МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ УЗБЕКИСТАНА имени МИРЗО УЛУГБЕКА

На правах рукописи УДК 547.735'854.218.07:542.924

БОЗОРОВ ХУРШЕД АБДУЛЛОЕВИЧ

РЕАКЦИИ ЭЛЕКТРОФИЛЬНОГО ЗАМЕЩЕНИЯ И КОНДЕНСАЦИИ 5,6-ДИЗАМЕЩЕННЫХ-2,3-ПОЛИМЕТИЛЕН-3,4-ДИГИДРОТИЕНО[2,3-d]ПИРИМИДИН-4-ОНОВ

02.00.03-Органическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Ташкент-2011

растительных веществ име Республики Узбекистан	ни академика С.Ю. Юнусова Академии Наук
Научный руководитель:	доктор химических наук, профессор Шахидоятов Хуснутдин Мухитович
Официальные оппоненты:	доктор химических наук Абдугафуров Ибрагимджан Азизович
	кандидат химических наук, доцент Тожимухамедов Хабибулла Сайфуллаевич
Ведущая организация:	Институт биоорганической химии АН РУз
Объединенного специализир университете Узбекистана Ташкент, Вузгородок, химич	2011 года в часов на заседании ованного совета Д 067.02.09. при Национальном имени Мирзо Улугбека по адресу: 100174, г. еский факультет, аудитория 225.

Работа выполнена в отделе органического синтеза Института химии

Тел: (998-71) 227-12-24, Факс: (998-71) 246-53-21, 246-02-24.

E-mail: khurshed-m@mail.ru

диссертацией можно ознакомиться в библиотеке Национального университета Узбекистана имени Мирзо Улугбека.

Автореферат разослан « » _____2011 г.

Ученый секретарь Объединенного специализированного совета доктор химических наук, профессор

ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИИ

Актуальность работы. Соединения, содержащие пиримидиновое кольцо, входят в состав ДНК, РНК и других нуклеотидов, являются основой многих природных веществ растительного, животного происхождения. Среди них выявлены гербициды, фунгициды, бактерициды и др.

Производные пиримидин-4-она интересны и с теоретической точки зрения, поскольку в их молекуле имеется несколько реакционных центров, такие как атомы азота в положениях 1 и 3, карбонильная группа у С-4, атомы углерода в пиримидиновом кольце и боковой цепи. Наличие их способствует проявлению двойственной или множественной реакционной способности в реакциях электрофильного Поэтому изучение замещения. влияния электрофильных реагентов, конденсированного с пиримидиновым кольцом и аннелированного полиметиленовой цепочки c тиофеновым циклоалкенового кольца, растворителя и продолжительности реакции 5,6дизамещенных-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов поиск биологически активных веществ среди синтезированных соединений является актуальной задачей.

Степень изученности проблемы. В литературе достаточно хорошо изучены химические превращения бициклических тиенопиримидинов. Однако, реакции три-, тетрациклических тиено[2,3-d]пиримидин-4-онов, содержащих полиметиленовые цепочки, почти не исследованы. Так, до настоящего времени нет данных по взаимодействию 5,6-дизамещенных-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с альдегидами, хлорангидридами кислот, бромом, нитрующей смесью, не исследованы таутомерные формы образующихся Е- или Z-изомеров, возможность образования моно-, бисацилпроизводных при ацилировании, общие и отличительные стороны их реакции с бензоаналогами. Решению перечисленных вопросов и посвящена данная диссертационная работа.

Связь диссертационной работы с тематическими планами НИР.

Диссертационная работа выполнена в отделе органического синтеза Института химии растительных веществ им. акад. С. Ю. Юнусова АН РУз и является частью фундаментальной работы по программе ФА-Ф3-Т047: «Теоретические основы создания нового метода образования углерод - углеродной связи в ряду алкалоидов и их синтетических аналогов».

Цель исследования. Изучение конденсации 5,6-диметил-, три-, тетра-, пентаметилен-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с альдегидами бензольного ряда, фурфуролом, ацилирование хлорангидридами кислот, взаимодействие с бромом и нитрующей смесью, выявление факторов (структуры субстрата, природы заместителя в альдегидах, растворителя, соотношения реагентов, температуры и продолжительности реакции), влияющих на процесс и поиск биологически активных веществ среди синтезированных соединений.

Задачи исследования:

•усовершенствование методов синтеза 5,6-дизамещенных-2,3полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов;

- •изучение реакции 5,6-диметил-, три-, тетра-, пентаметилен-2,3полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с альдегидами бензольного ряда и фурфуролом в щелочной или кислой средах;
- •выявление влияния соотношения реагентов, температуры, продолжительности реакции 5,6-диметил-, три-, тетра-, пентаметилен-2,3-три-, тетра-, пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с бензоилхлоридом;
- •исследование реакции 5,6-дизамещенных-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с нитрующей смесью, определение факторов (соотношение реагентов, продолжительности и температуры реакции), влияющих на направление реакции и выход продуктов, сравнение полученных данных с таковыми для бициклических 2-замещенных тиено[2,3-d]пиримидин-4-онов;
- •изучение взаимодействия брома с 5,6-диметил-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онами и анализ полученных результатов в сравнении с данными для их бензоаналогов, выяснение особенностей и отличительных сторон;
 - •изучение биологической активности синтезированных соединений.

Объект и предмет исследования. В качестве объекта исследований служили 2-амино-3-этоксикарбонил-4,5-диметил-, три-, тетра-, пентаметилентиофены, 5,6-диметил-, три-, тетра-, пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-оны.

Предметом исследования являются α-арилиден(фурфурилиден-2')- или α-(арил-, гидрокси)метилпроизводные, полученные конденсацией 5,6-диметил-, пентаметилен-2,3-полиметилен-3,4-дигидротиено[2,3три-, тетра-, d]пиримидин-4-онов с ароматическими альдегидами, продукты бромирования и α-бензоилоксибензилиденпроизводные, образующиеся при ацилировании бензоилхлоридом, 5-карбокси-6-метил-2,3-три-, тетраметилен-3,4дигидротиено[2,3-d]пиримидин-4-оны, полученные при взаимодействии 5,6диметил-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов нитрующей смесью.

Методы исследования. Тонкий органический синтез, ИК-, 1 Н ЯМР, 13 С ЯМР-спектроскопия, масс-спектрометрия, рентгеноструктурный анализ (РСА), квантово-химические расчеты Hyper chem. 7.01 (АМ1), тонкослойная хроматография (ТСХ).

Гипотеза исследования. Предполагается изучение реакций 5.6дизамещенных-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов электрофильными реагентами (ароматические альдегиды, бензоилхлорид, бром и нитрующая смесь) для получения продуктов по α-метиленовой группе, атому азота N-1 и метильным группам в положении 5 и (или) 6. Намечается α-арилиден-, α-(арил-, гидрокси)метил-. осуществить синтез бензоилоксибензилиденпроизводных, а также бромных производных продуктов электрофильного ипсо-замещения (нитрования) или окисления. Будет проведен поиск биологически активных соединений.

