстиля.-Ташкент, 2004.- №1.- С. 50- 53.
- 13. Нигматова Ф.У. Формирование ассортимента кожматериалов для одежды// Проблемы текстиля.- Ташкент, 2004.- №2.- С. 55- 58.
- 14. Нигматова Ф.У., Петрунина В.Г., Балтабаева М.Д. Разработка исходной информации для моделирования технологического процесса по изготовлению одежды из натуральной кожи// Проблемы текстиля. –Ташкент, 2005.- № 3.- С. 61-65.
- 15. Исмаилова Р.М., Абдуллина Ф.Д., Нигматова Ф.У., Балтабаева М.Д. Исследование технологических свойств кожматериалов на прочность соединительных швов и прорубаемость// Проблемы текстиля.- Ташкент, 2005.-№3.- С.69-72.
- 16. Нигматова Ф.У. Анализ дефектов и пороков изделий из натуральной кожи в процессе эксплуатации.// Вестник ТашГТУ.- Ташкент, 2005.- №3.- С.111-114.
- 17. Нигматова Ф.У., Абдуллина Ф.Д., Зималева Е.В., Шин Д.И. Оценка формоустойчивости одежных кож, пропитанных полимерными композиция-ми // Композиционные материалы. –Ташкент, 2005.- №4.- С.42-46.
- 18. Нигматова Ф.У. Разработка системы показателей качества натуральной кожи одежного назначения// Вестник ТашГТУ.- Ташкент, 2005.- №4.- С.158-161.
- 19. Набиджанова Н., Нигматова Ф.У., Абдуллина Ф.Д., Саидаминова А.А. К вопросу создания информационного фонда материалов для проектирования трикотажных изделий из местного сырья// Проблемы текстиля.- Ташкент,-2005. №4.- С. 50- 52.
- 20. Нигматова Ф.У., Исмаилова Р., Абдуллина Ф. ., Шин Д., Зималева Е.В. Влияние полимерной композиции на основе N,N- диметиламино-этилметакрилата с аллилбромидом на деформационные свойства натуральной кожи для одежд// Химическая технология. Контроль и управление.-Ташкент, 2006.- №1.- С. 29-33.
- 21. Нигматова Ф.У., Сиддиков И.Х. Решение оптимизационных задач в технологии раскроя кож// Химическая технология. Контроль и управление. Ташкент, 2006. №3.- С. 77-81.
- 22. Нигматова Ф.У. Информационная система для управления технологическим процессом раскроя кожи. Сообщение 1// Химическая технология. Контроль и управление. Ташкент, 2006.- №4.-С. 57-60.
- 23. Нигматова Ф.У., Исаева И.А., Шомансурова М.Ш. Закономерности развития основных структурных признаков формы одежды из натуральной кожи// Проблемы текстиля.-Ташкент, 2007.- №3. С.60-65.
- 24. Нигматова Ф.У., Сиддиков И.Х., Балтабаева М.Д., Мусаханов А.А. Система автоматизированного проектирования раскладки лекал на коже// Химическая технология. Контроль и управление.-Ташкент, 2007.-№4.-С.23-27.

