МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ УЗБЕКИСТАНА имени МИРЗО УЛУГБЕКА

На правах рукописи УДК 517.98

Кудайбергенов Каримберген Кадирбергенович

ИЗМЕРИМЫЕ РАССЛОЕНИЯ ЛИНЕЙНЫХ ОПЕРАТОРОВ И ИХ ПРИЛОЖЕНИЯ К ОПЕРАТОРНЫМ АЛГЕБРАМ И ДИФФЕРЕНЦИРОВАНИЯМ

01.01.01 – математический анализ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора физико-математических наук

Ташкент – 2008

Работа выполнена в отделе «Алгебра и анализ» института Математики и информационных технологий Академии Наук Республики Узбекистан

Научный консультант: доктор физико-математических наук, профессор, академик АН Республики Узбекистан Аюпов Шавкат Абдуллаевич

Официальные оппоненты: доктор физико-математических наук, доцент Абдуллаев Рустамбай Зайирович, доктор физико-математических наук, доцент Джалилов Ахтам Абдурахманович, доктор физико-математических наук, Рахимов Абдугафур Абдумажидович. Ведущая организация – Южный математический институт Владикавказского научного центра PAH Защита состоится « » 2008 г. в часов на заседании объединенного специализированного совета Д 067.02.03 при Национальном Университете Узбекистана имени Мирзо Улугбека по адресу: 700174, г.Ташкент, ВУЗ городок, Национальный Университет Узбекистана, механико-математический факультет, ауд. $\Gamma - 303$. С диссертацией можно ознакомиться в научной библиотеке Национального университета Узбекистана имени Мирзо Улугбека. Автореферат разослан « » 2008 г. Ученый секретарь специализированного совета доктор физико-математических наук А.А. Абдушукуров 2

ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИИ

Актуальность работы. Развитие теории решеточно-нормированных

пространств восходит к работам Л.В. Канторовича середины 30-х годов прошлого века. Важнейшим классом решеточно-нормированных пространств являются пространства Банаха — Канторовича. Впервые эти пространства были рассмотрены Л.В. Канторовичем. В середине прошлого века исследованию свойств этих пространств были посвящены работы Б.З.

Вулиха, А.Г.Пинскера, Г.П.Акилова и других. В последнее время исследованиям в этой области посвящены работы А.Г. Кусраева, С.С. Кутателадзе, А.Е. Гутмана, В.И. Чилина, И.Г. Ганиева и других. В начале 80- х годов XX века в работах А.Г. Кусраева была получена булевозначная реализация пространств и решеток Банаха – Канторовича. В частности, им было доказано одно из важных свойств таких пространств о том, что всякое Kпространство Банаха – Канторовича над расширенным -пространством Kявляется модулем над -пространством и модульные операции согласованы с векторной нормой пространства. В 60-х годах прошлого века в работах Т.А. Сарымсакова были заложены основы теории топологических полуполей – Kспециального класса -пространств, которая нашла многие приложения в топологии, функциональном анализе, теории вероятностей. Важным инструментом при изучении модулей Банаха – Канторовича, наряду с булевозначным анализом стала теория непрерывных и измеримых банаховых расслоений. В начале 90-х годов прошлого века в работах А.Е. Гутмана было дано представление пространств Банаха – Канторовича в виде измеримых банаховых расслоений с лифтингом и это дало возможность представления различных классов операторов, действующих в абстрактных векторных решетках.

Техника измеримых банаховых расслоений позволила В.И. Чилину и И.Г. Ганиеву представить решетки Банаха — Канторовича над кольцом измеримых функций в виде измеримого расслоения банаховых решеток, а также булевы алгебры с векторнозначной мерой в виде измеримого расслоения булевых алгебр с числовыми мерами. С помощью таких представлений удалось получить варианты индивидуальных эргодических теорем для сжатий в L_p -пространствах, построенных по полной булевой алгебре с мерой со значениями в кольце измеримых функций.

В связи с развитием общей теории пространств Банаха — Канторовича над кольцом измеримых функций возникла необходимость исследования таких подмножеств в них, которые обладают тем или иным свойством компактности. К сожалению, компактность в общепринятом топологическом смысле не обеспечивает справедливость тех свойств в пространствах Банаха — Канторовича, которые были бы аналогичны соответствующим свойствам в банаховых пространствах. Это послужило причиной введения нового класса

множества и оператора было введено А.Г. Кусраевым. В работах А.Г. Кусраева был получен общий вид самосопряженного циклически компактного оператора в модулях Гильберта — Капланского. Оставался открытым вопрос о представлении циклически компактных операторов в виде измеримого расслоения компактных линейных ∇ операторов, а также -фредгольмовых операторов в виде измеримого расслоения Фредгольмовых операторов.

Структурная теория C^* -модулей начинается с работ И. Капланского, использовавшего эти объекты для алгебраического подхода к теории W^* -алгебр. Рассмотрение - C алгебр, $^*AW^*$ -алгебр и W^* -алгебр как модулей над их центрами, позволили использовать методы булевозначного анализа для описание различных свойств указанных классов * -алгебр.

 C^* -модули являются полезными примерами модулей Банаха — Канторовича. В работах В.И. Чилина, И.Г. Ганиева было получено C^* представление -модулей над кольцом измеримых функций в виде измеримого расслоения классических C^* -алгебр, что дает возможность

 C^*

получать свойства -модулей с помощью "склейки" соответствующих C^* свойств -алгебр над полем комплексных чисел.

* (

Естественным образом возникает вопрос о реализаций -алгебр над кольцом измеримых функций в виде алгебр операторов на модулях Гильберта – Капланского (теорема Гельфанда – Наймарка и Гельфанда – Наймарка – Сигала).

Изучение дифференцирований операторных алгебр начинается с работы И. Капланского, доказавшего, что всякое дифференцирование AW^* - алгебры типа I является внутренним. В этой же работе И. Капланский сформулировал проблему о том, что всякое дифференцирование алгебры фон Неймана должно быть внутренним. Эта проблема была решена в работах C.

Сакаи. Диффференцирования на C^* -алгебрах и алгебрах фон Неймана исследованы в монографиях Сакаи. Всестороннее рассмотрение дифференцировании в общих банаховых алгебрах дано в монографии Γ . Дейлса, где детально изучены условия, гарантирующие автоматическую

непрерывность дифференцирований на различных банаховых алгебрах.

Пусть A – некоторая алгебра. Линейный оператор $D: \to A$ A называется $\partial u \phi \phi$ еренцированием, если D xy Dx yxDy()()(=+) при всех

x, ∈. y A Каждый элемент a A ∈ DA A a: \rightarrow определяет дифференцирование

() $D x ax xa x A_a = -$, $\in .D_a$

по правилу Дифференцирования вида a называются внутренними. Если элемент , порождающий $D_a B$,

дифференцирование, принадлежит более широкой алгебре содержащей A, то называется пространственным дифференцированием. D_a

4

Следующие результаты являются наиболее известными:

- а) Если A коммутативная C^* -алгебра, то всякое дифференцирование на A тождественно равно нулю.
 - б) Если D дифференцирование на C^* -алгебре A, то непрерывно D
- в) Если A алгебра фон Неймана, то любое дифференцирование на A является внутренним.