Основные положения, выносимые на защиту:

- •усовершенствованные методы синтеза 5,6-дизамещенных-2,3полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов и результаты их реакций с альдегидами бензольного ряда и фурфуролом;
- •продукты конденсации 5,6-дизамещенных-2,3-полиметилен-3,4дигидротиено[2,3-d]пиримидин-4-онов с 4-нитробензальдегидом;
- •реакции 5,6-дизамещенных-2,3-триметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с бензоилхлоридом в отсутствии катализатора и в присутствии триэтиламина, приводящие к α-бензоилоксибензилиденпроизводным;
- •продукты, полученные при взаимодействии 5,6-диметил-2,3полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с бромом: пербромиды, гидробромиды;
- •данные, полученные при взаимодействии 5,6-диметил-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с нитрующей смесью;
- •результаты исследования структуры новых соединений современными физико-химическими методами анализа;
 - •результаты биологических испытаний синтезированных соединений.

Научная новизна:

- •проведены систематические исследования реакции 5,6-диметил-, три-, тетра-, пентаметилен-2,3-три-, тетра-, пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с альдегидами, бензоилхлоридом, бромом, нитрующей смесью. Выявлены основные закономерности процессов;
- •взаимодействием 5,6-дизамещенных-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с альдегидами бензольного ряда и фурфуролом, в зависимости от природы заместителя в ароматическом кольце альдегида впервые получены α -арилиден- или α -(арил-, гидрокси)метилпроизводные их;
- •показано, что выходы продуктов реакции 5,6-дизамещенных-2,3-три-, тетра-, пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с альдегидами бензольного ряда и бензоилхлоридом снижается с увеличением количества метиленовых групп в них. Выявлено, что 2,3-пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-он не вступает в данные реакции;
- •ацилированием 5,6-диметил-, три-, тетра-, пентаметилен-2,3-триметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов бензоилхлоридом получены исключительно α -бензоилоксибензилиденпроизводные;
- •взаимодействием 5,6-диметил-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с бромом синтезированы соответствующие пербромиды, изучены их превращения;
- •показано, что при взаимодействии с нитрующей смесью метильная группа у С-5 5,6-диметил-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов избирательно окисляется с образованием 5-карбокси-6-метил-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов новых потенциальных синтонов.

Научная и практическая значимость результатов исследования.

Усовершенствован метод получения 2-амино-3-этоксикарбонил-4,5-полиметилентиофенов, являющихся исходным сырьем для синтеза три- и тетрациклических тиено[2,3-d]пиримидин-4-онов.

Разработан способ синтеза α -арилиден- или α -(арил-, гидрокси)метил-, α -бензоилоксибензилиден-5,6-дизамещенных-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов, 5-карбокси-6-метил-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов конденсацией с альдегидами, бензоилированием и взаимодействием с нитрующей смесью соответствующих субстратов. Синтезировано 73 соединений, из которых 57 являются новыми. Среди них выявлены соединения с высокой цитотоксической активностью.

Реализация результатов. Полученные результаты могут быть применены к другим аналогичным гетероциклическим соединениям. Конденсация с ароматическими альдегидами может служить в будущем для получения соединений с асимметрическим атомом углерода. Впервые синтезированные 5-карбокси-6-метил-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-оны являются важными синтонами и могут быть использованы для получения новых биологически активных соединений. Выявленные вещества с цитотоксической активностью в перспективе после всестороннего изучения их свойств могут являться основой для получения противораковых препаратов.

работы: основные результаты диссертационной работы Апробация международных И республиканских конференциях симпозиумах: «Актуальные вопросы образования, науки и производства в фармации» (Ташкент, 2008), «Актуальные проблемы химии природных соединений» (Ташкент, 2009, 2010), «8th International Symposium on the Chemistry of Natural Compounds» (Turkey, 2009), «Химия и медицина, Орхимед-2009» (Уфа, 2009), «Кимёнинг долзарб муаммолари» (Самарканд, 2009), «Биоорганик кимё муаммолари» (Наманган, 2009), «Current issues of Natural Products Chemistry and Biotechnology» (Novosibirsk, 2010), «Химия и медицина» (Уфа, 2010), «Аналитик кимёнинг долзарб муаммолари» (Термиз, 2010), «Разработка лекарственных и физиологически активных соединений на основе природных веществ» (Санкт-Петербург, 2010), «Фаннинг долзарб муаммолари ёш олимлар нигохида» (Тошкент, 2010).

Опубликованность результатов. Основные результаты диссертации опубликованы в 17 научных работах, из них 3 статьи в республиканских и зарубежных изданиях, 14 тезисов докладов в республиканских и международных конференциях и симпозиумах.

Структура и объём диссертации. Диссертация состоит из введения, обзора литературы (глава 1), обсуждения полученных результатов (глава 2), экспериментальной части (глава 3), выводов, списка цитированной литературы, содержащего 142 отечественных и зарубежных источников и приложения. Работа изложена на 120 страницах компьютерного текста, содержит 15 таблиц и 35 рисунков.

Автор выражает искреннюю благодарность кандидату химических наук, старшему научному сотруднику Б. Ж. Элмурадову за научное содействие при выполнении диссертационной работы.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обоснована актуальность задачи и проблемы, сформулированы цели и задачи диссертационной работы, изложены основные положения, выносимые на защиту, указаны научная новизна и практическая ценность полученных результатов.

В первой главе приведен литературный обзор, посвященный достижениям по синтезу, химическим превращениям и биологической активности тиено[2,3-d]пиримидин-4-онов за 15 лет (1995-2010гг).

В главах 2,3 обсуждены полученные результаты, приведены экспериментальная часть и основные выводы.

В качестве объекта научных исследований взяты 5,6-дизамещенные-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-оны (**1-12**), имеющие следующие структуры:

$$H_3C$$
 S
 N
 $(CH_2)n$
 $1, 5, 9$
 $1, n=1; 5, n=2; 9, n=3.$

$$n(H_2C)$$
 S
 N
 $(CH_2)m$
 $2-4, 6-8, 10-12$

2, n=m=1; **3,** n=2, m=1; **4,** n=3, m=1; **6,** n=1, m=2; **7,** n=2, m=2; **8,** n=3, m=2; **10,** n=1, m=3; **11,** n=2, m=3; **12,** n=m=3.

Конденсация 5,6-диметил-, три-, тетра-, пентаметилен-2,3-три-, тетра-, пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с альдегидами бензольного ряда и фурфуролом

Известно, что трициклические хиназолиновые алкалоиды 2,3-три-, тетраметилен-3,4-дигидрохиназолин-4-оны, их замещенные – бензоаналоги изучаемых нами тиено[2,3-d]пиримидин-4-онов, реагируют с ароматическими и гетероциклическими альдегидами. Реакция идет В α-положение зависимости от условий ее и природы заместителей в бензольном кольце альдегидов приводит к α-арилиден- или α-(арил-, гидрокси)метилпроизводным. Ацилирование их хлорангидридами кислот дает соответствующие α-ароил- или α-ароилоксиарилиденхиназолин-4-оны. Мы изучили взаимодействие 5,6дизамещенных-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов (1-4) с альдегидами. В качестве альдегидов использовали бензальдегид (13a), 4диметиламино- (136), 3,4-диметокси- (13B), 3,4-метилендиокси- (13Γ) , 4фурфурол (13е). Реакции нитробензальдегиды (13д) и использованием эквимолярных количеств 1-4: 13а-е в спиртовом растворе едкого натра при кипячении в течение 7-8 часов. В результате синтезированы соответствующие α-арилиден(фурфурилиден-2')-5.6-диметил-, три-, тетра-, пентаметилен-2,3-триметилен-3,4-дигидротиено[2,3-d]пиримидин-4-оны (**14-22**, **25-29**, **31-35**). Выходы составляют 61-96% (табл.1):