- 25. Нигматова Ф.У. Типология потребительских ситуаций как основа формирования промышленного ассортимента одежды// Проблемы текстиля.-Ташкент, 2007.- №4.- С.40- 46.
- 26. Муминова У.Т., Нигматова Ф.У. Метод ситуационного проектирования детской одежды// Проблемы текстиля.- Ташкент, 2007.- № 4.- С.46-48.
- 27. Алимова Х.А., Шин И.Г., Набижонова Н.Н., Нигматова Ф.У. Проектирование хлопко-шелковых трикотажных изделий на основе безмоментной теории оболочки// Проблемы текстиля. Ташкент, 2007- №3.- С.52-56.
- 28. Нигматова Ф.У., Совершенствование процесса подготовки кожевенных материалов к раскрою// Проблемы текстиля. Ташкент, 2008, №4.- С.65-69.
- 29. Нигматова Ф.У, Ахмедов Б.Б, Каттаходжаева К.А. К вопросу классификации кожаных изделий// STANDART.- Ташкент, 2009.- № 2.- С.33-34.
- 30. Нигматова Ф.У., Алимова Х.А. Формирование промышленного ассортимента одежды на базе экспертной системы// Швейная промышленность. -Москва, 2009.- №2.- С.27-29
- 31. Нигматова Ф.У, Алимова Х.А. Вопросы к автоматизации процеса раскладки деталей одежды из кожи// Швейная промышленность. Москва, 2009. №2.- С.36-37.
- 32. Нигматова Ф.У., Шомансурова М.Ш. Информационная система проектирования технологического процесса изготовления трикотажных изделий// Швейная промышленность. –Москва, 2009.- №3.- С.36-37.
- 33. Nigmatova F.U., Akramova Z.I. Regional features of formation industrial assortment of clothes// Central Asia Finance. London, 2010.- Spring.- p.69-70.
- 34. Нигматова Ф.У., Исмаилова Р.М., Аскаров М.А. Исследование технологических свойств натуральных кож пропитанных полимерными композициями//Докл. АН РУз. -Ташкент, 2010.- №3.- С.83-87.
- 35. Нигматова Ф.У., Алимова Х.А. Прогнозирование формоустойчивости одежды из кожи на основе физико-механических свойств пакета материалов// Композиционные материалы. Ташкент, 2010, №3.- С.71-75.
- 36. Каттаходжаева К.А. Нигматова Ф.У. Шин И.Г. Прочность ниточных соединений деталей одежды из натуральной кожи// Проблемы текстиля. Ташкент, 2010.- №3.-С.54-59
- 37. Нигматова Ф.У. Формирование критерия оптимизации промышленного ассортимента одежды// Доклады АН РУз.- Ташкент, 2010.-№ 6.-С.48-53.
- 38. Нигматова Ф.У., Исмаилов Р.И., Аскаров М.А, Алимова Х.А. Модификация натуральных волокон и кож полимерными наполнителями на основе поличетвертичной соли// Химические волокна. Москва, 2011.- №6.- С.43-48.
- 39. Касымова А.Б., Нигматова Ф.У., Шин Е.И. Проектирование одежды на основе деформационных свойств хлопко-нитроновых трикотажных полотен// Проблемы текстиля. Ташкент, 2011.- №3.-с.60-66.

- 40. Нигматова Ф.У., Саид-Аминова А.А., Сиддиков И.Х. К проблеме рационального использования материалов на швейно-трикотажном производстве// Швейная промышленность.- Москва, 2011.- №6.- С.30-32.
- 41. Нигматова Ф.У., Лутфуллаев Р., Шомансурова М.Ш., Мусахонов А.А. Моделирование организационно-технологической схемы потока для производства одежды из кожи// Проблемы текстиля. Ташкент, 2011.- №4.- С.44-50.
- 42. Shin D.I., Akhmedov B.B., Nigmatova F.U. Improved Rotary Stretching and Softening Equipment for the Leather Industry// RUSSIAN ENGINEERING RESEARCH, USA, Vol 32, 2012.- No.5.- pp.423-425
- 43. Ismailov R.I., Nigmatova F.U., AskarovM.A. and Alimova Kh.A.. Modification of natural fibers and leathers by polymer fillers based on a polyquaternary salt// Fibre Chemistry, Vol.43, No.6, March, 2012 (Russian Original No.6, November-December, 2011). P.441-447.
- 44. Нигматова Ф.У., Касимова А.Б., Шин Е.И. Деформационные свойства трикотажных полотен из смесовой пряжи на основе хлопковых и полиакрилонитрильных волокон// Химические волокна.- Москва, 2012.- №1.- С.19-23.
- 45. Nigmatova F.U., Kasimova A.B., Shin E.I. Deformation properties of knitted fabrics from blended yarn based on cotton and polyacrylonitrile fibres.// Fibre Chemistry, Vol.44, No.1, May, 2012 (Russian Original No.1, January-February, 2012). P.21-25
- 46. Нигматова Ф.У., Сиддиков И.Х., Шомансурова М.Ш., Мусахонов А.А. Способ проектирования организационно-технологической схемы потока в швейном производстве// Автоматизация в промышленности.- Москва, 2012.- № 11.- С. 53-57
- 47. Нигматова Ф.У., Гафурова Б.Н. Модель потребительской оценки качества швейных изделий с развертыванием функции качества// Проблемы текстиля. Ташкент, 2012.- №4.- С. 36-39.
- 48. Нигматова Ф.У., М.Ш. Шомансурова, И.Х. Сиддиков. Интегрированная информационно- аналитическая система автоматизированного проектирования швейно-трикотажных изделий// Автоматизация в промышленности.- Москва, 2013.- №9.- С.42-46.
- 49. Нигматова Ф.У., Шомансурова М.Ш., Алимова Г., Гафурова Б.Н. Интегрированная информационная система поддержки автоматизации проектирования технологических процессов швейно-трикотажных предприятий// Химические технологии. Контроль и управление.- Ташкент, 2013.- №5.- С. 87-91.
- 50. Сиддиков И., Венгрженовский П., Нигматова Ф.У., Абдукаримова М.А. Автоматизированная система маркетинговых исследований ассортимента одежды// ЎзР. Интеллектуал мулк агентлиги. Гувохнома № DGU 00444. 09.08.2001.
- 51. Сиддиков И.Х., Нигматова Ф.У., Абдукаримова М.А. Автоматизированная система конструирования одежды// Агенство по