Развитие теории некоммутативного интегрирования восходит к работе S $M(\)$

И. Сигала, в которой было начато изучение алгебры — всех измеримых операторов, присоединенных к алгебре M. В 2000 году Ш.А. фон Неймана

Аюповым была сформулирована проблема о возможности распространения $ML(0\ 1)^{\infty}$ = ;

результатов а), б), в), для случая алгебры SM(). Если — алгебра $(0\ 1)$; , SM(

всех комплексных ограниченных измеримых функций на то ${}^{0}L$ (0 1); изоморфна — алгебре всех комплексных измеримых функций на

(0 1); . Кусраева было доказано, что алгебра

В 2004 году в работе А.Ф. Бера, Ф.А. допускает нетривиальные

по норме.

Сукочева, В.И. Чилина и в 2005 дифференцирования.

году независимо в работе А.Г. ${}^{0}L(0\ 1)$;

Таким образом, структура дифференцирований алгебры SM(), существенно отличается от случая дифференцирований алгебр фон Неймана. Имеется ряд других важных классов алгебр неограниченных операторов, имеющих приложения как в функциональном анализе так и EW^* математической физике: O^* -алгебры, GB^* -алгебры, -алгебры и др.

Математической физике. О -алгеоры, ОВ -алгеоры, -алгеоры и др. Интересными примерами упомянутых алгебр являются некоммутативные алгебры Аренса.

В связи с этим актуальной является проблема описания дифференцирований алгебры локально измеримых операторов, присоединенных к алгебре фон Неймана (и её некоторых подалгебр), а также некоммутативных алгебр Аренса, ассоциированных с алгеброй фон Неймана и точным нормальным полуконечным следом.

Диссертационная работа посвящена решению вышеназванных проблем.

Степень изученности проблемы. В середине 90-годов прошлого века в работах А.Е. Гутмана было введено понятие векторнозначного лифтинга и доказано, что всякое пространство Банаха — Канторовича над кольцом измеримых функций представляется в виде измеримого банахово расслоения с векторнозначным лифтингом. В работах В.И. Чилина и И.Г. Ганиева было получено представление некоммутативных L_p -пространств, ассоциированных с конечной алгеброй фон Неймана и с центрозначным следом в виде измеримого расслоения некоммутативных L_p -пространств, ассоциированных с числовым следом.

5

В 2004 году в работе А.Ф. Бера, Ф.А. Сукочева, В.И. Чилина были получены необходимые и достаточные условия существования нетривиальных дифференцирований в коммутативных регулярных алгебрах. В частности, 0 L $(0\ 1)$; допускает нетривиальные было показано, что алгебра дифференцирования; более τογο, линейное пространство дифференцирований на 0 L $(0\ 1)$; имеет несчетный базис. В работах А.Г. Кусраева методами булевозначного анализа были получены необходимые и достаточные условия существования нетривиальных дифференцирований и автоморфизмов в расширенных f -алгебрах. В частности, также было алгебра Lпоказано, ЧТО (0) 1) допускает нетривиальные дифференцирования и автоморфизмы. В 2006 году в работе М. Уейта была доказана непрерывность в топологий сходимости по мере дифференцирований алгебры измеримых операторов, присоединенных к атомической алгебре фон Неймана

Связь диссертационной работы с тематическими планами НИР. Исследования проводились по гранту $\Phi.1.1.3$ программы фундаментальных исследований І Φ «Математика, механика, информатика». Цель исследования. Целью диссертационной работы является решение перечисленных выше проблем теории измеримых расслоений *C линейных операторов, -модулей над кольцом измеримых функций и дифференцирований алгебр неограниченных операторов.

* (

Задачи исследования. Реализация -алгебр над кольцом измеримых функций в виде алгебр операторов на модулях Гильберта — Капланского и описание дифференцирований алгебры локально измеримых операторов, присоединенных к алгебре фон Неймана и её некоторых подалгебр. Объекты и предмет исследования: модули Банаха — Канторовича,

 *C

Аренса, дифференцирования.

Методы исследования. Применены общие методы измеримых банаховых расслоений, функционального анализа, теории операторных алгебр.

Основные положения, выносимые на защиту. На защиту выносятся:

- 1. векторный вариант критерия Никольского ∇-фредгольмовости для операторов на модулях Банаха Канторовича;
- 2. прицип равномерной ограниченности для операторов на модулях Банаха Канторовича;

 *C

3. представление коммутативных унитальных -алгебр над кольцом измеримых функций в виде алгебры непрерывных сохраняющих

 ^{0}L ;

перемешивания отображений на циклических компактах со значениями в 4. ГНС-представление -алгебр над *C 0L ;

5. общий вид дифференцирований алгебры локально измеримых операторов,

6

присоединенных к алгебре фон Неймана типа I и её некоторых подалгебр; 6. полное описание дифференцирований некоммутативных алгебр Аренса, ассоциированных с алгеброй фон Неймана и точным нормальным полуконечным следом.

Научная новизна. В работе получены следующие новые результаты: - доказано, что всякий циклически компактный оператор на модуле Банаха - Канторовича над 0L представляется в виде измеримого расслоения компактных линейных операторов;

∇

- доказано, что всякий -фредгольмов оператор представляется в виде измеримого расслоения фредгольмовых операторов;
- получен прицип равномерной ограниченности для операторов на модулях Банаха Канторовича;

 *C

— доказано, что коммутативная унитальная -алгебра над кольцом измеримых функций изометрически *-изоморфна алгебре непрерывных сохраняющих перемешивания отображений на циклических компактах со значения 0L ;

ми в

- доказано, что всякая -алгебра над * C 0 L изометрически * -изоморфна замкнутой подалгебре алгебры всех 0 L -ограниченных 0 L -линейных операторов на модуле Гильберта Капланского над 0 L ;
- найден общий дифференцирований алгебры локально измеримых

операторов, присоединенных к алгебре фон Неймана типа I и её некоторых подалгебр;

– получено полное описание дифференцирований некоммутативных алгебр Аренса, ассоциированных с алгеброй фон Неймана и точным нормальным полуконечным следом.

Научная и практическая значимость результатов исследования. В работе получено решение важных проблем теории операторов на модулях Гильберта — Капланского и теории дифференцирований на неограниченных операторных алгебрах. Результаты и методы, представленные в работе, могут быть использованы при исследованиях по функциональному анализу, теории операторных алгебр, а также в алгебраическом обосновании квантовой статистической механики.

Реализация результатов. Диссертационная работа носит теоретический характер.

Апробация работы. Результаты диссертации докладывались на семинаре «Операторные алгебры и их приложения» (Институт Математики и информационных технологии АН РУз, руководитель: академик Ш.А. Аюпов), на городском семинаре по функциональному анализу (Национальный Университет Узбекистана, руководитель: проф. В.И. Чилин), на семинаре кафедры алгебра и функциональный анализ (Национальный Университет Узбекистана, руководитель: академик Ш.А. Аюпов), на городском семинаре по комплексному анализу (Национальный Университет

7

Узбекистана, руководитель: академик А.С. Садуллаев), во время научных командировок в институт прикладной математики университета Бонна (Германия, 2006, 2007), на международной научной конференции «Операторные алгебры и квантовая теория вероятностей» (Ташкент, 2005), на международной конференции «Порядковый анализ» (Владикавказ, Россия, 2006), на республиканской конференции «Современные проблемы и актуальные вопросы функционального анализа» (Нукус, 2006).

Опубликованность результатов. Основные результаты диссертации опубликованы в работах [1]-[31]. В работах [11], [13], [18] постановка задач принадлежит Ш.А. Аюпову, в работах [14], [16], [17], [19], [20], [21], [22] постановка задач принадлежит С. Альбеверио и Ш.А. Аюпову, в работах [1], [3], [4], [5], [7] постановка задач принадлежит И.Г. Ганиеву, в работах [12], [15] постановка задач принадлежит В.И. Чилину и И.Г. Ганиеву. Доказательства основных результатов, полученных в этих работах, принадлежат диссертанту.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, разбитых на 14 параграфов, заключения и 129 наименований использованной литературы. Полный объём диссертации – 213 страниц.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

В первом параграфе первой главы диссертации приводятся необходимые определения и результаты из теории меры, теорий решеточно нормированных пространств, измеримых банаховых расслоений и др.

Пусть (Ω, Σ, μ) — измеримое пространство с мерой, обладающей свойством прямой суммы, a^{0} 0 L L = (Ω, Σ, μ) — алгебра всех комплексных измеримых функций на (Ω, Σ, μ) (равные почти всюду функции отождествляются).

Пусть X – отображение, ставящее в соответствие каждой точке $\omega \in \Omega X$ $_{\omega} \omega$, \Box , где $X(\cdot) \{0\} \omega \neq$ для всех некоторое банахово пространство $_{(\cdot)}(\cdot)$ $_{X}$

ω \in Ω . Сечением называется функция , определенная почти всюду Xu

 $\Omega u X$ () () ω ∈ ω для всех ω ∈dom() u , где

в и принимающая значение

dom() и есть область определения u .

Пусть L – некоторое множество сечений.

Определение 1.1.6. Пара (XL,) называется измеримым банаховым расслоением (ИБР) над Ω , если

$$X()$$
 ω.
$$= \sum_{i} \int_{i}^{8} \int_{i}^$$

Сечение s называется ступенчатым, если

i = 1 $1_{ii}c\ LA\ i\ n\in \ , \in \Sigma, = \ ,$. Сечение u называется измеримым, если для всякого

 $A \in \Sigma$, $< \infty \mu()$ A найдется такая последовательность ступенчатых

()
$$_{nn}S$$
 \in сечений, что для почти всех $\omega \in A$.

для почти всех $\omega \in A$.

Пусть $M\left(\Omega,X\right)$ – множество всех измеримых сечений. Символом ^{0}L

 (Ω, X) обозначим факторизацию $M(\Omega, X)$ по отношению равенства почти всюду. Через u€ обозначим класс из $^{0}L(\Omega, X)$, содержащий сечение $uMX \in \Omega$, (). Отметим, что функция $_{()}$ \square_{X} \square_{ω} $\omega \to \square$ измерима для любого $uMX \in \Omega$, (). Класс эквивалентности, содержащий функцию $_{()}$ \square_{X} \square_{ω} , обозначим через \square . Пространство $^{0}(())LX\Omega$, является ПБК над ^{0}L .

Во втором параграфе первой главы изучены измеримые расслоения компактных множеств.

Пусть ∇ – булева алгебра всех идемпотентов в 0L . Если

(bo)-сходится в 0L (Ω, X) и сумма этого ряда называется *перемешиванием* () $_A$ $u_{\alpha \alpha \in}$ относительно () $\Pi_{\alpha \alpha \in A}$. Это сумма обозначается через \min () $u \Pi_{\alpha \alpha}$. Для $^0K \subset \Omega, LX$ () через обозначается множество всех

mixK

KK

перемешиваний произвольных семейств элементов из . Множество называется *циклическим*, если множества A $\min K K$ = . Для направленного через $\nabla(\)$ A обозначается множество всех разбиений единицы в ∇ , заиндексованных элементами A. Отношение порядка на $\nabla(\)$ A определяется следующим образом:

$$_{121212}$$
 $V \le \Leftrightarrow \forall, \in, \land \neq \Rightarrow \leq, \in \nabla \lor \alpha\beta \lor \alpha \lor \beta \alpha \beta \lor \lor A(()()0)(())$ A .

Пусть () $_{A}u_{\alpha\alpha}$ сеть в ^{0}L (Ω , X). Для каждого \mathbf{v} \in $\mathbf{\nabla}$ () A положим u mix(()) $u_{\mathbf{v}} = \mathbf{v}$ α_{α} и получим новую сеть $_{()}$ () $_{A}u_{\mathbf{v}}{}_{\mathbf{v}\in\mathbf{v}}$. Произвольная подсеть сети $_{()}$ () $_{A}u_{\mathbf{v}}{}_{\mathbf{v}\in\mathbf{v}}$ называется μ иклической подсетью сети () $_{A}u_{\alpha\alpha}$.

Определение 1.2.1. Подмножество ${}^{0}K \subseteq \Omega$, LX() называется K *циклически компактным*, если оно циклично и всякая сеть в имеет K. циклическую подсеть, сходящуюся к некоторой точке из

Основным результатом этого параграфа является следующая

9

Тогда K_{ω} – компакт для почти всех $\omega \in \Omega$, при этом

0
 K xL X x K $\{ ()$ $()$ для почти всех $\} = \in \Omega, : \in \omega \omega_{\omega} \in \Omega$.

В третьем параграфе первой главы выясняется структура модулей над кольцом измеримых функций, которые представляются как измеримое расслоение конечномерных пространств.

Определение 1.3.1. Говорят, что модуль E над⁰ L конечно порожденный, если в E существует конечное число элементов $_{1\,2\,n}x$, $x\,x$,..., таких, что всякое $x\,E$ \in можно представить в виде $_{1\,1\,n\,n}x$ = + ... + $\lambda\,x\,x\,\lambda$, где 0 1 λ_i \in , =, $L\,i\,n$. Модуль E над 0L называется σ -конечно-порожденным, если существует такое разбиение $\{\ \}$ Π $_n$ единицы в ∇ , что каждый модуль Π $_nE$ - конечно-порожденный.

Основным результатом этого параграфа является следующая **Теорема 1.3.2.** Модуль ${}^{0}L()$ Ω , $X-\sigma$ -конечно-порожден в том и только в том случае, когда X() ω – конечномерен для почти всех $\omega \in \Omega$. Вторая глава посвящена измеримым расслоениям ограниченных и компактных линейных операторов и доказательству с их помощью аналогов основных принципов функционального анализа для модулей Банаха — Канторовича.

В первом параграфе второй главы изучены измеримые расслоения ограниченных и компактных линейных операторов.

$$XY\Omega$$

Пусть и измеримые банаховы расслоения над с лифтингами l , $\{\ (\)\ (\ TX\ Y_\omega\colon\to\ \omega\ \omega)\}$ — измеримое расслоение

 $_{X}l_{Y}$

и соответственно,

ограниченных операторов, т.е. $Tx\ M\ Y\ (\ (\))\ (\)\ _{\omega}\ \omega \in \Omega,$ для любого $x\in \Omega,$ $M\ X\ (\)$. Равенство

$$Tu T u () (())$$
\$ = $\omega \omega (1)$

определяет 0L -линейный оператор . $^{0\,0}$ $TL\,XL\,Y$: Ω , $\to \Omega$, () () И.Г.Ганиевым было показано, что если $\{\ ()\ (TX\,Y)\}_{\ \omega}$: $\to \omega \ \omega$ — измеримое расслоение ограниченных линейных операторов такое, что

(1), является ^{0}L -ограниченным.

Следующий результат показывает, что требование 0

$$L^{\omega}_{\omega_{\alpha}}$$

является лишним при установление ограниченности оператора T.

T

Предложение 2.1.1. Оператор, определенный равенством (1),

является -ограниченны ^{0}L м.

Напомним, что ^{0}L -линейный $^{0\,0}TL\,XL\,Y$: Ω , $\rightarrow \Omega$, () () оператор

называется циклически компактным, если образ всякого ограниченного множества в циклически компактным.

 $)^{0}L\left(\mathbf{\Omega},X\right)$ является относительно

Следующий результат является основным результатом параграфа.

$$^{0.0}TLXLY:\Omega, \rightarrow \Omega, ()()$$

Теорема 2.1.2. Пусть – циклически существует измеримое

компактный

 ^{0}L -линейный оператор. Тогда

расслоение компактных линейных операторов $\{\ ()\ ()\ TXY_\omega: \to , \in \omega \omega \omega$ $\Omega \}$ такое, что $Tx\ Tx\ (\)\ (\ (\)) = _\omega \omega$ для Bcex^0

$$x \in LX() \Omega$$
,.

Второй параграф второй главы посвящен векторному варианту теоремы Банаха об открытом операторе для операторов в пространствах Банаха — Канторовича и ее применениям к измеримым расслоениям операторов с замкнутой областью значений.

Для каждого 0L -линейного ${}^0_0TLXLY:\Omega,\to\Omega,()()$ положим ke $xLX()\{()()\}=:\in\Omega,$

 $r \{ () 0 \} TxTx = := H^0RTTx$

Теорема 2.2.1. Пусть – ${}^{0\,0}$ *TL X L Y* : Ω , $\rightarrow \Omega$, () () ${}^{0}L$ -ограниченный 0 *L* - 1 *T* - ${}^{0}L$ -

линейный оператор, ker 0 T = , ${}^{0}RTLY()()$ = Ω , . Тогда является ограниченным оператором.

 $^{0}rL \in r \ 0$ означает, что $r()\ 0\ \omega >$ для почти

Для элемента запись

βcex ω ∈Ω.

Положим 0

$$_{1}BX \times L X = \{ () \} = \{ () \} = \{ () \}$$

Следующий результат является векторным вариантом теоремы Банаха об открытом операторе для операторов в модулях Банаха – Канторовича.

Теорема 2.2.2. Пусть $-{}^{0}{}^{0}TLXLY$: Ω , $\rightarrow \Omega$, () (${}^{0}L$ -ограниченный ${}^{0}L$ -

линейный оператор и ${}^0RTL\ Y()\ (\)$ = Ω , . Тогда существует элемент 0rLr \in , 0 ${}_1(\)\ (\ (\))$ В $YTB\ X$ \subset ${}_r$.

такой, что

Третий параграф второй главы посвящен вариантам классической теоремы Банаха — Штейнгауза о равномерной ограниченности и ее применениям.

Следующий результат показывает, что если семейство ${}^{0}L$ - ограниченных ${}^{0}L$ -линейных операторов, действующих в ПБК над ${}^{0}L$,

11

ограничено поточечно, то оно равномерно ограничено.

Теорема 2.3.1. Пусть F – семейство 0L -ограниченных 0L -линейных операторов из 0L () Ω , X в 0L (Ω , Y). Если для всякого 0

 $x \in \Omega, LX()$

существует

$$^{0}\sup\{\blacksquare\}$$
 $TFL:\in\in$,

то существует

$${}^{0}\sup\{\}$$
 $TFL:\in\in$.

В четвертом параграфе второй главы исследуется измеримое расслоение Фредгольмовых операторов.

Пусть —
$$^{0\ 0}$$
 $TLXLY$: Ω , $\rightarrow \Omega$, () (^{0}L -ограниченный ^{0}L -линейный

оператор, – сопряженный оператор. $^{0\,0}$ *TL YLX*() (** : Ω , →

Ω,)* Рассмотрим однородные уравнения

$$Tx Tg() 0() 0^* = , =$$

и соответствующие основное и сопряженное уравнения

$$TxyTgf()()^* = , = .$$

 $T\nabla$

Говорят, что для оператора справедлива -альтернатива Φ редгольма, если существует счетное $\{\}$ π $_n$ единицы в ∇ такое, разбиение что выполнены условия:

1) Однородное уравнение $_0$ π Tx() 0 = (сопряженное однородное уравнение) имеет единственное нулевое решение. Уравнение $_0$ π Tg() 0 * = * =) разрешимо и имеет

 $_{0}Tx \ y\ (\)\ \pi = \pi_{0}$ (соответственно $_{0}Tg \ f(\)\ \pi\ \pi_{0}$ единственное решение для любой правой части $^{0}yL\ Y \in (\Omega,\)$ (соответственно $^{0}fL\ X(\)^{*} \in \Omega,\)$;

12 (()0 , $_{n\,ni}$ π fx~i~nn , , =, \leq \in соответственно); 4) общее решение основного уравнения имеет вид

$$= + \sum_{x \in X} \sum_{\substack{n \in X \\ x \in X}} x = + \sum_{\substack{n \in X \\ n \in X}} \sum_{\substack{n \in X \\ n \in X}} x = + \sum_{\substack{n \in X \\ n \in X}} \sum_{\substack{n \in X \\ n \in X}} x = + \sum_{\substack{n \in X \\ n \in$$

а общее решение сопряженного уравнения –

$$g g c \Pi$$

$$= + \sum_{n \text{ on } n \text{ in } i}^{\infty *} g_{n,n}$$

где $_{n}x^{*}$ (соответственно $_{n}g^{*}$) — частное решение уравнения () π $_{n}Tx$ y = (соответственно ()), где π $_{n}Tg$ f^{*} = $_{n}^{0}$, $_{n}i$ c L i nn $_{n}$ \in $, \leq$ \in .

Следующий результат является векторным вариантом критерия Никольского фредгольмовости ограниченных линейных операторов в ПБК. Теорема 2.4.2.

Для ${}^{0}L$ -ограниченного ${}^{0}L$ -линейного оператора

 $^{0\,0}\,TL\,X\,L\,Y$: $\Omega, \to \Omega,$ () () эквивалентны: следующие условия

- 1) операторы T_{ω} Фредгольмовы для почти всех $\omega \in \Omega$;
- 2) оператор T является ∇ -Фредгольмовым;
- 3) существуют ^{0}L -линейные операторы A и K из ^{0}L () Ω , X в ^{0}L () Ω , Y такие, что A обратим, K σ -конечно-порожден и T A = + K; 4) существуют ^{0}L -линейные операторы A и K из ^{0}L () Ω , X в ^{0}L () Ω , Y такие, что A обратим, K циклически компактен и T A = + K .

В третьей главе результаты предыдущих глав применены для * C построения основ теории -алгебр над кольцом измеримых функций и доказана теорема о реализаций таких алгебр в виде алгебр операторов на модулях Гильберта — Капланского (теоремы Гельфанда — Наймарка и Гельфанда — Наймарка — Сигала).

В первом параграфе третьей главы изучаются алгебры Банаха — Канторовича над 0L и свойства спектра элементов таких алгебр. U

Пусть – произвольная алгебра над полем комплексных чисел и одновременно модуль над) для всех

 ^{0}L , причем () () ($\lambda u\ v\ uv\ u\ v$ = $\lambda\ \lambda$ =

 ${}^{0}\lambda$ \in ,, \in L uv U . Рассмотрим на U некоторую ${}^{0}L$ -значную норму , U наделяющую структурой пространства Банаха — Канторовича, в частности, L , \in u U .

для всех 0 λ \in

Банаха — Канторовича над 0L с единицей e такой, что \blacksquare = , 1 где — 1 единица в алгеброй Банаха — Канторовича. 0L , то U назовем унитальной

Теорема 3.1.1. Для всякой алгебры Банаха — Канторовича U над 0L существует единственное с точностью до изоморфизма измеримое

расслоение банаховых алгебр () XL, с векторнозначным лифтингом U^0L () Ω , , X и такое, что изометрически изоморфна

 $\{(\)(\)(\)\}\ (\)_{x}lx\ xL\ XX\ \omega\ \omega\ ^{\circ}: \in \Omega, =$ для всех $\omega\in\Omega$. При этом, если U

унитальная алгебра, то

для всех $\omega \in \Omega$.

X() ω также унитальная алгебра

Во втором параграфе третьей главы изучается представления коммутативных C -алгебр над кольцом измеримых функций. * U U

Пусть – произвольная *-алгебра и – алгебра Банаха –

Канторовича над

 $\operatorname{Bcex}^0 \lambda \in L \in U$

 ^{0}L , причем () $\lambda u \, \lambda u \,^{**}$ = для

Определение 3.2.1. U называется C^* -алгеброй над 0L , если для всех uv U , \in имеет место соотношение 2

$$u uu^* = \cdot$$
.

 ^{0}L -линейный функционал ^{0}f : → UL называется: положительным ($f \ge 0$), если $f \ge 0$ для всех $^{*} \ge 0$ х $U \in ; ^{0}L$ -состоянием, если $f \ge 0$ и $\blacksquare = ; \mathbf{1}^{0}L$ -состояние Φ называется чистым, если из $\Phi \ge \Psi$ 0, где $\Psi - ^{0}L$ -

линейный функционал, вытекает $\psi = \lambda \varphi$ для некоторого . ${}^{0}\lambda$ $\lambda \in , \leq \leq L$ 0 1

Множество F $U^* \subset$ называется *-слабо циклически компактным, если F оно циклично и всякая сеть в имеет циклическую подсеть, *-слабо сходящуюся к F. некоторой точке из

Через E_U обозначим множество всех 0L -состояний на U.

Предложение 3.2.3. Пусть $U - C^*$ -алгебра над 0L . Тогда

- (a) E_U *-слабо циклически компактно;
- (b) если U коммутативна, то множество $K(\)$ U всех чистых 0L -состояний на U *-слабо циклически компактно.

Отображение 0f : $\to KUL$ () называется сохраняющим перемешивания, если

для произвольного разбиения единицы () $\pi_{\alpha\alpha\in I}$ в ∇ и () ($\phi_{\alpha\alpha I}KU$) \in \sum

$$\sum_{}$$
 = .

π φ πφ)

имеет место () ($ff_{\alpha\alpha\alpha\alpha\alpha}$

Рассмотрим на $K(\)\ U$ *-слабую топологию, индуцированную из U *.

Через 0 (()) C KU L $_m$, обозначим множество всех непрерывных, сохраняющих перемешивания отображений из K() U в 0 L . Для каждого 0 (()) $_m f$ \in , C KU L положим

$$= \sup\{ () () \} \mid | : \in fx \times KU.$$

Рассмотрим в $^{0}(())$ C KU L $_{\it m}$, поточечные алгебраические операции и инволюцию.

Предложение 3.2.6. 0 ((()) C KUL_{m} , ,) является C -алгеброй над $^{*0}L$. Следующие две теоремы являются основными результатами главы, в них получена реализация -алгебр над $^{*}C^{0}L$ в виде алгебр операторов на модулях Гильберта — Капланского, а в коммутативном случае — в виде алгебры непрерывных сохраняющих перемешивания отображений на циклических компактах со значениями $\mathbf{B}^{0}L$.

Теорема 3.2.1. Пусть U унитальная коммутативная - C алгебра над $^{*\,0}L$ и $K(\)$ U множество всех чистых состояний на U . Тогда U изометрически *-изоморфна алгебре C $K^{\,0}(\ (\)\)$ $_m$ U L, .

В третьем параграфе третьей главы изучается ГНС-представление C^* -алгебр над кольцом измеримых функций.

Пусть A — модуль Гильберта — Капланского над 0L . Пространство BA() всех 0L -ограниченных 0L -линейных операторов на A является C^* - алгеброй над 0L .

Следующий результат является векторным вариантом классической теоремы Гельфанда – Наймарка – Сигала.

Теорема 3.3.1. Если $U-C^*$ -алгебра над 0L , то существует U изометрический *-изоморфизм алгебры на некоторую замкнутую *- BA()A — некоторый модуль Гильберта — Капланского. подалгебру , где

В четвертой главе аппарат теории модулей Гильберта — Капланского применяется к исследованию дифференцировании на алгебрах неограниченных измеримых операторов, присоединенных к алгебрам фон Неймана. Здесь решена проблема описания дифференцирований для двух важных классов алгебр: алгебры локально измеримых операторов, присоединенных к алгебре фон Неймана типа I (и её некоторых подалгебр), а также для некоммутативных алгебр Аренса, ассоциированных с алгеброй фон Неймана и точным нормальным полуконечным следом.

В первом параграфе четвертой главы изучается алгебра локально измеримых операторов относительно алгебры фон Неймана типа І. $HBH(\)$

Пусть – гильбертово пространство, – алгебра всех ограниченных линейных операторов, H, M – подалгебра действующих на фон Неймана в $BH(\), PM(\)$ – полная решетка всех ортопроекторов в M.

15

Напомним, что замкнутый линейный оператор x, действующий в

гильбертовом пространстве H, называется измеримым относительно алгебры фон Неймана M, если $x\eta M$ и $\mathcal{D}(\)$ x является сильно плотным в H. S $M(\)$ Обозначим через множество всех измеримых операторов, присоедине M .

нных к

Замкнутый линейный оператор x, действующий в гильбертовом H, пространстве называется локально измеримым относительно алгебры фон Неймана последовательность $_1\{\ \}_{n\,n}z^{\infty}$ =

M, если $x \eta M$ и существует такая

центральных проекторов из M , что $_nz \uparrow \mathbf{1}$ и ($_nzx$ $SM \in$) для всех $n \in$. LS M()

Множество всех локально измеримых операторов, относительно

присоединенных к

M, является унитальной *-алгеброй

операций сильного сложения и умножения и перехода сопряженному оператору. При этом $SM(\cdot)$ является заполненной *-подалгеброй в $LSM(\cdot)$. Пусть H – гильбертово пространство и $^0L(\cdot,\cdot)$ Ω H пространство классов эквивалентности измеримых отображений из Ω в H. $^0L(\cdot,\cdot)$ Ω H является модулем Гильберта — Капланского над $^0L(\cdot,\cdot)$ H $^\infty$ Ω является модулем Гильберта — Капланского над $L(\cdot,\cdot)$ H $^\infty$ Ω . Через обозначим

 $^{0}BLH((,))\Omega$ операторов на $^{0}L(,)\Omega H$, а

алгебру всех

 ^{0}L -ограниченных ^{0}L -линейных

через BLH((,)) алгебру всех $^{\circ}\Omega)L()^{\circ}\Omega$ -ограниченных -линейных $L()^{\circ}$

Ω

операторов $L\left(,\right) H^{\infty }\Omega$. на

Напомним, что алгебра фон Неймана M называется $muna\ I$, если она изоморфна алгебре фон Неймана с абелевым коммутантом. Известно, что если M алгебра фон Неймана типа I, то существует единственная

$$\cong \Omega, \sum LSM(\cdot)$$
 $MBLH_{\alpha\alpha}$ $(\cdot(\cdot))$ **Теорема 4.1.1.** Для алгебра *- изоморфна алгебре $BLH_{\alpha\alpha}$ Ω Ω Ω Ω Ω Ω Ω

Во втором параграфе четвертой главы изучается дифференцирования 16

алгебры локально измеримых операторов относительно алгебры фон Неймана типа I.

 $n \in$

Пусть M однородная алгебра фон Неймана типа I $_n$, . В этом $LS\,M(\,)\,^0(\,)\,$ M_nL всех -матриц над случае алгебра изоморфна $n\,n\,^\circ$ алгебре 0L .

Пусть ${}^0L\ L^0$ δ : \to — произвольное дифференцирование и D_{δ} — "покоординатное" дифференцирование на ${}^0(\)\ M_nL$ определенное по правилу

$$_{1}(())(())^{n}D_{\delta}\lambda\delta\lambda_{ijij,=ijij,=1}$$
 $^{n}=,(2)$

где⁰

 $_1()\ ()\ ^n$ $\lambda_{ij\,ij\,n\,,\,=}$ $\in M\,L$. Оператор D_{δ} является дифференцированием на $^0(\)$ M_nL .

Предложение 4.2.1. Всякое дифференцирование D алгебры $^{0}()$ $M_{n}L$ единственным образом представляется в виде

$$DDDD = {}_{a} + , {}_{\delta}$$

где — внутреннее дифференцирование, $D_a D_{\delta}$ — дифференцирование, определенное по правилу (2).

$$\stackrel{\oplus}{\simeq} \Omega, \sum_{\alpha \in A} MBL H_{\alpha \alpha}$$

Пусть алгебра фон Неймана типа I с центром \in

$$L$$
 () $^{\infty}\Omega$ D LS M (), δ — его сужение на ^{0}L . Тогда и — дифференцирование на

δ отображает каждое в себя, и поэтому

 $^{0}q\,L_{\mathrm{a}}$ б порождает $^{0}q\,L_{\mathrm{a}}$ с. Положим

дифференцирование $_{\alpha}\delta$ на для каждого

$$FIH \{ \dim_{\alpha} = \alpha \in : = < \infty . \alpha \}$$

Пусть $D_{\alpha\delta}(\alpha \in F)$ дифференцирование на матричной алгебре , определенное по правилу (2). Для 0 q LS M M q L () ($_{\alpha\alpha}\cong$) $_{\alpha}$ $\alpha\in I$ F , положим D 0 Положим $_{\alpha\delta}\equiv$.

$$D x D x x x LS M()(())()()(3)_{\alpha \delta \delta \alpha \alpha} = = = = = .$$

Следующий результат является одним из основным результатов главы,

и дает общий вид дифференцирований алгебры локально измеримых операторов относительно алгебр фон Неймана типа I, а также играет ключевую роль при описании дифференцирований алгебр измеримых, T - измеримых и T -компактных операторов относительно алгебр фон Неймана типа I.

Теорема 4.2.4. Пусть M — алгебра фон Неймана типа I. Всякое D LS M() дифференцирование на единственным образом представляется в виде

$$DDDD = {}_{a} + , {}_{\delta}$$

где — внутреннее дифференцирование и $D_a D_{\delta}$ — дифференцирование вида (3).

Следствие 4.2.3. Пусть M — алгебра фон Неймана типа I $_{\infty}$. Тогда всякое дифференцирование алгебры LS M() является внутренним. В третьем параграфе четвертой главы изучаются дифференцирования на подалгебрах алгебры локально измеримых операторов относительно алгебр фон Неймана типа I.

Пусть M алгебра фон Неймана и **T** – точный нормальный полуконечный след на M. Напомним, что замкнутый линейный оператор x называется **T** -измеримым относительно алгебры фон Неймана M, если $x \eta M$ и $\mathcal{D}() x$ – область определение x, является **T** -плотной в H, т.е.

 $\mathcal{D}(\)$ х ηM и для каждого $\varepsilon > 0$ существует проектор $p \in M$ такое, что $p(\)$ () H х $\subset \mathcal{D}$ и $\mathsf{T}(\)$ p ε $^{\perp}<$. Множество S $M(\ ,\mathsf{T})$ всех T -измеримых операторов относительно M является заполненной *-алгеброй в S $M(\)$.

Теорема 4.3.2. Пусть M — алгебра фон Неймана типа I. Всякое дифференцирование D на S M() или S M(,) T единственным образом представляется в виде

$$DDDD = {}_{a} + , {}_{\delta}$$

где — внутреннее дифференцирование и $D_a D_{\delta}$ — дифференцирование вида (3).

В алгебре $SM(\ ,T\)$ рассмотрим подмножество $_0SM(\ ,T\)$ состоящее из операторов x таких, что для любого $\epsilon>0$ существует проектор $p\in PM(\)$ с $T(\)pxpM^{\perp}<\infty,\in \mu$

18

 $_{0}S\,M(\,$,T $\,$) является идеалом в $S\,M(\,$) ,T и называется алгеброй T - компактных операторов.

Следующий результат является основным результатом параграфа.

Теорема 4.3.3. Если M – алгебра фон Неймана типа I с центром Z, то всякое Z -линейное дифференцирование алгебры $_{0}SM(\ ,\mathsf{T}\)$ является пространственным и порождается элементом из $SM(\cdot,)$ **Т**.

В четвертом параграфе четвертой главы изучается дифференцирования некоммутативных алгебр Аренса.

Для
$$p \ge 1$$
 положим () { () () ^{pp}LMx)

$$\mathbf{I} x x L M$$
 т т ' = || , \in , . Тогда

Рассмотрим множество

, = ,
$$\mid$$
 .
$$LM \, LM \, ^\omega \, \mathsf{T} \, \mathsf{T} \, \left(\right) \left(\right)^{\, p}$$

 $L\,M\!(\,^\omega\,$,Т является локально полной выпуклой метризуемой *-алгеброй

относительно топологии t, порожденной системой норм $_1\{\}_{p,p\geq}$. Алгебра $LM(^{\omega},T)$ называется (некоммутативной) алгеброй Аренса. Введем обозначение

$$, = , \mid ,$$

$$LM LM {}^{\omega} T T$$

$$() () {}^{p} {}_{2}$$

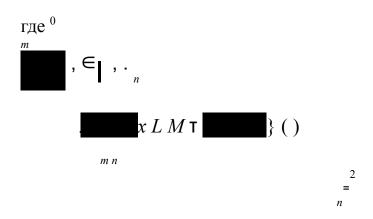
$${}_{p} \quad \geq \quad 2$$

и на множестве) $_2L$ M($^\omega$,**T** рассмотрим топологию $_2t$, порожденную системой норм $_{2}\left\{ \right. \right\} _{n,n\geq 1}$.

Предложение 4.4.4. $_2$ (() $_2L\,M\,t$) $^\omega$,**T** , является полной метризуемой локально выпуклой *-алгеброй.

Отметим, что при T (1) < ∞ имеет место равенство $_{2}LMLM()()^{\omega\omega}$,=, T T , и топология совпадает с топологией $_{2}t$ t.

На $_{2}MLM(^{\omega}+,T)$ введем семейство норм $_{2}^{"}\{\}_{n,n\geq 0}$, положив



Пусть — топология на) $_0t$ $_2MLM($ $^\omega$ + , , T порожденная семейством норм " $_2$ { } $_n$ $_n$.

Предложение 4.4.6. ($_2$ () $_0$ M LM t) $^\omega$ + , , T является локально выпуклой полной метризуемой *-алгеброй. Более того, алгебра Аренса L M() $^\omega$,T является идеалом в $_2$ M LM() $^\omega$ + ,T .

Основным результатом этого параграфа является следующая теорема, которая дает полное описание дифференцирований на некоммутативных алгебрах Аренса.

Теорема 4.4.3. Пусть M – полуконечная алгебра фон Неймана с точным нормальным полуконечным следом T . Тогда всякое дифференцирование D алгебры L M($^{\omega}$, $_{\mathsf{T}}$) является пространственным, при этом оно имеет вид

$$D x ax xa x L M()()^{\omega} = -, \in T$$

для некоторого $_2$ a M LM() $^{\omega} \in +$, T .

Следствие 4.4.5. Если M — абелева алгебра фон Неймана с точным нормальным полуконечным следом ${\sf T}$, то все дифференцирования алгебры L $M(\ ^\omega, {\sf T}\)$ тождественно равны нулю.

ЗАКЛЮЧЕНИЕ

В первой главе получено представление циклически компактных множеств в виде измеримого расслоения компактных множеств и выяснена структура модулей над кольцом 0 L измеримых функций, которые представляются как измеримое расслоение конечномерных пространств.

Во второй главе получены векторные варианты теорем Банаха об

открытом операторе и Банаха – Штейнгауза о равномерной ограниченности, а также доказан векторный вариант критерия Никольского фредгольмовости ограниченных операторов.

В третьей главе изучены алгебры Банаха – Канторовича над кольцом измеримых функций.

 C^*

Доказано, что всякая унитальная коммутативная -алгебра над кольцом алгебра всех непрерывных ^{0}L , изометрически *-изоморфна

сохряняющих перемешивания отображений из множества всех чистых ^{0}L - 20

состояний в кольцо 0L .

Доказан векторный вариант классической теоремы Гельфанда — Наймарка — Сигала C -алгебр над $^{*\,0}L$.

В четвертой главе найден общий вид дифференцирований алгебр всех локально измеримых, измеримых и **T** -измеримых операторов, присоединенных к алгебрам фон Неймана типа I, а также найдены необходимые и достаточные условие пространственности дифференцирований алгебры всех **T** -компактных операторов, присоединенных к алгебрам фон Неймана типа I.

Дано полное описание дифференцирований некоммутативных алгебр Аренса, ассоциированных с полуконечной алгеброй фон Неймана. Работа носит теоретический характер. Результаты и методы, изложенные в диссертации, могут быть использованы при различных исследованиях по функциональному анализу, в теории операторных алгебр, математической физике.

Автор выражает глубокую признательность своему научному консультанту академику АН Республики Узбекистан, профессору Шавкату Абдуллаевичу Аюпову за ценные советы и внимание к работе.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

І. Статьи, опубликованные в научных журналах:

- 1. Кудайбергенов К.К., Ганиев И.Г. Измеримые расслоения компактных множеств // Узб. Мат. Жур. Ташкент, 1999. № 6. С. 37-44. 2. Кудайбергенов К. К. Измеримые расслоение непрерывных отображений циклических компактов // Узб. Мат. Жур. Ташкент, 2000. № 3. С. 7-14.
- 3. Ganiev I.G. Kudaybergenov K.K Measurable bundles of compact operators // Methods of functional analysis and topology. Kiev, 2001. № 3 (7). P. 1-6
- 4. Ганиев И.Г., Кудайбергенов К.К. Теорема Банаха об обратном операторе в пространствах Банаха Канторовича // Владикавказ. Мат. Жур. –

- Владикавказ, 2004. № 3 (6). С. 21-25.
- 5. Ганиев И.Г. Кудайбергенов К.К. Конечномерные модули над кольцом измеримых функций // Узб. Мат. Жур. Ташкент, 2004. № 4. С. 3-9. 6. Кудайбергенов К. К. Измеримые расслоения операторов с замкнутой областью значений // Узб. Мат. Жур. Ташкент, 2005. № 3. С. 54- 62.
- 7. Ганиев И. Г., Кудайбергенов К.К. Принцип равномерной ограниченности Банаха Штейнгауза для операторов в расширенных пространствах Банаха Канторовича над 0L // Математические труды.

21

- Новосибирск, 2006. № 1 (9). С. 21-33.
- 8. Кудайбергенов К. К. Теорема Гельфанда Мазура для С*-алгебр над кольцом измеримых функции // Владикавказ. Мат. Жур. Владикавказ, 2006. N 1 (8). C. 45-49.
- 9. Кудайбергенов К. К. Измеримое расслоение интегральных операторов // Узб. Мат. Жур. Ташкент, 2006. № 1. С. 49-57.
- 10. Kudaybergenov K. K. Fredholm operators in Banach Kantorovich spases // Methods of functional analysis and topology, Kiev, 2006. № 2 (12). P. 234-242.

 *C

- 11. Аюпов Ш. А., Кудайбергенов К. К. Дифференцирования -алгебр над кольцом измеримых функции // Узб. Мат. Жур. Ташкент, 2007. № 1. С. 39-47.
- 12. Чилин В. И., Ганиев И. Г., Кудайбергенов К. К. Теорема Гельфанда * С Наймарка Сигала для -алгебр над кольцом измеримых функции // Владикавказ. Мат. Жур. Владикавказ, 2007. № 2 (9). С. 33-39. 13. Аюпов Ш. А., Кудайбергенов К. К. Дифференцирования алгебр Аренса // Функциональный анализ и его приложения. Москва, 2007. № 4 (41). С. 70-72.
- 14. Albeverio S., Ayupov. Sh.A., Kudaybergenov K. K. Non commutative Arens algebras and their derivations // Journal of Functional Analysis. Amsterdam, 2007. № 1 (253). P. 287-302.
- 15. Чилин В. И., Ганиев И. Г., Кудайбергенов К. К. Теорема Гельфанда * *С* Наймарка для коммутативных -алгебр над кольцом измеримых функции // Известия ВУЗов. "Математика". Казань, 2008. № 2 (58). С. 60-68.
- 16. Albeverio S., Ayupov. Sh.A., Kudaybergenov K. K. Derivations on the algebra of T -compact operators affiliated with a type I von Neumann algebra // Positivity, Basel, 2008. № 2 (12). P. 375-386.
- 17. Albeverio S., Ayupov. Sh.A., Kudaybergenov K. K. Derivations on the algebra of measurable operators affiliated with a type I von Neumann algebra // Siberian Advances in Mathematics, Novosibirsk, 2008. № 2 (18). P. 86-94.

18. Ayupov. Sh.A., Kudaybergenov K. K. Innerness of Derivations on Subalgebras of Measurable Operators // Lobachevskii Journal of Mathematics, – Kazan, 2008. – № 2 (29). – P. 60-67.

III. a) Работы, опубликованные в препринтах:

- 19. Albeverio S., Ayupov. Sh.A., Kudaybergenov K. K. Non commutative Arens algebras and their derivations // SFB 611, Universitat Bonn, Preprint, № 290, Bonn, 2006. 18 p.
- 20. Albeverio S., Ayupov. Sh.A., Kudaybergenov K. K. Derivations on the algebra of measurable operators affiliated with a type I von Neumann algebra // SFB 611, Universitat Bonn, Preprint, № 301, − Bonn, 2006. − 14 p.

22

- 21. Albeverio S., Ayupov. Sh.A., Kudaybergenov K. K. Derivations on the algebra of T -compact operators affiliated with a type I von Neumann algebra // SFB 611, Universitat Bonn, Preprint, № 324, Bonn, 2007. 13 p.
- 22. Albeverio S., Ayupov Sh. A., Kudaybergenov K. K., Description of derivations on measurable operator algebras of type I // SFB 611, Universitat Bonn, Preprint, № 361, Bonn, 2007. 14 p.

III. б) Работы, опубликованные в материалах и сборниках тезисов конференции:

- 23. Аюпов Ш. А., Кудайбергенов К. К. Некоммутативные алгебры Аренса и их дифференцирования // Современные проблемы и актуальные вопросы функционального анализа: Тез. докл. Респ. науч. конф. 25 27 июня 2006. Нукус, 2006. С. 6-8.
- 24. Ганиев И. Г., Кудайбергенов К. К. Конечномерные модули над кольцом измеримых функции // Геометрия и анализ: Тез. докл. межд. науч. конф. 24 26 августа 2004. Ростов-на-Дону, 2004. С. 92-94.
 - 25. Ганиев И. Г., Кудайбергенов К. К. Представление некоммутативных $^{*}C$
 - -алгебр над кольцом измеримых функции // Операторные Алгебры и Квантовая Теория Вероятностей: Труды международной конференций. 8 10 сентября 2005. Ташкент, 2005. С. 54-56.
- 26. Кудайбергенов К. К. Измеримые расслоения фредгольмовых операторов // Дифференциальные уравнения и их приложения: Тез. докл. Респ. науч. конф. 24 26 июня 2004. Нукус, 2004. С. 42-44.
- 27. Кудайбергенов К. К. Фредгольмовые операторы в пространствах Банаха Канторовича // Тез. докл. Респ. науч. конф. 24 26 декабря 2004. Ташкент, 2004. С. 43-44.

 $^{\epsilon}C$

28. Кудайбергенов К. К. Дифференцирования -алгебр над кольцом измеримых функций // Современные проблемы и актуальные вопросы функционального анализа: Тез. докл. Респ. науч. конф. 25 – 27 июня

- 2005. Нукус, 2006. С. 27-28.
- 29. Кудайбергенов К. К. Спектр элементов алгебры Банаха Канторовича функции // Тихонов и современная математика: Тез. докл. межд. науч. конф. 19 25 июня 2006. Москва, 2006. С. 158-159.
- 30. Кудайбергенов К. К. Измеримое расслоение интегральных операторов // Тез. докл. Респ. науч. конф. 8 10 июня 2006. Хива, 2006. С. 15. 31. Кудайбергенов К. К. Спектр элементов алгебры Банаха Канторовича функции // Исследования по математическому анализу, математическому моделированию и информатике: Материалы международной научной конференций. Владикавказ: Институт прикладной математики и информатики ВНЦ РАН, 2007. С. 50-59.

23

Физика-математика фанлари доктори илмий даражасига талабгор Кудайбергенов Каримберген Кадирбергеновичнинг 01.01.01 — математик анализ ихтисослиги бўйича «Чизикли операторлар ўлчовли тахламалари ва уларнинг оператор алгебралари ва дифференциаллашларга тадбики» мавзусидаги диссертациянинг

РЕЗЮМЕСИ

Таянч сўзлар: дифференциаллаш, ички дифференциаллаш, лифтинг, ўлчов, Банах — Канторович модули, фон Нейман алгебраси, ўлчовли оператор, Аренс алгебралари.

 *C

Тадкикот объектлари: Банах — Канторович модули, -алгебралар, ўлчовли операторлар алгебраси, нокоммутатив Аренс алгебралари, дифференциаллашлар.

 *C

Ишнинг максади: Ўлчовли функциялар ҳалқаси устидаги - алгебраларни Гильберт — Капланский модулида аникланган операторлар алгебраси кўринишида ифодалаш ва фон Нейман алгебраларига нисбатан локал ўлчовли операторлар алгебраси ва унинг баьзи алгебраостилари дифференциаллашларини тавсифлаш

Тадкикот методлари: ўлчовли банах тахламалари, функционал анализ, оператор алгебралар назариясининг усулларидан фойдаланилди. **Олинган натижалар ва уларнинг янгилиги:** ^{0}L устидаги Банах — Канторович модулидаги ҳар бир циклик компакт оператор компакт чизикли операторларнинг ўлчовли тахламаси кўринишида тасвирланиши ∇

исботланган; -фредгольм операторлари Фредгольм операторлари ўлчовли тахламаси кўринишида тасвирланиши исботланган; ўлчовли функциялар *C ҳалҳаси устидаги -алгебраларни Гильберт — Капланский модулида аниҳланган операторлар алгебраси кўринишида ифодаланиши исботланган; фон Нейман алгебраларига бириктирилган локал ўлчовли операторлар алгебраси ва унинг бази алгебраостилари дифференциаллашларининг умумий кўриниши топилган; фон Нейман алгебралари ва аниҳ нормал ярим чеҳли из билан ассоциирланган ноҳоммутатив Аренс алгебралари дифференциаллашлари тўлиҳ тавсифланган.

Амалий ахамияти: иш назарий характерга эга.

Тадбиқ этиш даражаси ва иқтисодий самарадорлиги: Ишда келтирилган натижалар ва методлар функционал анализ ва операторлар алгебралари назарияларидан махсус курслар ўқишда қўлланилиши мумкин.

Қўлланиш соҳаси: ўлчовлар назарияси, функционал анализ, операторлар алгебралари назарияси, математик физика ва уларнинг тадбиқлари.

24 **PE3ЮME**

диссертации Кудайбергенова Каримбергена Кадирбергеновича на тему «Измеримые расслоения линейных операторов и их приложения к операторным алгебрам и дифференцированиям» на соискание ученой степени доктора физико-математических наук по специальности 01.01.01 — математический анализ.

Ключевые слова: дифференцирование, внутреннее дифференцирование, лифтинг, мера, модуль Банаха – Канторовича, алгебра фон Неймана, измеримый оператор, алгебра Аренса.

· (

Объекты исследования: модули Банаха – Канторовича, -алгебры, алгебра измеримых операторов, некоммутативные алгебры Аренса, дифференцирования.

* (

Цель работы: Реализация -алгебр над кольцом измеримых функций в виде алгебр операторов на модулях Гильберта — Капланского, описание дифференцирований алгебры локально измеримых операторов, присоединенных к алгебре фон Неймана и её некоторых подалгебр.

Метод исследования: применены общие методы измеримых банаховых расслоений, функционального анализа, теории операторных

алгебр.

Полученные результаты и их новизна: Доказано, что всякий циклически компактный оператор на модуле Банаха — Канторовича над 0 L представляется в виде измеримого расслоения компактных линейных операторов; доказано, что всякий ∇ -фредгольмов операторов; доказано, что всякая -алгебра над * C 0 L изометрически *-изоморфна замкнутой подалгебре алгебры всех 0 L -ограниченных 0 L -линейных операторов на модуле Гильберта — Капланского над 0 L ; найден общий дифференцирований алгебры локально измеримых операторов, присоединенных к алгебре фон Неймана типа L и её некоторых подалгебр; получено полное описание дифференцирований некоммутативных алгебр Аренса, ассоциированных с алгеброй фон Неймана и точным нормальным полуконечным следом.

Практическая значимость: работа носит теоретический характер. **Степень внедрения и экономическая эффективность:** