# АКАДЕМИЯ НАУК РЕСПУБЛИКИ УЗБЕКИСТАН НПО «ФИЗИКА-СОЛНЦЕ» им. С.А.АЗИМОВА ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ им. С.В.СТАРОДУБЦЕВА

На правах рукописи УДК 621.376.234

### САЙМБЕТОВ АХМЕТ КУАНЫШБАЕВИЧ

# ОСОБЕННОСТИ ВЛИЯНИЯ ГРАНИЦЫ РАЗДЕЛА И ПРОТЯЖЕННОСТИ ОБЛАСТИ ОБЪЕМНОГО ЗАРЯДА НА ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДЕТЕКТОРНЫХ СТРУКТУР

01.04.10 – Физика полупроводников

#### ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

# Работа выполнена в Физико-техническом институте им. С.В. Стародубцева НПО "Физика-Солнце" им. С.А. Азимова АН Республики Узбекистан

| Научный руководитель:                                                  | доктор физико-математических наук, проф академик <b>Муминов Рамизулла Абдуллаевич</b> |  |  |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|
| Официальные оппоненты:                                                 | доктор физико-математических наук, проф<br>Бахадырханов Мухаммадкабир Саидхонович     |  |  |  |
|                                                                        | кандидат физико-математических наук, с.н.с.<br>Дадамухаммедов Суннатулла              |  |  |  |
| Ведущая организация:                                                   | Ташкентский университет информационных технологий.                                    |  |  |  |
| Специализированного совета Д<br>НПО «Физика-Солнце» АН РУ              |                                                                                       |  |  |  |
| С диссертацией можно ознанинститута НПО «Физика-Солн                   | комиться в библиотеке Физико-технического ице» АН РУз                                 |  |  |  |
| Автореферат разослан «                                                 | 2010 г.                                                                               |  |  |  |
| Ученый секретарь<br>Специализированного совета Д<br>л.фм.н., профессор | Į.015.08.01<br>Каримов А.В.                                                           |  |  |  |

#### 1. ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИИ

Актуальность работы. Известно, что в настоящее время полупроводниковые детекторы ядерного излучения широко применяются не только в ядерно-физических научных исследованиях, но находят применение в различных сферах человеческой деятельности, в частности: геологии, медицине, энергетике, археологии, охране окружающей среды, космической аппаратуре, криминалистике и т.д. В то же время различных типов радиационного (ионизирующего) регистрация продолжает оставаться особой задачей современного развития науки и техники, следовательно, их практического применения. Среди них особое место занимают разработки полупроводниковых детекторов (ППД) ядерного излучения с высокими энергетическим и позиционным разрешениями, линейностью сигнала в широком диапазоне энергии для различных типов ионизирующих частиц. Одним из важных технологических и научно-технических этапов получения высокоэффективных ППД является правильное понимание физических, технологических, конструкционных решений не только его получения, в частности, процесса формирования на основе полупроводниковых монокристаллов p-n, p-i-n структур, а также αSi-Si(Li) гетереструктур, но и важны расширения научного понимания процессов собирания, индуцированных ионизирующими излучениями носители зарядов в чувствительной области детектора и формирования на этой основы амплитудного спектра с высоким энергетическим разрешением. В этом вопросе особое место занимает в качестве основного материала монокристаллический кремний. Следовательно, в нем необходимы развития таких процессов, как диффузия и последующий процесс компенсации примесными атомами большого рабочего объема таких структур. При этом особое значение имеет процесс формирования высокоэффективной границы раздела структуры. С этой точки научно-технологические исследования разработке высокоэффективных Si(Li) структур, как с p-n, p-i-n переходами, так и αSi-Si(Li) Данный вопрос особенно важен на настоящее необходимостью разработки ППД больших размеров, в частности, с чувствительной поверхностью максимально возможных ДО диаметров исходного монокристаллического кремния, выпускаемой промышленностью. Успешное решение задач по созданию высокоэффективных Si(Li) детекторов ядерного излучения больших площадей и протяженности чувствительной области во многом зависит от правильного понимания свойств исходного кристалла большого диаметра, и их физическая связь с эксплуатационными характеристиками детектора. требует более глубокого понимания свойств исходного установление их роли на формирования высокоэффективных детекторных структур типа p-n, p-i-n переходов, а также αSi-Si(Li) гетеропереходов. Поэтому тема диссертационной работы является актуальной.

**Степень изученности проблемы.** Известно, что развитие полупроводникового материаловедения открыли широкие возможности разработки полупроводниковых детекторов ядерного излучения различного назначения. Среди детекторов ядерного излучения на полупроводниковых кристаллах особое место занимают кремний-литиевые детекторы. В настоящее время в мировой практике

такого типа детекторы развиты только относительно малыми размерами (Диаметр чувствительной поверхности детектора  $\emptyset \le 50$  мм, толщина рабочей области  $W \le 2$  мм) [1,2,3]. В то же время имеется острая необходимость разработки ППД больших размеров ( $\emptyset \ge 50 \div 110$  мм,  $W \ge 3 \div 10$  мм). Однако их создание имеют не только физические, технические, технологические особенности и трудности, но особенности процессов собирания зарядов, кинетических процессов в больших объемах чувствительной области ППД. В этом вопросе особое место занимает формирования на кристаллах больших диаметров резких плоскопараллельных по всей площади кристалла p-n, p-i-n переходов, а также  $\alpha$ Si-Si(Li) гетерепереходов.

Связь диссертационной работы с тематическими планами НИР. Работа выполнена в Физико-техническом институте НПО «Физика- Солнце» АН РУз в рамках Государственной Научно-технической Программы АН РУз. Основные результаты были получены в рамках проектов Фонда поддержки фундаментальных исследований АН РУз № 06-06 «Физические особенности разработки полупроводниковых стриповых детекторов ядерного излучения ортогональным полем» (2006-2007) и ГНТП А-5-032 (П01/06) «Разработка низкофоновой установки на основе кремний-литиевого детектора с большой площадью (до 100 см²) для регистрации слабоинтенсивного ионизирующего излучения» (2006-2008).

**Целью** диссертационной работы является исследование особенностей формирования высокоэффективных детекторных структур больших размеров с оптимальными электрофизическими и радиометрическими свойствами, а также изучение новых физических механизмов влияющих на формирование амплитуды энергетических спектров в них.

#### Задачи исследования:

- разработка технологии получения высокоэффективной границы раздела детекторных p-n, p-i-n и αSi-Si(Li) структур больших размеров;
- исследовать электрофизические и радиометрические характеристики детекторных структур на основе Si(Li) p-i-n и αSi-Si(Li).
- исследовать особенности границы раздела и барьерных свойств  $\alpha Si\text{-}Si(Li)$  гетероструктур больших размеров;
- изучить влияния различных типов неоднородности потенциала в чувствительной области ППД на эффективность собирания зарядов в нем;
- изучить особенности новых физических явлений в чувствительной области ППД, обусловленных свойствами исходного монокристаллического кремния;

**Объекты и предмет исследования.** Объектом исследования являются детекторные Si(Li) p-i-n,  $\alpha Si$ -Si(Li) структуры. Предметом исследования являются физические механизмы, определяющие формирование амплитуды энергетических спектров в детекторных структурах.

**Методы исследования:** методы исследования вольтамперных и вольтфарадных характеристик детекторных структур; метод исследования фотонапряжения в неоднородных участках чувствительной области Si(Li) p-i-n структур, а также структурные исследования границы раздела  $\alpha Si$ -Si(Li).

**Гипотеза исследования:** в настоящее время набирает темп в приборостроении нанофизика, нанотехнологии, наноструктура, где начинает проявляться новая физика, квантово размерные физические процессы, новые

явления, механизмы. В тоже время остается потребность в развитии получения полупроводниковых приборов больших размеров, фотопреобразователи солнечного излучения в электрическую, детекторы ядерного излучения, ограничители и переключатели больших электрических мощностей, импульсов и др. Среди них особое место занимают ППД больших площадей и объемов, так как ядерно-физические методы широко применяются не только в научно-физических исследованиях, но также они используются в энергетике, геологии, медицине, археологии, экологии и т.д. Однако, в разработке ППД больших площадей и объемов проявляются особенности физических эффектов, связанных с их большими размерами, которые влияют на формирование высокоэффективных приборных структур с прогнозируемыми характеристиками. Исследования в этом направлении являются важными в понимании особенностей физических процессов, явлений в приборных структурах больших размеров.

#### Основные положения, выносимые на защиту:

- 1. Предложенные дополнительные технологические условия для создания детекторных структур Si(Li) p-i-n, αSi-Si(Li) большой площади.
- 2. Механизмы образования в области объемного заряда Si(Li) p-i-n структур спада фотонапряжения в виде «ямы» вызываемых наличием дефектов, как например, типа фазового включения, примесных преципитатов, наноразмерных примесно-дефектных кластеров и др., которые несомненно существуют в объеме p-i-n структуры.
- 3. Закономерности движения частицы в протяженной области p-i-n структур в неоднородном потенциальном поле, формируемого этой областью.
- 4. Детекторы на основе αSi-Si(Li) гетероструктуры с прогнозируемыми электрофизическими и радиометрическими характеристиками обеспечиваемыми за счет применения аморфного слоя.

#### Научная новизна:

- 1. На основе исследовании релаксационных процессов фотопроводимости в области объемного заряда Si(Li) p-i-n структурах, выявлено, что на отдельных участках этой области на временной зависимости импульса фотонапряжения после соответствующего фотовозбуждения, наблюдается ярко выраженная «яма».
- 2. На основе проведенных аналитических расчетов траектории движения носителей заряда в і - области Si(Li) p-i-n структур с учетом влияния на этот процесс неоднородности потенциального поля в нем, показано, что при таких условиях электроны и дырки, генерированные в результате ионизации атомов излучением, перемешаются более длинной траекторией направлению электрического поля в чувствительной области ППД. результате собираемый при формировании амплитудного заряд энергетического спектра определяется отношением времени задержки к времени их сбора.
- 3. Разработаны физико-технологические способы формирования оптимальных свойств электрофизических характеристик и параметров радиометрических свойств ППД на основе Si(Li) p-i-n структур и αSi-Si(Li) гетероструктур больших размеров.

- 4. Показано, что детекторные гетероструктуры на основе αSi-Si(Li) являются более эффективными по их быстродействию и тонкого приповерхностного («мертвого») слоя относительно традиционных p-n структур.
- 5. Определены энергетические спектры изготовленных гетероструктур по  $\beta$ -частицам ЭВК  $^{207}$ Ві ( $E_{\beta}\sim 1$  МэВ)  $R_{\beta}=38$  кэВ и по  $\alpha$ -частицами  $^{226}$ Rа ( $E_{\alpha}=7,65$  МэВ)  $R_{\alpha}=65$  кэВ. Сравнительные характеристики показывают, что гетероструктуры полученные по разработанной технологии имеют улучшенные спектрометрические характеристики.
- 6. Выявлены новые технологические условия механических и химических обработок, основанные на динамических подходах, для формирования плоскопараллельных детекторных Si(Li) p-i-n структур и гетеропереходов αSi-Si(Li) с большими площадями чувствительной поверхности.

Научная и практическая значимость результатов исследования. В диссертационной работе рассмотрены новые физические явления и процессы, которые свойственны детекторным структурам Si(Li) p-i-n, αSi-Si(Li) больших размеров. Создание таких детекторных структур связано с более подробным и глубоким пониманием электрофизических свойств исходного кремния большого диаметра, и установлением их взаимосвязи требованиями получения на их основе высокоэффективных Si(Li) p-i-n, αSi-Si(Li) структур. Эти научные результаты имеют значения для понимания физических процессов для различных полупроводниковых приборов больших размеров, а также практические значения для совершенствования их характеристик.

**Реализация результатов.** Разработанные детекторные структуры имеют перспективы в решении фундаментальных и прикладных задач ядерной физики и применении ППД в качестве экспрессного ядерно-физического метода для измерения чистоты веществ в различных сферах.

Апробация работы. Основные результаты диссертационной обсуждены на семинарах лабораторий полупроводникового доложены направления Физико-технического института НПО «Физика-Солнце» АН РУз, а также на следующих республиканских и международных конференциях: «Current Problems in Nuclear Physics and Atomic Energy», (Kyiv, Ukraine, 2008); «Физика твердого тела» и «Наноматериалы для защиты промышленных и подземных конструкций», (Усть-Каменогорск, Казахстан, 2010); XVII Международной научной конференции студентов, аспирантов и молодых ученых «ЛОМОНОСОВ 2010», (Москва, Россия, 2010); «Табиий фанларнинг долзарб муаммолари» (Самарканд, Узбекистан, 2008); «Физика фанининг бугунги ривожида истеъдодли ёшларнинг ўрни», (Ташкент, Узбекистан, 2010); «Фундаментальные и прикладные вопросы физики», (Ташкент, Узбекистан, 2010).

**Опубликованность результатов.** По материалам диссертации опубликовано 14 научных работ, из них 5 статей и 9 докладов в трудах конференций.

**Структура и объем диссертации**. Диссертация состоит из введения, четырёх глав, выводов и списка литературы. Она изложена на 123 страницах машинописного текста, содержит 28 рисунков, 1 таблиц, 91 наименований литературных источников.

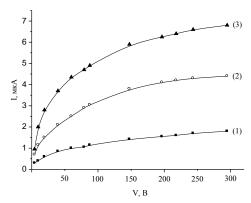
#### 2. ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

**Во введении** обоснована актуальность проблемы и темы диссертационной работы, сформулированы цели и задачи, научная новизна и практическая значимость работы, приведены основные положения, выносимые на защиту.

**В первой главе** приведен обзор литературных данных физических основ и принципа работы полупроводниковых детекторов, а также свойствах исходного кремния.

**Во второй главе** диссертационной работы описаны особенности технологических способов формирования детекторных структур на основе Si(Li) р-i-  $\alpha Si-Si(Li)$  больших размеров. Механическая и химическая обработка кремниевых пластин больших размеров. Диффузия и дрейф ионов лития кремниевых структур большой площади. Особенности технология получения детекторных гетероструктур  $\alpha Si-Si(Li)$  больших диаметров.

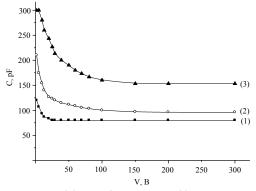
В целом механическая обработка кремниевых пластин различных больших диаметров ( $\phi > 50\,\text{мм}$ ) и толщин ( $W > 1,5\,\text{мм}$ ) должны были обеспечивается с точностью плоскопараллельности их более  $1\div 1,5\%$ . Для сохранения и обеспечения оптимальной плоскопараллельности кремниевых пластин при химической обработки требуется обеспечение в этих процессах равномерной скорости травления одновременно всей поверхности их большой площади.


Для диффузионных процессов получения ППД больших размеров ( $\phi$ >50 мм и W>2 мм) нами были оптимизированы технологические условия и режимы процесса температурной диффузии. Диффузия лития проводится в вакууме. Напыление лития на разогретые до 300 – 500  $^{0}$ С кремниевые платины проводится в вакуумной камере при давлении  $10^{-5}$  тор. Дрейф ионов лития проводился нами на специально разработанной и изготовленной дрейфовой установке. В связи с этим режим дрейфа выбирался следующим образом: температура  $T_{дp}$ =70÷80°C, напряжение смещения 100÷400 В в зависимости от величины токов утечки на каждом конкретном кристалле.

Для ППД больших размеров особое значение имеет плоскопараллелность p-n перехода по всей площади его чувствительной поверхности, а также глубина p-n барьера, формирующего диффузионным способом. Это связано с тем, что с одной стороны толщина диффузионной области должна быть достаточно тонкой («мертвый слой»), т.е. слой на котором потери энергии заряженных частиц в нем не участвуют в формировании амплитудного энергетического спектра и с другой стороны достаточно толстой для обеспечения эффективного p-n барьера. Для обеспечения эффективных условий для формирования p-n барьера и одного из важного радиометрического параметра («мертвого слоя») ППД на основе Si(Li) p-i-n структур нами были проведены исследования по выбору оптимальных толщин диффузионной области по окончанию процесса дрейфа ионов лития на требуемую (задаваемую) толщину Si(Li) p-i-n структуры.

Исходя из сложности формирования высокоэффективных плоскопараллельных тонких p-n переходов, нами была разработана технология получения гетероструктур  $\alpha Si$ -Si(Li) для ППД больших размеров. В отличии от технологии получения ППД на основе Si(Li) p-i-n структур,  $\alpha$ Si-Si(Li) гетеропереходы были получены методом полного сошлифования диффузионной области ( $\sim$ 300 мкм). На оставшуюся часть кремниевой пластины, компенсированной методом дрейфа ионов лития, были формированы  $\alpha$ Si-Si(Li) гетероструктуры.

**В третьей** главе диссертационной работы приводятся особенности электрофизических свойств детекторных структур на основе Si(Li) р-i-n и  $\alpha Si-Si(Li)$  больших размеров, а также изучены структурные свойства границы раздела детекторных гетероструктур  $\alpha Si-Si(Li)$ .


Исследованы ВАХ при приложении напряжения обратного смещения на Si(Li) р-і-п структуры, изготовленных на основе кремниевых пластин разных диаметров  $(\phi = 30 - 100 \text{ мм})$ , а также исходными параметрами: концентрация кислорода равнялась  $N_0=2\cdot 10^{17}$  см<sup>-3</sup>. Кроме того, также был использован кремний, полученный бестигельной зонной плавкой (БЗП) с удельным сопротивлением р=3000÷7000 Омсм и временем жизни носителей заряда т≥500 мкс. После определенных химикотехнологических операций на пластинах была проведена диффузия лития на одну из его сторон в вакууме при температуре T=450°C. После, для компенсации всей толщины пластины проводился дрейф ионов лития на всю толщину пластины. Дрейф ионов Li проводили при температуре  $(80 \div 90)^0$  C и напряжении обратного  $U=(100\div400)B$ . Затем весь кристалл подвергается смещения технологической обработке. К готовой структуре напыляются металлические контакты,  $Al(\sim 1000^{\circ}A)$  и  $Au(\sim 200^{\circ}A)$  на  $n^{+}$ -область и і-область соответственно.



1-диаметр 30 мм; 2-диаметр 60 мм; 3-диаметр 100 мм.

Рис. 1. Обратная ветвь вольтамперной характеристики Si(Li) p-i-n структур

a)



1-диаметр 30 мм; 2-диаметр 60 мм; 3-диаметр 100 мм. б)

Рис. 2. Вольтфарадная характеристика Si(Li) p-i-n структур при приложении напряжения обратного смещения

На рис.1. представлены типичные вольтамперные характеристики Si(Li) p-i-n структур, изготовленных на основе кремниевых пластин разных диаметров. Здесь кривая 1 для ППД с диаметром 30 мм; кривая 2 диаметром 60 мм; кривая 3 диаметром 100 мм. Из рисунка видно, что наряду с малой величиной обратного тока хорошим показателем для структуры является высокое напряжение пробоя, свидетельствующее о том, что поверхность структуры достаточно чиста.

Исследования  $B\Phi X$  в этом разделе были проведены на таких же образцах, как и для BAX. На рис.2 представлены вольтфарадные характеристики Si(Li) p-i-n структур, изготовленных на основе кремниевых пластин разных диаметров.

Из рисунка 2 видно, что с увеличением толщины компенсированной области значения емкости насыщения смещается линейно, в сторону увеличения напряжения обратного смещения. Отсюда следует, что удельное сопротивление компенсированной области для структур разных толщин достаточно высокоомное и приблизительно одинаковое.

В отличии от технологии получения ППД на основе Si(Li) р-i-п структур,  $\alpha SiSi(Li)$  гетеропереходы были получены методом полного сошлифования диффузионной области (~300 мкм). На оставшуюся часть кремниевой пластины, компенсированной методом дрейфа ионов лития, были формированы  $\alpha Si-Si(Li)$  гетероструктуры. На рис 3 представлены прямая (см. Рис. 3 а) и обратная (см. Рис 3 б) ветви вольтамперных характеристик гетероструктур на основе  $\alpha Si-Si(Li)$  при комнатной температуре.

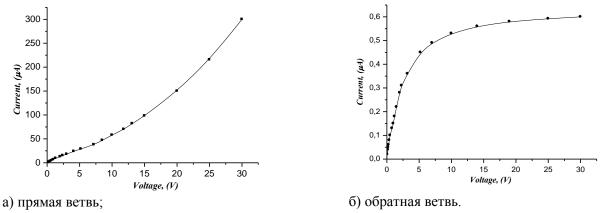



Рис. 3. Типичные вольтамперные характеристики гетероструктуры на основе αSi-Si(Li) при комнатной температуре.

На рис. 4 а приведена прямая ветвь, а на рис 4. б обратная ветвь вольтамперной характеристики в двойном логарифмическом масштабе комнатной температуре. Из этих рисунков видно, что прямая и обратная ветви ВАХ исследуемой детекторной структуры, состоят из двух ярко выраженных участков. Причем величины токов, как на первом, так и на втором участках прямой и обратной ветви ВАХ значительно отличаются при одном и том же значении напряжения смещения V. Отличие в них возрастает с увеличением величины V. Коэффициент выпрямления  $K = \frac{I_{np}}{I_{oбp}} \left( V = const \right)$  такой структуры от приложенного закономерностью. напряжения изменяется сложной Например,  $K \approx 30 \div 40$  при (V = 1B), а при больших значениях напряжениях он становится соответственно равным 150 (V = 10B) и 500 (V = 30B). Проведенный анализ показывает, что на первых участках прямой и обратной ВАХ, ток от напряжения описывается степенными зависимостями соответственно  $I \sim V^{\alpha}$  ( $\alpha = 0.93$ ) и  $I \sim V^{\alpha}$  ( $\alpha = 0.85$ ). Хотя в них механизм переноса носителей одинаковый, но природа появления носителей заряда у них разные. В прямом направления ток переносится, инжектированными носителями из эмиттера, т.е. из гетероструктуру  $\alpha Si\text{-}Si(Li)$ , а в запорном направлении ток в структуре определяется собственными носителями, генерируемые при комнатной температуре окружающей среды.

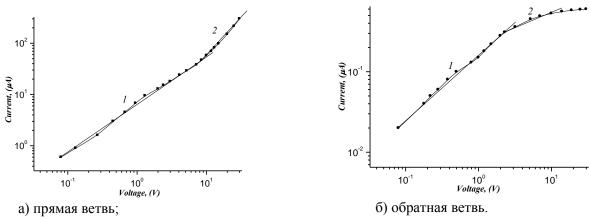
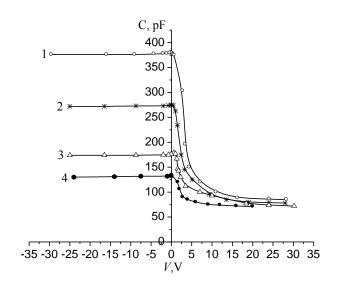



Рис. 4 Вольтамперные характеристики гетероструктуры в двойном логарифмическом масштабе при комнатной температуре


На втором участке прямой BAX в механизме переноса тока, по - видимому определяющую роль играет диффузия неосновных носителей, концентрация которых намного больше, чем концентрация базы (компенсированный литием слой) на границе раздела гетероперехода  $\alpha Si-Si(Li)$ . Так как толщина базы составляет  $\sim 2$  мм, то она при исследуемых приделах напряжений полностью не модулирована, т.е. подавляющая часть инжектированных электронов не доходят до тылового контакта из-за процесса рекомбинации.

Второй участок обратной ВАХ представляет собой практически ток насыщения  $\alpha Si$ -Si(Li) гетероструктуры. Появление постоянства тока от напряжения при V $\geq$ 30B означает то, что  $\alpha Si$ -Si(Li) гетеропереход содержит весьма малую плотность поверхностных состояний на границе раздела и поэтому практически отсутствуют токи утечки, а обратная ВАХ входит на насыщения.

Исследования высокочастотных вольтфарадных характеристик проводились для диапазона 1 МГц на приборе E7-12, а для диапазонов частот 0,465 МГц -10 МГц на модернизированной установке Л2-7-1М. Эти приборы обеспечивали амплитуду переменного высокочастотного сигнала не более 5-7мВ. Измерения проводились при температуре  $T=300 \, \mathrm{K}$ , как параллельной, так и последовательной схеме замещения. Погрешность при измерении составляла не более 0,1 pF. На рис.5. приведены вольтфарадные характеристики гетероструктур  $\alpha$ Si-Si. Эксперимент показал, что вид высокочастотные вольтфарадные характеристики гетероструктуры  $\alpha$ Si-Si(Li), существенно зависит от частоты измерительного сигнала. Такое различие в частотной зависимости емкости гетероструктуры  $\alpha$ Si-Si(Li), находящейся в различных режимах, можно объяснить следующим образом. В случае режима обогащения объемный заряд в приповерхностной области кремния создается за счет подтягивания к его поверхности основных носителей заряда.

Из рис. 6 видно, что граница раздела достаточно резка, с четким выделением части слоя αSi и монокристалла Si. Это свидетельствует о том, что действительно, гетероструктура αSi-Si(Li) является более эффективной детекторной структурой, как

по электрофизическим характеристикам, так и по потенциальным барьерным свойствам.



1) - 0,465 МГц, 2) - 1 МГц, 3) – 3 МГц, 4) – 5МГц **Рис. 5. Высокочастотные вольтфарадные** характеристики гетероструктур  $\alpha$ Si-Si при комнатной температуре

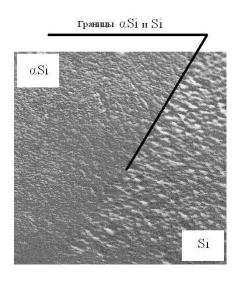
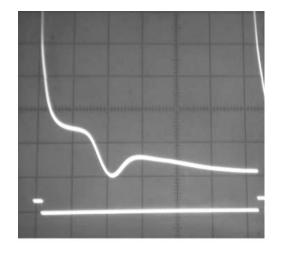
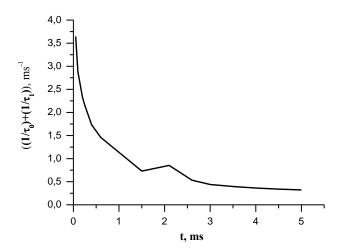



Рис. 6. Границы раздела αSi и Si(Li) (сканирующий электронный микроскоп с увеличением 5000)

**В четвертой главе** диссертационной работы рассматриваются исследования процессов переноса и собирания носителей заряда, генерированных поглощением энергии ионизирующих частиц.


В работах [4, 5] проведены исследования топографии сигнала фото ЭДС, связанные с неоднородностью электрического поля в области объемного заряда германиевых радиационных детекторов. Для кремниевых радиационных р-i-п детекторов были изучены топография амплитудного спектра методом сканирования каллимированным пучком альфа частиц [2]. В работах [6-9] рассмотрены особенности комплексов и многозарядных центров атомов марганца и никеля в сильнокомпенсированном кремнии. Важным в этих исследованиях является установление фактов наличия в определенных локальных областях существенного неоднородного распределения примесей в монокристаллах кремния.


В диссертации рассматриваются релаксационные процессы носителей зарядов в области объемного заряда в Si(Li) p-i-n структурах.

На рис. 7 приведена типичная осциллограмма, установленного нами при более детальном исследовании, релаксации фотопроводимости в чувствительной области Si(Li) p-i-n структур. По оси абсцисс отложено время, масштабированное 1ms/10mm. А по оси ординат поставлено напряжение, масштабированное 0.05V/10mm.

Из анализа данного аномального явления, которое мы назвали как «яма», в фотонапряжении следует следующее. Известно, что в релаксационных процессах фотопроводимости при наличии уровня прилипания в кремнии, спад в импульсе фотонапряжения монотонно уменьшается [10]. В работе [11] проведено исследо-

вание влияния эффекта насыщения скорости электронов на переключение n<sup>+</sup>-p-p<sup>+</sup> структуры в квазинейтральным дрейфовом режиме. Отмечено, что эффект насыще-





y=0.05V/10mm, x=1ms/10mm.

Рис. 7. Релаксация фотопроводимости в области объемного заряда Si(Li) p-i-n структур.

Рис. 8. Графическая зависимость времени релаксации

ния скорости существенно замедляет пролет Диновской волны [12] электронов через базу n<sup>+</sup>-p-p<sup>+</sup> структуры, следовательно наблюдается резкий спад. Предложенный в работе [12] механизм более чем подходит к объяснению появления «ямы» в области спада, если предполагать, что запрещенной зоне кремния имеются скопления глубоколежащих рекомбинационных центров [13]. Тогда время релаксации имеет две составляющие [14]

$$\frac{1}{\tau} = \frac{1}{\tau_0} + \frac{1}{\tau_1} \,. \tag{4.1}$$

Тогда спад напряжения по времени определяется формулой

$$U = U_{\tilde{n}\tilde{o}} e^{-\left(\frac{1}{\tau_0} + \frac{1}{\tau_1}\right)t}.$$
 (4.2)

Здесь  $\tau_0$ - время релаксации, при отсутствии глубоколежащих рекомбинационных центров,  $\tau_1$ - время релаксации, когда работают только эти центры.

Используя экспериментальные результаты, определим временную зависимость  $\tau_1$ . Прежде всего, анализируем функцию U в точках экстремума, где первая производная U по t будет равна нулю. На этих точках имеет место

$$\left(\frac{d\tau_1}{dt}\right)_{t_i} = \frac{\tau_1}{t_i} \left(\frac{\tau_1}{\tau_0} + 1\right). \tag{4.3}$$

Здесь  $t_i$  значение t, где наблюдается минимум функции U. Эксперимент показывает, что функциональная зависимость U от времени t имеет в трех точках экстремальное значение. Это означает, что эмпирическая формула U является кривой третей степени. Формула (4.3) определяет условия, где функция U имеет изоклину, равную нулю. Анализируя различные варианты эмпирических формул, описывающих зависимость U от времени t приходим k выводу, что относительно удобным k расчету является следующая формула

$$-\ln\left(\frac{U}{U_{\vec{n}\hat{o}}}\right) = y_1 + k_2 \left(\frac{t - t_k}{t_k}\right)^2 + k_3 \left(\frac{t - t_k}{t_k}\right)^3. \tag{4.4}$$

Здесь  $k_2$  и  $k_3$  зависят от параметров функции U в точках экстремума

$$k_3 = \frac{y_2 - y_1}{a^2(a+1)} - \frac{y_0 - y_1}{(a+1)} \; ; \quad k_2 = y_0 - y_1 + k_3 \; ; \quad a = \frac{t_2 - t_k}{t_k} \; ; \quad y = \ln\left(\frac{U}{U_{\tilde{n}\dot{o}}}\right).$$

Тогда  $y_0$ =0, так как в начале спада  $U=U_{cr}$ . Обозначим через  $y_1=\ln\left(\frac{U}{U_{\tilde{n}\delta}}\right)$  при  $t=t_k$ ,  $t_k$ -соответствует минимум напряжения,  $t_2$ -максимум t. Начало счета времени определено в точке спада, поэтому  $t_1$ =0.  $y_2=\ln\left(\frac{U}{U_{\tilde{n}\delta}}\right)$  при  $t=t_2$  получаем, что  $k_2$  и  $k_3$  определяются формулами

$$k_{2} = \frac{t_{k}^{3} y_{2}}{t_{2} (t_{2} - t_{k})^{2}} - \frac{t_{k} + t_{2}}{t_{2}} y_{1}; \quad k_{3} = \frac{t_{k}^{3}}{t_{2} (t_{2} - t_{k})^{2}} y_{2} - \frac{t_{k}}{t_{2}} y_{1}.$$
 (4.5)

Так как

$$-\ln\left(\frac{U}{U_{\bar{n}\dot{o}}}\right) = t\left(\frac{1}{\tau_0} + \frac{1}{\tau_1}\right),\tag{4.6}$$

то из (4.4) получаем, что

$$t\left(\frac{1}{\tau_0} + \frac{1}{\tau_1}\right) = y_1 + k_2 \left(\frac{t - t_k}{t_k}\right)^2 + k_3 \left(\frac{t - t_k}{t_k}\right)^3 \tag{4.7}$$

Графическая зависимость  $\tau_1$  от времени приведена на рисунке 8.

Отсюда видно, что по мере приближения, кривая падения в импульсе фотонапряжения принимает минимальное значение, время релаксации начинает уменьшаться, когда скорость уменьшения  $\tau_1$  по времени до определенного значения, определяемого по формуле (4.3) падение фотонапряжения доходит до минимального значения. При этом  $\tau_1$  начинает возрастать до определенного максимума, после этого наблюдается квазистационарное значение времени релаксации. Как было выше отмечено, учет уровня прилипания не дает экстремальных точек в области спада импульса фотонапряжения [10]. Более точный расчет динамических характеристик  $\mathbf{n}^+$ - $\mathbf{p}$ - $\mathbf{p}^+$  структур, при помощи Диновских волн для электронов тоже дает монотонный спад фотонапряжения по времени [11].

Данный эффект, обусловленный наличием в чувствительной области Si(Li) рi-n детекторов естественно играет важную роль в процессе собирания заряда и следовательно в формировании истинного энергетического спектра. В то же время, данный эффект имеет самостоятельный фундаментальный интерес, как явление, происходящее в локальной неоднородной области кристаллической решетки с новыми функциональными процессами.

Действительно, более полное, всестороннее и правильное понимание процесса собирания носителей заряда в области объемного заряда любого функционального назначения приборных структур позволит судить степень истинности величины измеряемых характеристик. Исследование физических причин, приводящих к возможным искажением идеальности принципа работы того или иного функционального назначения полупроводниковой структуры, представляет интерес

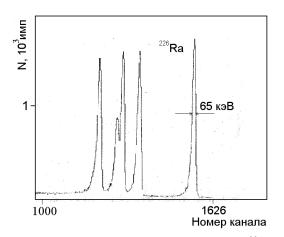
для разработки математического компьютерного моделирования и таким образом формировать истинную картину (величину) исследуемого объекта (процесса). Данный вопрос рассмотрен для полупроводниковых детекторов ионизирующих излучений. Обычно при рассмотрении работы детекторов учитываются законномерности процессов взаимодействия заряженной частицы с кристаллической решеткой детектора, а рассеяние (в толстых детекторах) учитывается как ее взаимодействие, в основном, на точечных дефектах (заряженных или нейтральных) или фононах.

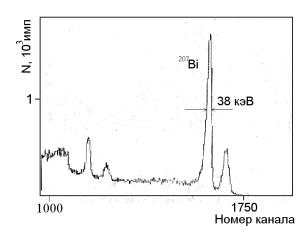
Аналитическое описание, из-за его сложности, в большинстве случаев невозможно и решение уравнений движения носителей заряда в таких условиях возможно только приближенно или численными методами, что имеет свои недостатки. Они не позволяют всесторонне анализировать движение частицы и к тому же могут содержать информацию, вызванную вычислительными ошибками, а это обстоятельство часто затрудняет понимание физической сути рассматриваемых явлений. Теоретический же анализ моделей детектора является нетривиальной задачей особенно для толстого детектора, в котором не рассматривается (учитывается) процесс рассеяния.

Решение уравнения движения в неоднородном потенциальном поле, содержащее дефект, мы рассматриваем как сумму независимых друг от друга решений в неоднородных потенциальных полях самой структуры и поля, создаваемого дефектом, рассматриваемый как точечный источник потенциала, помещенный внутрь структуры. Такая постановка задачи соответствует принципу суперпозиции потенциальных полей. Следует отметить, что основные закономерности движения частиц в неоднородном поле структуры описаны в [15], и тогда задача получения общего решения заключается в получении и решении уравнения движения в поле, создаваемого примесями или дефектом, и его суммирования с решением уравнения движения частицы в самой структуре.

В тех же работах [15] показано, что потенциал электрического поля в неоднородном стационарном потенциальном поле структуры с распределенным потенциалом описывается выражением:

$$U(x, y) = x \cdot y \cdot (U_{max} - U_{min}) / l_0 d_0 = k_{E_0} \cdot x \cdot y$$
(4.8)


где:  $l_0, d_0$  — длина и ширина исследуемой структуры,  $k_{E_0}$  — коэффициент распределения потенциала структуры,  $U_{\max}, U_{\min}$  — соответственно максимальное и минимальное значения потенциала на концах электрода на  $y=d_0$  (электрод с распределенным потенциалом). Значения потенциала на электроде при y=0 принимается за постоянное значение ( $U(x,0)=\mathrm{const.}$ ), относительно которого определяются значения потенциала на электроде с распределенным потенциалом.


Поле точечного источника рассматривается как симметричное поле с распределенным потенциалом, в котором его потенциал описывается равнобокими гиперболами, асимптотами которых являются оси X и Y. Решение уравнения движения частицы в неоднородном потенциальном поле точечного источника в такой постановке рассматривается впервые. Обычно рассматриваются как потери носителей заряда за счет рекомбинации или захвата (прилипания) на ловушках. Уравнение поля точечного источника [15] можно записать в виде:

$$U_{S}(x,y) = \pm k_{S} \cdot x_{S} \cdot y_{S} = \pm k_{S} \cdot (x - x_{S0}) \cdot (y - y_{S0})$$
(4.9)

где:  $k_S = (U_{\text{max}} - U_{\text{min}})/l^2 \ \text{k}_S = (U_{\text{max}} - U_{\text{min}})/l \cdot \text{d}$  коэффициент распределения потенциала по осям X и Y, l,d — длина и ширина исследуемой области поля,  $U_{\text{max}}$ ,  $U_{\text{min}}$  — соответственно значения потенциалов в окрестности точечного источника и на концах исследуемой области его поля,  $x_S$ ,  $y_S$  — координаты поля точечного источника,  $(x-x_{S0})\cdot(y-y_{S0})$  — приведенные координаты для точечного источника и  $x_{S0}$ ,  $y_{S0}$  — координаты расположения дефекта (примеси) в структуре. Отсюда следует, что на формирования амплитудного энергетического спектра в Si(Li) детекторах будут влиять потери носителей зарядов не только за счет рекомбинации или захвата на ловушках, но и из-за удлинения траекторий их движения, следовательно, такое явления обуславливают времени задержки к времени сбору их.

В большинстве случаев наиболее существенны два вида измерений: определение энергии частиц и измерение их потока. Иногда необходимо регистрировать группы частиц малой интенсивности в присутствии большого количества других частиц с очень близкими энергиями.





а) энергетический спектр по  $\alpha$ -частиц  $^{226}$ Ra

б) энергетический спектр по  $\beta$ -частиц  $^{207}$ Ві

Рис. 9. Энергетические спектры гетероструктуры на основе αSi-Si(Li)

На рис. 9 а,б показаны энергетические спектры детектора по  $\alpha$ -частицами  $^{226}$ Ra ( $E_{\alpha}$ =7,65 MэB)  $R_{\alpha}$ =65 кэВ т.е.  $R_{\alpha}$ <1% и по  $\beta$ -частицам ЭВК  $^{207}$ Bi ( $E_{\beta}$ ~1 МэВ)  $R_{\beta}$ =38 кэВ т.е.  $R_{\beta}$ >1%. Как видно из энергетических спектров  $\alpha$ Si-Si(Li) гетероструктур для  $\alpha$  — частиц  $^{226}$ Ra ( $E_{\alpha}$ =7,65 МэВ) данный фактор влияет незначительно, так как в этом случае глубина поглощения  $\alpha$  — частиц очень маленькое (0,25 мкм), а для  $\beta$  — частиц, влияние существенное, так как в этом случае глубина пролёта доходит до 2 мм.

Таким образом, нами установлено, что в ППД больших размеров помимо традиционных механизмов потери заряда - проявляются явления изменения их траекторий движения и отрицательные кинетические процессы, связанные с наличием неоднородностей потенциала и аномального эффекта в импульсе фотонапряжения в виде «ямы» в чувствительной протяженности области ППД больших размеров. Которые изменяют время пробега относительно времени сбора

носителей заряда, следовательно, формирования амплитудного энергетического спектра.

В конце главы также изучены характеристик деградации Si(Li) p-i-n детекторов больших размеров. В таблице представлены испытания параметров детекторных структур за указанный период: начальные значения параметров детекторов приведены в числителях и после 18 месяцев в знаменателях. Как видно ИЗ таблицы показатели толщины чувствительных областей изменились относительно начальных незначительно, а также что темновой ток детекторной увеличился. Это обусловлено из-за ухудшения поверхности структуры №1 структуры. Темновые токи остальных детекторов претерпели также незначительные изменения. Показатели емкости всех детекторов изменились пределах допустимого. Энергетические разрешения почти не изменились.

Испытания деградации Si(Li) p-i-n детекторов

| тепытания деградации этель детекторов                 |                 |             |             |             |  |
|-------------------------------------------------------|-----------------|-------------|-------------|-------------|--|
| Наименование параметров                               | Номер структура |             |             |             |  |
|                                                       | 1               | 2           | 3           | 4           |  |
| Толщина чувствительных                                | 900/900         | 900/850     | 900/700     | 900/900     |  |
| область. мкм                                          |                 |             |             |             |  |
| Диаметр чувствительных                                | 50/50           | 50/50       | 50/50       | 50/50       |  |
| область (входного окна), мм                           |                 |             |             |             |  |
| Наименьшие/наибольшие                                 | 40÷80/40÷80     | 40÷80/40÷80 | 40÷80/40÷80 | 40÷80/40÷80 |  |
| значения рабочего                                     |                 |             |             |             |  |
| напряжения, В                                         |                 |             |             |             |  |
| Оптимальное напряжение                                | 60/60           | 60/60       | 60/60       | 60/60       |  |
| детекторов, В                                         |                 |             |             |             |  |
| Темновой ток, мкА                                     | 0,8/3,6         | 0,6/0,5     | 1,2/0,9     | 6,2/5,2     |  |
| Емкость, пФ                                           | 376/520         | 370/480     | 360/550     | 320/580     |  |
| Энергетический эквивалент                             | 36/38           | 30/28       | 34/36       | 58/65       |  |
| шума, кэВ                                             |                 |             |             |             |  |
| Энергетические разрешения                             | 45/52           | 38/38       | 42/45       | 62/55       |  |
| по β-частицы <sup>207</sup> Ві с Е <sub>β</sub> ≈1МэВ |                 |             |             |             |  |

#### 3. ЗАКЛЮЧЕНИЕ

- 1. Разработана технология создания детекторных структур Si(Li) p-i-n,  $\alpha Si-Si(Li)$  структур с большими площадями чувствительной поверхности.
- 2. Установлены оптимальные научно-технологические способы формирования высокоэффективных барьерных свойств в Si(Li) p-i-п структурах и αSi-Si(Li) гетероструктурах с оптимальными толщинами их входного окна («мертвого слоя»).
- 3. Исследованы релаксационные процессы фотопроводимости в Si(Li) p-i-n структурах. Показано, что на таких структурах на временной зависимости импульса фотонапряжения после соответствующего фотовозбуждения наблюдается ярко выраженная «яма». Установлено, что образованию «ямы» в области спада фотонапряжения ответственно наличие дефектов, как например: фазовые включения, примесные преципитаты, нанораз-

- мерные примесно-дефектные кластеры и др., которые несомненно существуют в объеме p-i-n структуры.
- 4. Показано, что исследование проблемы движения частицы на границе раздела двух сплошных сред физических устройств можно рассматривать ее как задачу о движении частицы в неоднородном потенциальном поле, формируемого этой областью. Полученные уравнения движения в неоднородном поле, в которой точечный источник рассматривается в качестве дефекта, и их аналитические решения, на основе классического представления, позволяют проводить траекторный анализ частицы в различных областях и таким образом утверждать, что электроны и дырки генерированные в результате ионизации атомов ядерным излучением перемещаются по направлению электрического поля в чувствительной области ППД. При этом собираемый заряд будет определятся отношением времени задержки к времени сбора их.
- 5. Показано, что детекторные гетероструктуры на основе αSi-Si(Li) являются более эффективными по их быстродействию и тонкого приповерхностного («мертвого») слоя относительно традиционных p-n структур.
- 6. Определены энергетические спектры изготовленных гетероструктур по  $\beta$ -частицам ЭВК  $^{207}$ Ві ( $E_{\beta}\sim 1$  МэВ)  $R_{\beta}=38$  кэВ и по  $\alpha$ -частицами  $^{226}$ Rа ( $E_{\alpha}=7,65$  МэВ)  $R_{\alpha}=65$  кэВ. Сравнительные характеристики показывают, что гетероструктуры полученные по разработанной технологии имеют улучшенные спектрометрические характеристики.

## СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Акимов Ю.К., Игнатьев О.В, Калинин А.И, Кушнирук В.Ф. Полупроводниковые детекторы в экспериментальной физике. М.: Энергоатомиздат, 1989. 271 С.
- 2. Азимов С.А., Муминов Р.А., Шамирзаев С.Х., Яфасов А.Я. Кремний-литиевые детекторы ядерного излучения. Ташкент: Фан, 1981. 257 С.
- 3. Раджапов С.А. Исследование особенностей создания кремний-литиевых p-ì-п детекторов большой площади для регистрации ионизирующего излучения малой активности. Автореф. Дис. ... канд.физ. мат. наук. –Ташкент: ТашГУ. 1991. 16 С.
- 4. Строкан Н.Б., Тиснек Н.И., Афанасьев В.Ф. // Приборы техника эксперимента. Москва, 1968. №5. С.211.
- 5. Афанасьев В.Ф., Строкан Н.Б., Тиснек Н.И. // Приборы техника эксперимента. Москва, 1970. №2. С.66.
- 6. Аюпов К.С., Бахадырханов М.С., Зикриллаев Н.Ф., Илиев Х.М. Физические явления в кремнии в крайне неравновесном состоянии. Ташкент: ФАН, 2008.-341 С.
- 7. Бахадырханов М.С., Аюпов К.С., Мавлянов Г.Х., Исамов С.Б. Отрицательное магнетосопротивление в кремнии с комплексами атомов марганца [Mn]<sub>4</sub> // ФТП. С.Петербург, 2010. -т.44. вып.4. С.1181-1184.

- 8. Бахадырханов М.С., Аюпов К.С., Мавлянов Г.Х., Зикриллаев Н.Ф., Нигманходжаев С. Активация нанокластеров атомов марганца в кремнии // ДАН РУз. Ташкент, 2009. №3-4. С.58.
- 9. Бахадырханов М.С., Аюпов К.С., Арзикулов Э.У., Сражев С.Н., Тошбоев Т.У. Термические свойства кремния с кластерами атомов никеля // Известия Высших Учебных Заведений. Физика. Москва, 2008. №11/3. С.170-172.
- 10. Аронов Д.А., Зайтова В. Фотомагнитный эффект и фотопроводимость в полупроводниках при высоких уровнях возбуждения. Ташкент: ФАН, 1987. 241 С.
- 11. Мнацаканов Т.Т., Левинштейн М.Е., Тандоев А.Г., Юрков С.Н.Особенности динамической инжекции и процессов модуляции базового слоя в мощных  $n^+$ -p- $p^+$  структурах //  $\Phi$ ТП. С.Петербург, 2007. т.41.- вып.11. С. 1401-1407.
- 12. Dean R.H. // J.Appl Phys. 46, 585 (1969).
- 13. Каражанов С.Ж. Свойства точно компенсированных полупроводников // ФТП. С.Петербург, 2000. т.34. вып.8. С. 917-922.
- 14. Рывкин С.М. Фотоэлектрические явления в полупроводниках. Москва: Гос. Изд. Физ-мат. Лит., 1963. 494 С.
- 15. Fedulov V. I., Zakhidov R.A., Anarbaev A. Particle in nonuniform potential field of photovoltaic devices // Applied Solar Energy. New York, 2009. v.45. N3. PP.157-161.

#### 4. СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

- 1. Mumimov R.A., Kanyazov Sh.K., Saymbetov A.K. Relaxation process features of photoconductivity in p-i-n structures. // Semiconductor physics quantum electronics & optoelectronics. Kiev, 2010. -V.13. No.3. PP.258-260.
- 2. Fedulov V.I., Mumimov R.A., Saymbetov A.K. Particle in the structure with the inhomogeneous potential field and the point source // Uzbek journal of Physics. Tashkent, 2010. V.12. No.3. PP.127-131.
- 3. Саймбетов А.К. Особенности электрофизических характеристик детекторных гетероструктур αSi-Si // Доклады Академии наук Республики Узбекистан. Ташкент, 2010. №5. С. 24-26.
- 4. Муминов Р.А., Раджапов С.А., Саймбетов А.К. Полупроводниковые детекторы ядерного излучения на основе αSi-Si // Новые технологии. Кременчуг, 2008. №3(21). С.9-12.
- 5. Муминов Р.А., Саймбетов А.К., Раджапов С.А. Временная деградация низкофоновой установки на основе Si(Li) детекторов большой площади // Доклады Академии наук Республики Узбекистан. Ташкент, 2008. №6. С.25-27.
- 6. Саймбетов А.К. Кремний-литиевые детекторы ядерного излучения больших размеров. // XVII Международная конференция студентов, аспирантов и молодых учёных «Ломоносов 2010» 12-15 апреля 2010. Москва, 2010. 2-том. С.288.
- 7. Саймбетов А.К. Вольтфарадная характеристика детекторов ядерного излучения на основе гетероструктур αSi-Si. // XI Международная конференция Физика твердого тела и международный симпозиум Наноматериалы для защиты

- промышленных и подземных конструкций 9-12 июня 2010. Усть-Каменогорск, 2010. C.466-467.
- 8. Саймбетов А.К., Курбанова М.Н., Раджапов Б.С., Рузибаев О.М. Стриповые детекторы ядерного излучения на основе αSi-Si. // XI Международная конференция Физика твердого тела и международный симпозиум Наноматериалы для защиты промышленных и подземных конструкций 9-12 июня 2010. Усть-Каменогорск, 2010. С.468-469.
- 9. Muminov R.A., Saymbetov A.K., Radjapov S.A. Nuclear radiation Si(Li) p-i-n detector with extension sensitive (10 mm) region. // 2-International Conference Current Problems in Nuclear Physics and Atomic Energy 9 15 June 2008. Kyiv, 2008. PP.83-84.
- 10.Muminov R.A., Saymbetov A.K., Radjapov S.A., Pindurin Yu.S. By low-temperature method. // 2-International Conference Current Problems in Nuclear Physics and Atomic Energy 9 15 June 2008. Kyiv, 2008. P.84.
- 11. Муминов Р.А., Раджапов С.А., Саймбетов А.К. Полупроводниковые детекторы больших размеров на основе гетероструктур αSi-Si // Международной конференции Фундаментальные и прикладные вопросы физики 24-25 ноября 2010. Ташкент, 2010. С.252-253.
- 12.Муминов Р.А., Раджапов С.А., Саймбетов А.К., Пиндюрин Ю.С., Зиявуддинов Р.С., Раджапов Б.С. Установка для определения объемной активности радона в воздухе и воде на основе Si(Li) детектора // Международной конференции Фундаментальные и прикладные вопросы физики 24-25 ноября 2010. Ташкент, 2010. С.253-254.
- 13. Саймбетов А.К. Особенности релаксационных процессов фотопроводимости в рi-n структурах. // Физика фанининг бугунги ривожида истеъдодли ёшларнинг ўрни» Республика ёш олимлар ва иктидорли талабаларнинг илмий анжумани 8-9 апрель 2010. - Ташкент, 2010 — С.171-176.
- 14. Саймбетов А.К. Полупроводниковые детекторы на основе αSi-Si. Табиий фанларнинг долзарб муаммолари Республика ёш олимлар илмий-амалий анжумани 12 сентябр 2008. Самарканд, 2008. С.112-113.

#### **РЕЗЮМЕ**

диссертации Саймбетова Ахмета Куанышбаевича на тему: "Особенности влияния границы раздела и протяженности области объемного заряда на электрофизические характеристики детекторных структур" на соискание ученой степени кандидата физико-математических наук по специальности 01.04.10 – физика полупроводников

**Ключевые слова:** диффузия лития, дрейф ионов лития, p-i-n структур, гетероструктура, граница раздела.

**Объекты исследования:** изготовление детекторных Si(Li) p-i-n и αSi-Si(Li) структур больших размеров.

**Цель работы:** исследование особенностей формирования высокоэффективных детекторных структур больших размеров с оптимальными электрофизическими и радиометрическими свойствами, а также изучения новых физических механизмов, влияющих на формирование амплитуды энергетических спектров в них.

**Методы исследования:** методы исследования вольтамперных и вольтфарадных характеристик детекторных структур; метод исследования особенности фотонапряжения в неоднородных участках чувствительной области Si(Li) p-i-n структур, а также структурные исследования границы раздела  $\alpha Si-Si(Li)$ .

Полученные результаты новизна: -разработаны И их технологические способы формирования оптимальных свойств электрофизических характеристик и параметров радиометрических свойств ППД на основе Si(Li) p-i-n структур и αSi-Si(Li) гетероструктур больших размеров; -на основе исследовании релаксационных процессов фотопроводимости в Si(Li) p-i-n структурах, выявлено, что на отдельных участках этой области, на временной зависимости импульса фотонапряжения после соответствующего фотовозбуждения наблюдается ярко выраженная «яма»; -на основе проведенных аналитических расчетов траектории движения носителей заряда в і - области Si(Li) p-i-n структур с учетом влияния на этот процесс неоднородности потенциального поля в нем, показано, что при таких условиях электроны и дырки, генерированные в результате ионизации атомов ядерным излучением, перемещаются более длинной траекторией по направлению электрического поля в чувствительной области ППД.

**Практическая значимость:** полученные детекторные структуры Si(Li) p-i-n,  $\alpha Si\text{-}Si(Li)$  больших размеров имеют значения для понимания физических процессов для различных полупроводниковых приборов больших размеров, а также практические значения для совершенствования их характеристик.

Степень внедрения и экономическая эффективность: результаты исследований нашли применение в оптимизации свойств Si(Li) ППД при выполнении х/договорных работ с OAO «УзКТЖМ", OAO «Узбекхимаш", с общим финансированием  $\sim 20$  млн.сум.

**Область применения:** исследованные детекторные структуры, имеют перспективы в решении фундаментальных и прикладных задач ядерной физики.

Физика-математика фанлари номзоди даражасига талабгор Саймбетов Ахмет Куанышбаевичнинг 01.04.10 - яримўтказгичлар физикаси ихтисослиги бўйича "Хажмий заряд соҳасининг узунлиги ва бўлиниш чегарасининг детекторли структуралар электрофизик характеристикаларига таъсирининг ўзига хослиги" мавзусидаги диссертациясининг

#### РЕЗЮМЕСИ

**Таянч сўзлар:** литий диффузияси, литий ионлари дрейфи, р-і-п структура, гетероструктура, бўлиниш чегараси.

**Тадкикод объектлари:** катта ўлчамли детекторли Si(Li) p-i-n ва αSi-Si(Li) структураларни ишлаб чикариш.

**Ишнинг мақсади:** оптимал электрофизик ҳамда радиометрик хусусиятларга эга катта ўлчамли юқори самарали детекторли структураларни ишлаб чиқишнинг ўзига хос хусусиятлари, шунингдек, янги физик механизмларнинг улардаги энергетик спектрлар амплитудаси пайдо бўлишига таъсирини ўрганишдан иборат.

**Тадқиқод методлари:** детекторли структуралар вольтампер ва вольт-фарада характеристикаларини ўлчаш услублари; Si(Li) p-i-n структуралар сезгирлигининг бир жинсли бўлмаган соҳаларидаги фотокучланиш хусусиятларини тадқиқ этиш услуби, шунингдек  $\alpha Si$ -Si(Li) бўлиниш чегарасининг структуравий тадқиқотлари.

Олинган натижалар ва уларнинг янгилиги: катта ўлчамли Si(Li) p-i-n гетероструктуралар αSi-Si(Li) асосидаги ЯЎД структура параметрлари ва электрофизик хусусиятларини оптимал хосил килишнинг физикишлаб усуллари чиқилди. Si(Li) p-i-n структуралардаги фотоўтказувчанлик жараёнларининг релаксация тадкикоти асосида ушуб соханинг алохида кисмларида фотокучланиш импульсининг вактинчалик боғланишида мос келувчи фотоқўзғалишдан кейин аниқ ифодаланган "ўра" кузатилиши аниқланди. Si(Li) p-i-n структуралар i-сохасидаги заряд ташувчиларининг харакат траекторияси ундаги бир жинсли бўлмаган потенциал майдоннинг бу жараёнга таъсирини хисобга олган холда ушбу шарт-шароитдаги ядровий нурланиш таъсиридаги атомлар ионизацияси натижасида генерацияланган электрон ва тешиклар ЯЎД сезгирлик сохасининг электр майдони йўналиши бўйлаб анчагина узун траектория билан аралашиши ўтказилган аналитик хисоб-китоблар асосида кўрсатиб берилди.

**Амалий аҳамияти:** олинган катта ўлчамли Si(Li) p-i-n, αSi-Si(Li) детекторли структуралар, катта ўлчамли турли хил яримўтказгичли асбобларда рўй берувчи физик жараёнларни тушуниш, шунингдек уларнинг хусусиятларини мукаммаллаштиришда амалий аҳамиятга эгадир.

Татбиқ этиш даражаси ва иқтисодий самарадорлиги: олинган натижалар умумий қиймати ~20 млн.сумдан иборат ОАЖ «ЎзҚҚЎЧМК», ОАЖ «Ўзбеккимемаш» билан тузилган хужалик шартномаларини бажаришда Si(Li) ЯЎД хусусиятларини оптималлаштиришда ўз тадбиқини топди.

**Қ**улланилиш соҳаси: тадқиқ этилган ва ишлаб чиқилган детекторли структуралар ядро физикаси амалий ва фундаментал масалаларини ечишда катта истикболга эга.

#### **RESUME**

Of the thesis of Saymbetov Ahmet Kuanishbayevich on the scientific degree-competition of the doctor of philosophy in physics - mathematical sciences on a specialty 01.04.10 - semiconductors physics on subject: "The features of influence of interface and spatial charge of extended region on electrophysical characteristics of detector structures".

**Key words:** diffusion of lithium, drift of lithium ions, p-i-n structure, heterostructure, interface.

**Subject of research:** manufacturing of the large size Si(Li) p-i-n and  $\alpha Si$ -Si(Li) detector structures.

**Purpose of work:** investigation the features of formation of the large size high efficiency detector structures with optimal electrophysical and radio-metric properties as well as study of new physical mechanisms of influencing for formation their amplitude of energetic spectra.

**Methods of research:** method of investigation of current-voltage and volt-capacity characteristic of detector structures; method of investigation of features of photovoltage in nonuniform area of the sensitive regions of Si(Li) p-i-n structure, as well as investigation of the structure research of  $\alpha Si$ -Si(Li) interface.

The results obtained and their novelty: physic-technological methods of formation structures with of optimum properties of electrophysical characteristics and radiometric properties of semiconductor detectors on the base of Si(Li) p-i-n structures and  $\alpha Si-Si(Li)$  heterostuctures with large area are developed; on the base of investigation of relaxation photoconductivity processes in Si(Li) p-i-n structure have been carried out that on the some regions of these area was pronounced a "well" on time dependence of photovoltage's impulse after corresponding photoexcitation is observed; on the basis of analytical calculations of the trajectory of carriers transport in i – area of Si(Li) p-i-n structure where take into account the influence on this process of inhomogeneous potential field it has shown that under such conditions electrons and holes generated as a result of ionization of atoms by nuclear radiation moved forward longer trajectory in electric field direction in sensitive part of semiconductor detector.

**Practical value:** researched detectors structures Si(Li) p-i-n and  $\alpha Si\text{-}Si(Li)$  have possess for understanding of physical processes in various large size semiconductor devices as well as practical value for improving of their characteristics.

**Degree of embed and economic affectivity:** results of investigations had application for optimization of properties of Si(Li) semiconductor detectors at fulfilling contract work with OJSC «UzCRHRM», OJSC «Uzbekchimmash» with total financing around 20 million sum.

**Field of application:** investigated detector structures have prospects for developing of fundamental and applied problems of nuclear physics.