- интеллектуальной собственности РУз. Свидетельство № DGU 00445. 09.08.2001.
- 52. Нигматова Ф.У., Сиддиков И.Х., Исмаилова Р.М., Докшина Е.П, Огородникова Н.Н. Комбинаторикани куллаб табиий теридан тикиладиган кийимларни окилона бичиш учун ЭХМ дастури// ЎзР. Интеллектуал мулк агентлиги. Гувохнома № DGU. 00808. 29.06.2004.
- 53. Нигматова Ф.У., Исмаилова Р.М., Сиддиков И.Х.. Композиция пропитывающего грунта для отделки натуральных кож// Агенство по интеллектуальной собственности РУз. Патент на изобретение. № IAP 03747. 19.11.2004.
- 54. Кожа для одежды и головных уборов/ Нигматова Ф.У., Ахмедов Б.Б., Алимова Х.А., Абдуллина Ф.Д. //TSh 64-0207245-002: 2004.-16c.
- 55. Полуфабрикат кожевенный хромированный «WET-BLUE» из шкур крупного рогатого скота/ Нигматова Ф.У., Ахмедов Б.Б., Алимова Х.А., Абдуллина Ф.Ж. // TSh 64- 0207245 003: 2004.-11c.
- 56. Нигматова Ф.У., Сиддиков И.Х., Балтабаева М.Д., Мусаханов А.А.. Чарм материалларига лекалаларни оптимал жойлаштиришнинг автоматлаштирилган тренажери// ЎзР. Интеллектуал мулк агентлиги. Гувохнома № DGU 01017. 24.11.2005 г.
- 57. Нигматова Ф.У., Сиддиков И.Х., Исмаилова Р.М., Балтабаева М.Д.. ЭХМ учун программа «Комбинаторика усули ёрдамида табиий чармдан кийим моделлари эскизларини автоматлаштирилган тарзда яратиш»// ЎзР Интеллектуал мулк агентлиги. Гувохнома № DGU 01078. 29.03.2006й.
- 58. Набижонова Н.Н., Нигматова Ф.У. Женский костюм из хлопко-шелкового трикотажа// Агенство по интеллектуальной собственности РУз. Патент на промышленный образец № SAP 00702. 24.01.2008.
- 59. Нигматова Ф.У., Сиддиков И.Х., Балтабаева М.Д., Мусаханов А.А. Турли матолардан кийимларни тайёрлаш технологик жараёнини автоматлаштирилган тарзда лойихалаш// ЎзР. Интеллектуал мулк агентлиги. Гувохнома №DGU 01399. 29.10.2007 й.
- 60. Нигматова Ф.У., Исаева И.А., Тухтаева З.Б., Мусаханов А.А. Трикотаж буюмларини автоматик моделлаштириш// ЎзР. Интеллектуал мулк агентлиги. Гувохнома № DGU 01400. 29.10.2007.
- 61. Нигматова Ф.У., Сиддиков И.Х., Шомансурова М.Ш., Тухтаева З.Б., Мусаханов А.А., Касимова А.Б. "САПР Либос (Маркетинг @ Дизайн"// ЎзР Интеллектуал мулк агентлиги. Гувохнома № DGU 01570, 02.06.2008.
- 62. Нигматова Ф.У., Алимова Х.А., Шомансурова М.Ш., Сиддиков И.Х., Мусаханов А.А., Набиджанова Н.Н. Структура базы данных конструктор-ской и технологической подготовки производства швейных изделий из различных материалов в условиях автоматизированного проектирования// Агенство по интеллектуальной собственности РУз. Свидетельство № ВGU 00233. 21.12.2010 г.
- 63. Нигматова Ф.У., Шомансурова М., Саид-Аминова А., Мусаханов А.А. Подсистема технологической подготовки швейного производства. Разделение

- труда// Агенство по интеллектуальной собственности РУз. Свидетельство № DGU 02510. 25.04.2012 г.
- 64. Шомансурова М., Нигматова Ф.У., Саид-Аминова А., Муйдинов М.К. Система электронного документооборота в швейно-трикотажных предприятиях// Агенство по интеллектуальной собственности РУз. № DGU 02617. 2012г.

II бўлим (II часть; II part)

- 65. Абдукаримова М.А., Нигматова Ф.У., Неъматов А. Исходные предпосылки создания информационных систем маркетинговых исследований для проектирования рационального ассортимента одежды//«Актуальные проблемы подготовки кадров XXI века». Материалы межд. науч. конф.: Бишкек, 1999. С. 220-222.
- 66. Нигматова Ф.У., Абдукаримова М.А., Чурсина В.А. Принципы проектирования одежды для деловых женщин //«Новое в технике и технологии текстильной и легкой промышленности». Сбор. докл. межд. науч.конф.: Витебск, 2000.С. 380-382.
- 67. Нигматова Ф.У., Абдукаримова М.А. Новый подход к прогнозированию рациональных ассортимента одежды //"Жараён-2000": Материалы Республиканской научно-практ. конфер.- Бухоро, 2000. С.63-69.
- 68. Исмаилова Р.М., Нигматова Ф.У., Мирзаев Н.Б. Особенности проектирования одежды из натуральной кожи// «Пахта тозалаш, тукимачилик ва енгил саноат истикболлари». Материалы Респ. науч. практ. конфер. : ТИТЛП, 2001.- С.146.
- 69. Нигматова Ф.У., Исмаилова Р.М. Разработка полимерной композиции для улучшения свойств кожи //«Молодые ученые- развитию текстильной и легкой промышленности» («Поиск-2001»). Межвузов. науч.тех. конф., Россия, Иваново, 2001. С.273-274.
- 70. Нигматова Ф.У., Исмаилова Р.М., Абдуллина Ф.Ж. Разработка требований к кожматериалам для изготовления верхней одежды //«Ёш олимларнинг пахта тозалаш, тукимачилик, енгил ва матбаа саноатларининг ривожига кушган хиссалари», Тез. докл. Респ. научно-практ. конф. Ташкент, 2002. С.64.
- 71. Исмоилова Р.М., Максумова А.С., Нигматова Ф.У., Давлатов Р.М., Исмоилов Р.И.//«Состояние и перспективы органической химии в республике Казахстан» : Труды Междунар.конфер.- Алматы-Шымкент, 2002. С.158-162.
- 72. Исмаилова Р.М., Нигматова Ф.У., Максумова А.С., Исматуллаева М.Г. Применение водорастворимой полимерной композиции на основе стереорегулярной поличетвертичной соли N,N-диметиламиноэтилметак-рилата с аллилбромидом для пропитки кож //«Композиционные материалы и их применение». Материалы науч.прак. конф.: Ташкент, 2002.- С. 5-7.
- 73. Нигматова Ф.У. Абдукаримова М.А. Дизайн-концепция проектирова-ния рационального ассортимента одежды //«Роль предметов личного потребления в формировании среды жизнедеятельности человека». Материалы междун. науч. конф.: Москва, 2002. С. 92-94.

- 74. Нигматова Ф.У., Лутфуллаев Р.А., Абдукаримова М.А. К вопросу использования алгоритмов искусственного интеллекта для сегментации потребительского поведения //Сборник трудов РосЗИТЛП.- Ростов на Дону, 2003.- Т.8. С.36-38.
- 75. Исмаилова Р.М., Нигматова Ф.У. Математическая обработка результатов полимеризации мономерной четвертичной соли N,N-диметиламиноэтилметакрилата//Математические методы в технике и технологиях». Сбор.трудов межд. науч. конф.: Кострома, 2004. т.10, С.127-128.
- 76. Нигматова Ф.У. Формирование рационального ассортимента одежды на основе моделирования поведения потребителей //«Математические методы в технике и технологиях -17»: Сборник трудов междун. науч.конф. –Кострома, 2004.- . Том 7.- С.112-115.
- 77. Нигматова Ф.У., Шамухитдинова Л.Ш. Региональные особенности формирования промышленного ассортимента одежды // «Совершенствование процесса проектирования изделий текстильной и легкой промышленности и проблемы подготовки кадров». Материалы науч. практ. конф.: Бухара, 2006.-С.139-143.
- 78. Нигматова Ф.У. Формирование критерия оптимизации промышленного ассортимента одежды //«Мода и дизайн. Современная одежда и аксессуары 2009».: Материалы межд. науч. прак. конф.- Ростовский технологический институт сервиса и туризма, 2009.- C112-116..
- 79. Nigmatova F.U., Alimova H.A., Siddikov I.H. Consumers segmentation on the basis of methods of artificial intelligence //WCIS- 2010. Sixth World Conference on Intelligent Systems for industrial Automation: Tashkent, Uzbekistan, November, 25-27, 2010.-p. 253-256.