1, 14-18, R=R₁=CH₃; **2, 19-22,** R+R₁=(CH₂)₃; **3, 25-28,** R+ R₁=(CH₂)₄; **4, 31-35,** R+R₁=(CH₂)₅

14, **19**, **25**, **31** R₂=R₃=H; **15**, **20**, **26**, **32** R₂=H, R₃=N(CH₃)₂; **16**, **21**, **27**, **33** R₂= R₃=OCH₃; **17**, **22**, **28**, **34** R₂+R₃=OCH₂O

Необходимо отметить, что в случае 4-нитробензальдегида были получены α -(4'-нитрофенил-, гидрокси)метил-5,6-три-, тетраметилен-3,4-дигидротиено [2,3-d]пиримидин-4-оны (**24**, **30**) с умеренными выходами (табл.1):

Протекание реакции в данном направлении с образованием продуктов **24,30** объясняется влиянием электроноакцепторной нитрогруппы, который сильно уменьшает электронную плотность ароматического ядра, в результате этого отщепление воды из **24,30** не происходит.

*Строение синтезированных соединений доказано с помощью ИК-, 1 Н ЯМР-спектроскопии, масс-спектрометрии и подтверждено данными элементного анализа. В ИК-спектре их имеются полосы поглощения карбонильной группы в области 1652-1670 см $^{-1}$, $\nu_{C=N}$ - 1546-1596 см $^{-1}$, ν_{C-N} - 1466-1488 см $^{-1}$.

Протоны =CHAr соединений **15**,**16** наблюдаются в виде нерасщепленных однопротонных триплетов. Протоны γ -CH₂ группы соединений **14-18** сдвигаются в относительно слабую область (~4.20 м.д.), метильные протоны (5-CH₃ и 6-CH₃) **15**,**16**,**18** проявляются в области 2.06-2.11 м.д., в то время как они не меняются для **14**,**18**. Рассмотрение ¹Н ЯМР-спектра соединения **24** четко показывает важность химического сдвига протонов в алифатической части молекулы. В этом соединении диастереоизомеры могут отличаться друг от друга. Следует отметить, что в его спектре два протона β -CH₂ группы дают отдельные однопротонные (1H) мультиплеты в области 1.77-1.86 м.д. (β -CH₂-а) и 2.06-2.14 м.д. (β -CH₂-б). Протоны γ -CH₂ образуют отдельные мультиплеты в области 3.78-3.85 м.д. (γ -CH₂-а) и 3.93-4.0 м.д. (γ -CH₂-б).

^{*}Автор благодарит сотрудников лаборатории «Физические методы исследования» под руководством в.н.с., к.х.н. Абдуллаева Н.Д. за оказанную помощь при изучении спектральных характеристик синтезированных соединений.

Таблица 1 Выходы и некоторые физико-химические свойства соединений 14-35

Соединение	Брутто-формула	$*\mathbf{R_f}$	Т.пл., °С	Выход, %
14	$C_{18}H_{16}N_2OS$	0.87 (Б)	225-227	69
15	$C_{20}H_{21}N_3OS$	0.75 (Б)	260-261	65
16	$C_{20}H_{20}N_2O_3S$	0.59 (Б)	249-250	64
17	$C_{19}H_{16}N_2O_3S$	0.81 (Б)	233-235	68
18	$C_{16}H_{14}N_2O_2S$	0.67 (Б)	264-265	89
19	$C_{19}H_{16}N_2OS$	0.81 (Б)	250-251	72
20	$C_{21}H_{21}N_3OS$	0.84 (A)	274-275	71
21	$C_{21}H_{20}N_2O_3S$	0.68 (Б)	242-244	64
22	$C_{20}H_{16}N_2O_3S$	0.83 (Б)	260-262	65
23	$C_{17}H_{14}N_2O_2S$	0.83 (A)	242-243	93
24	$C_{19}H_{17}N_3O_4S$	0.79 (Б)	221-223	45
25	$C_{20}H_{18}N_2OS$	0.87 (Б)	238-240	79
26	$C_{22}H_{23}N_3OS$	0.79 (Б)	264-266	68
27	$C_{22}H_{22}N_2O_3S$	0.80 (Б)	253-255	72
28	$C_{21}H_{18}N_2O_3S$	0.89 (Б)	278-280	66
29	$C_{18}H_{16}N_2O_2S$	0.77 (Б)	236-238	96
30	$C_{20}H_{19}N_3O_4S$	0.52 (Б)	210-212	48
31	$C_{21}H_{20}N_2OS$	0.87 (Б)	233-235	61
32	$C_{23}H_{25}N_3OS$	0.90 (Б)	263-265	71
33	$C_{23}H_{24}N_2O_3S$	0.86 (Б)	230-232	78
34	$C_{22}H_{20}N_2O_3S$	0.83 (Б)	254-255	69
35	$C_{19}H_{18}N_2O_2S$	0.88 (Б)	241-242	90

^{*}Система для ТСХ - бензол : метанол-3:1 (A), бензол : метанол-5:1(Б).

Находящийся у атома углерод α -<u>CH</u>- протон дает однопротонный т.д. (триплет дублетов) при 3.63 м.д., сигнал другого атома водорода (HO)-C-(<u>H</u>) также образует однопротонный дд (дублет дублетов) при 5.4 м.д., протон гидроксильной группы проявляется в виде однопротонного дублета при 5.91 м.д. Эти результаты однозначно доказывают структуру **24**. ¹H ЯМР-спектр соединения **30** похож на спектр соединения **24**. Для окончательного доказательства структур соединений **14-35** был проведен РСА соединений **19** (рис.1) и **30** (рис.2).

Пространственное строение α-бензилиден-5,6-триметилен- (19) и α-(4'нитрофенил-, гидрокси)метил-5,6-тетраметилен-2,3-триметилен-3,4-дигидротиено[2,3d]пиримидин-4-онов (30).

Проведение реакции 5,6-диметил-(5), три-(6), тетра-(7), пентаметилен-2,3-тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов (8) с альдегидами **13а-г,е** показало резкое снижение выходов целевых продуктов. Поэтому мы

осуществили данное взаимодействие, используя н-пропиловый спирт вместо этанола. Реакция проведена нагреванием эквимолярных количеств реагентов при 97^{0} С в течение 7-8 часов. В результате были получены соответствующие α -арилиден(фурфурилиден-2')-5,6-диметил-, три-, тетра-, пентаметилен-2,3-тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-оны (**36-50**, **52-56**) с 55-90%-ными выходами (табл.2):

5, 36-40, R=R₁=CH₃; **6, 41-45,** R+R₁=(CH₂)₃; **36, 41, 46, 52** R₂=R₃=H; **37, 42, 47, 53** R₂=H, R₃=N(CH₃)₂; **7, 46-50,** R+R₁=(CH₂)₄; **8, 52-56,** R+R₁=(CH₂)₅ **38, 43, 48, 54** R₂= R₃=OCH₃; **39, 44, 49, 55** R₂+R₃=OCH₂O

Осуществление конденсации исключительно по α -метиленовой группе наблюдается при различных соотношениях **5** : ароматический альдегид (1:2, 1:3, 1:4) с разной продолжительностью реакции. Во всех случаях образуются арилиденпроизводные **36-40**.

Конденсация соединения **7** с 4-нитробензальдегидом, как и в случае соединения **3**, приводит к образованию α -(4'-нитрофенил-, гидрокси)метил-5,6-тетраметилен-2,3-тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-она (**51**) с выходом 55% (табл.2):

В ИК-спектрах соединений **36-56** наблюдаются полосы поглощения в области 2911-2952 см $^{-1}$ ν_{CH3} и ν_{CH2} -групп, карбонильной группы $\nu_{\text{C=O}}$ - 1651-1678 см $^{-1}$, $\nu_{\text{C=N}}$ - 1530-1591 см $^{-1}$, $\nu_{\text{C-N}}$ - 1469-1494 см $^{-1}$.

В их спектре 1 Н ЯМР отсутствует химический сдвиг протонов α -CH $_2$ группы исходного соединения **5**, четырехпротонный мультиплет (β -, γ -CH $_2$) в области 1.83-1.92 м.д. превращается в двухпротонный мультиплет (γ -CH $_2$) с XC 1.91-1.96 м.д. Протоны β -CH $_2$ -группы образуют дублет триплетов, δ -CH $_2$ -группы — триплет в области 3.95-4.07 м.д. Олефиновые протоны =CHPh, (=CHAr, =CHHet) проявляются в виде нерасщепленного однопротонного триплета ($^{\rm m}$ J=1.7-2.2 Γ ц). Для соединений **46**, **47** эти протоны наблюдаются в виде однопротонного синглета.

Анализ ¹Н ЯМР спектров показывают, что конденсация идет только по α-метиленовой группе. Другие метиленовые группы, а также метильные группы в положениях 5 и 6 соединения **5** не участвуют в реакции.

Таблица 2 Выходы и некоторые физико-химические свойства соединений 36-56

Соединение	Брутто-формула	$\mathbf{R_f}$	Т.пл., °С	Выход, %
36	$C_{19}H_{18}N_2OS$	0.88 (Б)	180-182	66
37	$C_{21}H_{23}N_3OS$	0.87 (Б)	201-203	55
38	$C_{21}H_{22}N_2O_3S$	0.83 (Б)	205-207	65
39	$C_{20}H_{18}N_2O_3S$	0.90 (Б)	167-169	60
40	$C_{17}H_{16}N_2O_2S$	0.82 (A)	176-178	84
41	$C_{20}H_{18}N_2OS$	0.80 (A)	196-198	65
42	$C_{22}H_{23}N_3OS$	0.85 (Б)	216-218	58
43	$C_{22}H_{22}N_2O_3S$	0.82 (Б)	204-206	63
44	$C_{21}H_{18}N_2O_3S$	0.81 (Б)	203-205	60
45	$C_{18}H_{16}N_2O_2S$	0.88 (Б)	190-191	81
46	$C_{21}H_{20}N_2OS$	0.90 (Б)	189-190	72
47	$C_{23}H_{25}N_3OS$	0.86 (Б)	198-200	62
48	$C_{23}H_{24}N_2O_3S$	0.84 (Б)	194-196	68
49	$C_{22}H_{20}N_2O_3S$	0.87 (Б)	190-192	70
50	$C_{19}H_{18}N_2O_2S$	0.87 (Б)	210-212	86
51	$C_{21}H_{21}N_3O_4S$	0.68 (Б)	160-162	55
52	$C_{22}H_{22}N_2OS$	0.83 (Б)	188-190	77
53	$C_{24}H_{27}N_3OS$	0.87 (Б)	186-188	71
54	$C_{24}H_{26}N_2O_3S$	0.85 (Б)	167-168	76
55	$C_{23}H_{22}N_2O_3S$	0.84 (Б)	178-180	65
56	$C_{20}H_{20}N_2O_2S$	0.88 (Б)	170-171	90

Протекание реакции по α -метиленовой группе также было окончательно подтверждено PCA на примере α -(фурфурилиден-2')-5,6-диметил-2,3-тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-она (**40**) (рис.3).

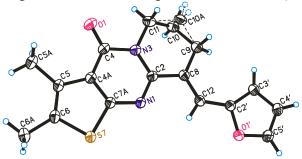


Рис.3. Пространственное строение α-(фурфурилиден-2')-5,6-диметил-2,3-тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-она (40)

Следует отметить, что 5,6-дизамещенные-2,3-пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-оны не вступают в реакцию с альдегидами **13а-е**. Так, попытки провести конденсацию 5,6-диметил-, три-, тетра-, пентаметилен-2,3-пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с вышеуказанными альдегидами в различных условиях: при соотношении **9-12**: **13a-e**: **NaOH** - 1:1:0.1, 1:2:0.1, 1:2:0.5, 1:4:0.1, 1:4:0.5 в спирте, н-пропаноле, н-бутаноле при температуре 78-117 0 C не увенчались успехом.

Таким образом, конденсация 5,6-диметил-, три-, тетра-, пентаметилен-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с альдегидами (**13а-д**) в щелочной и кислой средах идет исключительно по α -CH₂-группе,

образуя α -арилиден(фурфурилиден-2')- **14-23**, **25-29**, **31-50**, **52-56** или α -(арил-, гидрокси)метилпроизводные (**24**, **30**, **51**).

На основании полученных результатов можно предложить следующую схему механизма конденсации соответствующих тиено[2,3-d]пиримидин-4-онов с альдегидами в щелочной среде:

$$\begin{array}{c} R \\ R^{1} \\ S \\ N \\ H \\ H \\ \end{array}$$

$$\begin{array}{c} O \\ OH \\ -H_{2}O \\ R^{1} \\ S \\ N \\ H \\ \end{array}$$

$$\begin{array}{c} O \\ CH_{2})n \\ R^{1} \\ S \\ N \\ H \\ \end{array}$$

$$\begin{array}{c} O \\ CH_{2})n \\ R^{1} \\ S \\ N \\ \end{array}$$

$$\begin{array}{c} O \\ CH_{2})n \\ R^{1} \\ S \\ \end{array}$$

$$\begin{array}{c} O \\ F^{1} \\ S \\ N \\ \end{array}$$

$$\begin{array}{c} O \\ CH_{2})n \\ R^{1} \\ S \\ \end{array}$$

$$\begin{array}{c} O \\ F^{1} \\ \end{array}$$

$$\begin{array}{c} O \\ \\ \end{array}$$

$$\begin{array}{c} O$$

На первой стадии реакции происходит депротонирование водорода активированной N=C-связью метиленовой группы под действием основания. Образующийся при этом карбанион (А) атакует частично положительно заряженный атом углерода карбонильной группы альдегида. В результате присоединения этого аниона к карбонильной группе альдегида образуется новый анион (Б). В дальнейшем происходит присоединение протона к аниону Б и образуются продукты альдольной конденсации - α-(арил-, гидрокси)метилα-арилиден(фурфурилиден-2')-5,6-дизамещенные-2,3-три-, **(B)** тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-оны (Γ) . ароматических альдегидов с сильными электроноакцепторными заместителями 4-нитробензальдегидом) реакция останавливается (например, образования В. Использование альдегидов, содержащих электронодонорные заместители, приводит к отщеплению молекулы воды и образованию аарилиденпроизводных Г. С увеличением количества метиленовых групп в полиметиленовом звене, т.е. при переходе от 2,3-триметиленпроизводных к 2,3тетра- и пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онам, свойств затрудняется образование электронодонорных поскольку возникающий под действием N=С-связи положительный заряд у ауглеродного атома с увеличением количества метиленовых групп уменьшается. Этим объясняется невозможность проведения конденсации соответствующих 2,3-пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов использованными альдегидами.

Взаимодействие 5,6-дизамещенных-2,3-триметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с бензоилхлоридом

С целью сравнения влияния бензольного цикла трициклических хиназолин-4-онов с их тиофеновыми гомологами в реакциях ацилирования, нахождения общности и отличительных сторон, мы изучили ацилирование 5,6-диметил-, три-, тетра-, пентаметилен-2,3-триметилен-3,4-дигидротиено [2,3-d]пиримидин-4-онов (1-4) с бензоилхлоридом. При проведении реакции при

комнатной температуре в отсутствии катализаторов были получены хлориды соответствующих N-бензоил производных (1a-4a):

$$R \longrightarrow N \longrightarrow + C_6H_5COCI \xrightarrow{C_6H_6} R \longrightarrow N \longrightarrow N$$

$$1-4 \longrightarrow 1a-4a \longrightarrow N \longrightarrow N$$

$$1a-4a \longrightarrow N \longrightarrow N$$

$$1a-4a \longrightarrow N$$

$$1a-4a \longrightarrow N$$

1, 1a $R=R^1=CH_3$, 2, 2a $R+R^1=(CH_2)_3$, 3, 3a $R+R^1=(CH_2)_4$, 4, 4a $R+R^1=(CH_2)_5$

Соединения **1-4** реагируют с бензоилхлоридом (БХ) в присутствии триэтиламина в бензольном растворе при температуре 80° C (0.5-7 часов) с образованием α -бензоилоксибензилиден-5,6-дизамещенных-2,3-триметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов (**57-60**) (табл.3):

Реакция проведена при соотношении реагентов $1-4: \mathbf{EX}: (\mathbf{C}_2\mathbf{H}_5)_3\mathbf{N}$ 1:1:1, 1:1.3:1.6, 1:1.5:2, 1:2:1.2, 1:4:2, 2:1:1. Однако во всех случаях были получены соединения образование **57-60**, a промежуточных монобензоилпроизводных 57а-60а не наблюдалось. Протекание реакции с образованием исключительно бис- производных 57-60 объясняется высокой реакционной способностью енольных таутомерных форм 576-606. образующихся из 57а-60а:

Таблица 3 Некоторые физико-химические характеристики αбензоилоксибензилиден- 5,6-диметил-, три-, тетра-, пентаметилен-2,3-

триметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов (57-60)

Соединение	Брутто-формула	$\mathbf{R_f}$	Т.пл., °С	Выход, %
57	$C_{25}H_{20}N_2O_3S$	0.90 (Б)	232-233	34
58	$C_{26}H_{20}N_2O_3S$	0.65 (Б)	204-205	25
59	$C_{27}H_{22}N_2O_3S$	0.43 (Б)	221-222	32
60	$C_{28}H_{24}N_2O_3S$	0.74 (Б)	230-231	24

Относительно низкий выход соединений 57-60 объясняется возвратом исходных соединений.

В ИК-спектре соединений **57-60** имеются полосы поглощения валентных колебаний $\nu_{C=O}$ сложноэфирной группы (=CPh-O-COC₆H₅) в области 1735-1737 см⁻¹, карбонильная группа $\nu_{C=O}$ у C-4 поглощает в области 1656-1668 см⁻¹, полосы поглощения $\nu_{C=N}$ группы проявляются в области 1529-1550 см⁻¹, а ν_{C-N} в области 1468-1478 см⁻¹. В ¹Н ЯМР-спектрах **57-60** отсутствуют ХС протонов α -CH₂-групп исходных **1-4** (3.07-3.10 м.д.), метиленовые протоны β -CH₂ –групп проявляются в виде триплета (вместо двухпротонного мультиплета в исходных **1-4**) при 3.28-3.29 м.д. Эти данные показывают, что реакция идет только по α -метиленовой группе с образованием соединений **57-60**.

Образование хлоридов N-бензоилпроизводных (1а-4а) при взаимодействии **1-4** (рассмотрим на примере **1**) с бензоилхлоридом показывает, что первая стадия реакции идет аналогично трициклическим хиназолин-4-онам с образованием соли **1a**. На следующей стадии происходит отщепление HCl под действием (C_2H_5)₃N и образование новой связи у α -углеродного атома, приводя к енамиду **Б**. Схему механизма реакции ацилирования можно изобразить следующим образом:

d]пиримидин-4-она (Д). При разложении реакционной смеси водой он превращается в соединение **57**.

Взаимодействие 5,6-диметил-2,3-полиметилен-3,4-дигидротиено[2,3-d] пиримидин-4-онов с бромом

Реакция 5,6-диметил-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов (1,5,9) с бромом проведена в хлороформе. При этом получены пербромиды соответствующих тиено[2,3-d]пиримидин-4-онов (61-63):

1, 61, 64 n=1; **5, 62, 65** n=2; **9, 63, 66** n=3

Пербромиды **61-63** – кристаллические вещества темно-красного цвета. При хранении при комнатной температуре они теряют молекулу брома и превращаются в гидробромиды соответствующих тиено[2,3-d]пиримидин-4-онов (**64-66**) (табл.4). Последние образуются также при обработке **61-63** ацетоном.

Таблица 4 Некоторые физико-химические характеристики пербромидов (61-63) и гидробромидов (64-66) 5,6-диметил-2,3-три, тетра-, пентаметилен-3,4дигидротиено[2,3-d]пиримидин-4-онов

Соединение	Брутто-формула	Т.пл., °С	Выход, %
61	$C_{11}H_{13}Br_3N_2OS$	96-98	78
62	$C_{12}H_{15}Br_3N_2OS$	88-90	78
63	$C_{13}H_{17}Br_3N_2OS$	134-135	82
64	$C_{11}H_{13}BrN_2OS$	213-215	99
65	$C_{12}H_{15}BrN_2OS$	198-200	98
66	$C_{13}H_{17}BrN_2OS$	183-185	98

Сравнение ИК-спектров соединений **61-66** с таковыми исходных веществ (**1,5,9**) показывает, что частоты $v_{C=N}$ колебаний пербромидов и гидробромидов проявляются в области 1601-1621 см⁻¹ (1557-1575 см⁻¹ для **1,5,9**). Такая разница имеется также для $v_{C=O}$, v_{C-N} , v_{CH3} , v_{CH2} групп. Например, $v_{C=O}$ соединений **1,5,9** наблюдается в области 1664-1665 см⁻¹ (для **61-66** - 1679-1716 см⁻¹). Эти данные показывают на существенное влияние трибромид (Br₃⁻) или бромид (Br⁻) ионов на частоты колебаний других функциональных групп. Данные ¹Н ЯМР-спектров также доказывают структуру **61-66**.

Реакция 5,6-диметил-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d] пиримидин-4-онов с нитрующей смесью

Известно, что 2-оксо(тиоксо)-5,6-диметилтиено[2,3-d]пиримидин-4-оны под действием нитрующей смеси подвергаются электрофильному ипсо-

замещению одной метильной или обоих метильных групп. Мы показали, что в отличие от этого трициклические тиено[2,3-d]пиримидин-4-оны (1,5) в аналогичных условиях не вступают в эту реакцию, а происходит окисление метильной группы у С-5 до карбоксильной группы с образованием 5-карбокси-6-метил-2,3-три- и тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов (67,68). Соотношение 1,5: нитрующая смесь не оказывает существенного влияния на процесс, т.к. использование соотношений 1:1, 1:2, 1:4 дает одинаковые результаты (табл. 5):

H₃C
$$N$$
 $(CH2)n$ N $(CH2)n$ N $(CH2)n$ N $(CH2)n$ N $(CH2)n$ N $(CH2)n$ N $(CH2)n$ $(CH2)n$

В ИК-спектрах соединений **67, 68** появляются новые полосы поглощения при 3387 см⁻¹ и 3455 см⁻¹ (ν_{O-H}) соответственно. Карбонильная группа у С-5 образует полосы поглощения в области 1698-1728 см⁻¹, $\nu_{C4=O}$ 1670-1682 см⁻¹. Отметим, что $\nu_{C4=O}$ для исходных соединений наблюдается при 1664 см⁻¹ и 1665 см⁻¹.

Таблица 5 Выходы и некоторые физико-химические характеристики 5-карбокси-6-метил-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов

Исходное	Соотношение	Продукт	Т.пл., °С	Выход,
соединение	Субстрат: HNO_3	реакции		%
1	1:1	67	163-165	60
1	1:2	67	163-165	66
1	1:4	67	163-165	70
5	1:1	68	87-89	75
5	1:2	68	87-89	81
5	1:4	68	87-89	89

В ¹Н ЯМР-спектре соединения **67** метильная группа у С-6 проявляется в виде трехпротонного синглета (в исходном соединении **1** имеется синглет при 2.30 м.д.). В спектре соединения **67** отсутствует ХС метильных протонов 5-СН₃ при 2.41 м.д. Однопротонный синглет в слабой области (15.13 м.д.) относится к ОН-группе. Спектр ¹³С ЯМР также подтверждает предложенную структуру. В спектре соединения **68** были получены похожие данные. Для окончательного доказательства структуры **67**, **68** проведен РСА соединения **68** (рис.4).

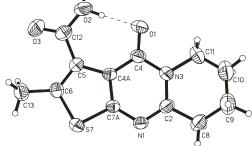


Рис.4. Пространственное строение 5-карбокси-6-метил-2,3-тетраметилен-3,4дигидротиено[2,3-d]пиримидин-4-она (68)

Таким образом, мы показали, что взаимодействие 5,6-диметил-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с нитрующей смесью протекает селективным окислением метильной группы у С-5 до соответствующих карбоновых кислот.

Биологическая активность синтезированных соединений

Цитотоксическая активность синтезированных соединений были изучены в лаборатории «Цитология и биотехнология растений» (руководитель проф. А.Тіеzzi) научно-исследовательского университета Тусции (Италия). В качестве раковых клеток использованы P3X (Mieloma) и Hela (Human Epithelial cervical cancer). Соединения проверены в трех концентрациях (500, 250, 125 µг/мл). Испытание осуществлено с помощью МТТ-теста (3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолий бромид). Опыты показали, что испытанные вещества не оказывают существенного влияния на раковые клетки Hela. Однако, среди них 9 соединений показали среднюю и высокую активность против РЗХ. Соединение под шифром OS-BXA-121 проявляет высокую активность (5.32, 4.03, 28.17%) в трех концентрациях (500, 250, 125 µг/мл) соответственно. Эти показывают, что продолжение исследований данные цитотоксической активности в ряду три-, тетрациклических тиено[2,3d]пиримидин-4-онов является перспективным.

ЗАКЛЮЧЕНИЕ

По результатам исследований сделаны следующие выводы:

- 1. Впервые систематически исследованы реакции 5,6-диметил-, три-, тетра-, пентаметилен-2,3-три-, тетра-, пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с альдегидами, ацилирование бензоилхлоридом, взаимодействие с бромом, нитрующей смесью. Выявлены факторы, влияющие на процесс.
- 2. Изучено взаимодействие 5,6-дизамещенных-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с альдегидами бензольного ряда и фурфуролом, приводящее в зависимости от природы заместителя в ароматическом кольце альдегида либо к α-арилиден(фурфурилиден)-, либо к α-(арил-, гидрокси)метилпроизводным.
- 3. Выявлено, что с увеличением количества метиленовых групп в полиметиленовой цепочке 5,6-дизамещенных-2,3-три-, тетра-, пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов снижается выход продуктов реакции. Показано, что 2,3-пентаметилен-3,4-дигидротиено[2,3-d]пиримидин-4-оны не вступают в реакцию.
- 4. Обнаружено, что ацилирование 5,6-дизамещенных-2,3-триметилен-3,4дигидротиено[2,3-d]пиримидин-4-онов бензоилхлоридом различных соотношениях реагентов, температурных режимах и продолжительности исключительно бис-продуктам реакции приводит К αбензоилоксибензилиденпроизводным; промежуточные при ЭТОМ αбензоилпроизводные не были обнаружены.

- 5. Найдено, что взаимодействие 5,6-диметил-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с бромом идет как и в случае трициклических хиназолин-4-онов по атому N-1.
- В отличие OT 2-оксо-, тиоксо-5,6-диметилтиено[2,3-6. Показано, что d]пиримидин-4-онов, подвергающихся электрофильному ипсо-замещению (нитрованию) одной или обоих метильных групп, 5,6-диметил-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-оны ведут себя аномально при взаимодействии с нитрующей смесью. При этом происходит избирательное окисление метильной группы в положении 5 с образованием новых 5-карбокси-6-метил-2,3-три-, тетраметилен-3,4синтонов дигидротиено[2,3-d]пиримидин-4-онов.
- 7. Среди синтезированных веществ выявлены соединения, обладающие высокой цитотоксической активностью.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

- 1. Бозоров Х.А., Элмурадов Б.Ж., Шахидоятов Х.М. Поиск новых потенциальных фармакологически активных соединений на основе тиофеновых аналогов трициклических хиназолиновых алкалоидов // Актуальные вопросы образования, науки и производства в фармации: Материалы науч.-практ. конф. 10 декабря, 2008. -Ташкент, 2008. -С.379-380.
- 2. Элмурадов Б.Ж., Бозоров Х.А., Шахидоятов Х.М. Конденсация тиофеновых аналогов дезоксивазицинона с ароматическими альдегидами // Актуальные проблемы химии природных соединений: Сб. тез. 18-19 марта, 2009. -Ташкент, 2009. -С.93.
- 3. Bozorov Kh. A,. Elmuradov B.J., Okmanov R.Ya, Tashkhodjaev B., Shakhidoyatov Kh.M. Synthesis and RSA of thiophene analogue of alkaloid 2,3,4,10-tetrahydro-1H-pyrido-[2,1-b]-quinazoline-10-one // 8th International Symposium on the Chemistry of Natural compounds. Yune 15-17, 2009. –Eskisehir, 2009. -P-168.
- 4. Элмурадов Б.Ж., Бозоров Х.А., Махмудов С.А., Шахидоятов Х.М. Новые α-арилиденпроизводные тетрациклических тиенопиримидин-4-онов // Химия и медицина, Орхимед-2009. VII Всероссийская конференция с молодежной научной школой: Тез. докл. 1-5 Июля, 2009. -Уфа, 2009. -С.327.
- 5. Бозоров Х.А., Элмурадов Б.Ж., Шахидоятов Х.М. Конденсация тетрациклицеских тиено[2,3-d]пиримидин-4-онов с фурфуролом // Кимёнинг долзарб муаммолари: Респ. илмий-амалий конф. 6-7 ноябрь, 2009. -Самарканд, 2009. 1-кисм. -Б.53.
- 6. Элмурадов Б.Ж., Бозоров Х.А., Шахидоятов Х.М. Взаимодействие 5,6-пентаметилен-2,3-триметилентиено[2,3-d]пиримидин-4-она с ароматическими альдегидами // Кимёнинг долзарб муаммолари: Респ. илмий-амалий конф. 6-7 ноябрь, 2009. -Самарканд, 2009. 1-кисм. -Б.53-54.
- 7. Бозоров Х.А., Элмурадов Б.Ж., Шахидоятов Х.М. Конденсация 5,6-дизамещенных тиено[2,3-d]пиримидин-4-онов с пипероналом // Биоорганик кимё муаммолари: О.С.Содиков хотирасига бағишланган ёш кимёгарларнинг VI Республика анжумани. 20-21 ноябрь, 2009. -Наманган, 2009. 1-кисм. -Б.101.

- 8. Bozorov Kh.A., Elmuradov B.Zh., Okmanov R.Ya., Tashkhodjaev B., Shakhidoyatov Kh.M. 9-Furfurylidene-2,3-dimethylthieno[2',3':4,5]pyrimidino [1,2-a] pyridin-4-one // Acta Cryst. –Chester, 2010. -E66, o552–o553 (11).
- 9. Shakhidoyatov Kh.M., Elmuradov B.Zh., Abdurazakov A.Sh., Bozorov Kh.A., Turdibaev Zh.E., Nasrullaev A.O. Successes in chemistry of tricyclic quinazoline alkaloids and their analogues // Current issues of natural products chemistry and biotechnology: 2nd Annual Russian-Korean Conference. March 16-18, 2010. Novosibirsk, 2010. -P.4.
- 10. Бозоров Х.А., Элмурадов Б.Ж., Дустмухамедов Т.Т., Шахидоятов Х.М. Взаимодействие 5,6-диметил-2,3-тетраметилентиено[2,3-d]-пиримидин-4-она с ароматическими альдегидами // Химия и Медицина. VIII Всероссийская конференция с международным участием: Тез. докл. 6-8 апреля, 2010. -Уфа, 2010. -С.132.
- 11. Элмурадов Б.Ж., Бозоров Х.А., Абдуразаков А.Ш., Турдибаев Ж.Э., Насруллаев А.О., Махмадиёрова Ч.Э., Шахидоятов Х.М Химический дизайн хиназолиновых алкалоидов и их аналогов // Химия и полная переработка биомассы леса: Симпозиум некоммерческого партнерства институтов РАН «ОрХиМед». 14—18 июня, 2010. -Санкт-Петербург, 2010. -С.346-347.
- 12. Элмурадов Б.Ж., Бозоров Х.А., Шахидоятов Х.М. Синтез новых α-арилиден производных на основе 5,6-триметилентиено[2,3-d]тетрагидропиридо[1,2-а]пиримидин-4-она // Химия и полная переработка биомассы леса: Симпозиум некоммерческого партнерства институтов РАН «ОрХиМед». 14–18 июня, 2010. -Санкт-Петербург, 2010. -С.347-348.
- 13. Бозоров Х.А., Элмурадов Б.Ж., Камолова Д.Н., Умирзаков Б.Ж., Махмудов С.А., Шахидоятов Х.М. Синтез комплексных солей и бромпроизводных тиенопиримидин-4-онов // Аналитик кимёнинг долзарб муаммолари: Академик А. F. Fаниевнинг 80 йиллигига бағишланган ІІІ Респ. илмий-амалий анжумани. 21-23 Апрел, 2010. -Термиз, 2010. -Б.195-196.
- 14. Бозоров Х.А., Элмурадов Б.Ж., Ураков Б.А. Ацилирование тиофеновых аналогов дезоксивазицинона // Актуальные проблемы химии природных соединений: Тез. докл. 12-13 октября, 2010. -Ташкент, 2010. -С.147.
- 15. Бозоров Х.А., Элмурадов Б.Ж., Турдибаев Ж.Э., Абдуразаков А.Ш., Насруллаев А.О., Шахидоятов Х.М. Химические превращения конденсированных бензо и тиенопиримидин-4-онов // Фаннинг долзарб муаммолари ёш олимлар нигохида: Респ. илмий-амалий конф. материаллари. 29-октябрь, 2010. -Ташкент. 2010. -Б. 44.
- 16. Элмурадов Б.Ж., Бозоров Х.А., Шахидоятов Х.М. Тиено[2,3-d] пиримидин-4-оны. 1. Конденсация 2,3-диметил-, и 2,3-три-, 2,3-тетра-, и 2,3-пентаметилен-7,8-дигидропирроло[1,2-а]тиено[2,3-d]пиримидин-4-(6H)-онов с ароматическими альдегидами и фурфуролом // Химия гетероцикл. соед. —Рига, 2010. - \mathbb{N} 11. — \mathbb{C} .1717-1724.
- 17. Бозоров Х.А., Элмурадов Б.Ж., Бобокулов Х.М., Шахидоятов Х.М. О направлении реакции 5,6-диметил-2,3-тетраметилентиено[2,3-d]пиримидин-4-она с альдегидами // Докл. АН РУз. -Ташкент, 2010. №6. -С. 80-84.

Кимё фанлари номзоди илмий даражасига талабгор Бозоров Хуршед Абдуллоевичнинг 02.00.03-Органик кимё ихтисослиги бўйича "5,6-Диалмашган-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онларнинг электрофил алмашиниш ва конденсация реакциялари" мавзусидаги диссертациясининг

РЕЗЮМЕСИ

Таянч сўзлар: три-, тетрациклик тиено[2,3-d]пиримидин-4-онлар, α -арилиден- ва α -(арил-, гидрокси)метилхосилалар, альдегидлар, конденсация, бромлаш, ациллаш, нитроловчи аралашма.

Тадкикот объектлари: 5,6-диалмашган-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онлар, уларнинг альдегидлар билан конденсацияси, ациллаш, бромлаш ва оксидланиш махсулотлари.

Ишнинг мақсади: 5,6-диметил-, три-, тетра-, пентаметилен-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онларнинг бензальдегидлар ва фурфурол, бензоилхлорид, бром ва нитроловчи аралашма билан ўзаро таъсирини ўрганиш, реакциялар боришига таъсир этувчи омилларни аниклаш ва биологик фаол моддалар излаш.

Тадкикот усуллари: нозик органик синтез, ИҚ-, ¹Н ЯМР-, ¹³С ЯМР- спектроскопия, масс-спектрометрия, РТТ, ЮҚХ усуллари.

Олинган натижалар ва уларнинг янгилиги: илк бор 5,6-диалмашган-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онларнинг бензальдегидлар ва фурфурол билан конденсацияси систематик ўрганилган ҳамда α-арилиден- ва α-(арил-, гидрокси)метилмаҳсулотлар ҳосил бўлишига таъсир этувчи омиллар аниқланган. Уларнинг бензоилхлорид билан реакцияси натижасида α-бензоилоксибензилиден ҳосилалар олинган, бром билан ўзаро таъсирида тегишли пербромидлар, улар гидробромидларга олиб келиши топилган. Нитроловчи аралашма таъсирида фақат 5-ҳолатдаги СН₃ гуруҳининг СООН гуруҳига оксидланиши кўрсатилган.

Амалий аҳамияти: 2-амино-3-этоксикарбонил-4,5-полиметилентиофенлар ва три-, тетрациклик тиено[2,3-d]пиримидин-4-онларни олишнинг такомиллаштирилган усули ишлаб чиқилган. Субстратларни альдегидлар билан конденсациялаш, бензоиллаш ва нитроловчи аралашма билан таъсирланишидан α-арилиден- ёки α-(арил-, гидрокси)метил-, α-бензоилоксибензилиден-5,6-диалмашган-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онлар, 5-карбокси-6-метил-2,3-три-, тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онларнинг синтез қилиш усуллари топилган. Синтез қилинган бирикмалар орасида юқори цитотоксик фаолликка эга моддалар борлиги топилган.

Тадбиқ этиш даражаси ва иқтисодий самарадорлиги: альдегидлар, бензоилхлорид, бром, нитроловчи аралашма билан олинган натижаларни бошқа N-, S-сақлаган гетероциклик бирикмаларга қўллаш мумкин. Синтез қилинган бирикмалар орасида юқори цитотоксик фаолликка эга моддалар борлиги аниқланган. Иқтисодий самарадорлиги – ижтимоий.

Қўлланиш соҳаси: органик кимё, тиббиёт.

РЕЗЮМЕ

Бозорова Хуршеда Абдуллоевича тему: "Реакции диссертации на электрофильного 5,6-дизамещенных-2,3замещения И конденсации полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов" соискание на ученой степени кандидата химических наук по специальности 02.00.03 -Органическая химия

Ключевые слова: три-, тетрациклические тиено[2,3-d]пиримидин-4-оны, α -арилиден- и α -(арил-, гидрокси)метилпроизводные, конденсация, альдегиды, бромирование, ацилирование, нитрующая смесь.

Объекты исследования: 5,6-дизамещенные-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-оны, продукты конденсации с альдегидами, продукты ацилирования, бромирования, окисления.

Цель работы: изучение взаимодействия 5,6-диметил-, три-, тетра-, пентаметилен-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с бензальдегидами и фурфуролом, бензоилхлоридом, бромом и нитрующей смесью; выявление факторов, влияющих на протекание реакций; поиск биологически активных веществ.

Методы исследования: тонкий органический синтез, методы ИК-, ¹H ЯМР -, ¹³С ЯМР-спектроскопии, масс-спектрометрии, РСА, ТСХ.

Полученные результаты и их новизна: впервые систематически изучена реакция 5,6-дизамещенных-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов с бензальдегидами и фурфуролом; определены факторы, влияющие на образование α -арилиден или α -(арил-, гидрокси)метилпроизводных. Найдено, что взаимодействие с бензоилхлоридом дает только α -бензоилоксибензилиденпроизводные, а бромом — пербромиды, которые легко превращаются в гидробромиды. Обнаружено, что CH_3 группа в положении 5 при действии нитрующей смеси избирательно окисляется до COOH группы.

Практическая значимость: разработан усовершенствованный метод получения 2-амино-3-этоксикарбонил-4,5-полиметилентиофенов, три- и тетрациклических тиено[2,3-d]пиримидин-4-онов. Разработан способы синтеза α-арилиден- или α-(арил-, гидрокси)метил-, α-бензоилоксибензилиден-5,6-дизамещенных-2,3-полиметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов, 5-карбокси-6-метил-2,3-три-, -тетраметилен-3,4-дигидротиено[2,3-d]пиримидин-4-онов конденсацией с альдегидами, бензоилированием и взаимодействием с нитрующей смесью соответствующих субстратов. Среди синтезированных веществ выявлены соединения, обладающие высокой цитотоксической активностью.

Степень внедрения и экономическая эффективность: полученные результаты с альдегидами, бензоилхлоридом, бромом и нитрующей смесью могут быть использованы для других N, S- гетероциклических соединений. Среди синтезированных веществ выявлены соединения с высокой цитотоксической активностью. Экономическая эффективность — социальная.

Область применения: органическая химия, медицина.

RESUME

Thesis of Bozorov Khurshed Abdulloyevich on the scientific degree competition of the doctor of philosophy in chemistry on speciality 02.00.03 — Organic chemistry subject: "Reactions of electrophilic substitution and condensation of 5,6-disubstituted-2,3-polymethylen-3,4-dihydrothieno[2,3-d]pyrimidine-4-ones"

Key words: tri-, tetracyclic thieno[2,3-d]pyrimidine-4-ones, α -arylidene- and α -(aryl-, hydroxy)methylderivatives, condensation, aldehydes, bromination, acylation, nitrating acid.

Subjects of research: 5,6-disubstituted-2,3-polymethylene-3,4-dihydrothieno[2,3-d]pyrimidin-4-ones, condensation products with aldehydes, products of acylation, bromination and oxidation.

Purpose of work: studying of 5,6-dimethyl-, tri-, tetra-, pentamethylene-2,3-polymethylene-3,4-dihydrothieno[2,3-d]pyrimidine-4-ones interaction with benzaldehydes and furfurol, benzoyl chloride, bromine and nitrating acid; revealing of the factors influencing to passing of reactions; search of biologically active substances.

Methods of research: fine organic synthesis, methods of IR-, ¹H NMR-, ¹³C NMR- spectroscopy, mass-spectrometry, X-ray, TLC.

The results obtained and their novelty: for the first time systematic reactions of 5,6-disubstituted-2,3-polymethylene-3,4-dihydrothieno[2,3-d]pyrimidine-4-ones with benzaldehydes and furfurol were investigated; the factors influencing to formation of α -arylidene- and α -(aryl-, hydroxy)methylderivatives are determined. It is found, that interaction with benzoyl chloride yields only α -benzoyloxybenzyliden derivatives, and bromine – perbromides, which easy are transform in hydrobromides. It is found out, that CH₃ group in position 5 at action of nitrating acid selectively oxidizes up to COOH groups.

Practical value: the advanced method of synthesis of 2-amino-3ethoxycarbonyl-4,5-polymethylenethiophenes, triand tetracyclic thieno[2,3d]pyrimidine- 4-ones is developed. The methods of synthesis α -arylidene- and α hydroxy)methyl-, α-benzoyloxybenzyliden-5,6-disubstituted-2,3-(aryl-, polymethylen-3,4-dihydrothieno[2,3-d]pyrimidin-4-ones and 5-carboxy-6-methyl-2,3-tri-, tetramethylene-3,4-dihydrothieno[2,3-d]pyrimidine-4-ones by condensation with aldehydes, benzoylation and interaction with nitrating acid of corresponding substrates are created. Among of the synthesized substances the compounds possess high cytotoxic activity are found.

Degree of embed and economic effectivity: received results with aldehydes, benzoyl chloride, bromine and nitrating acid can be used for others N, S-heterocyclic compounds. Among of the synthesized substances the compounds with high cytotoxic activity are revealed. Economic effectivity – social.

Field of application: organic chemistry, medicine.

Соискатель: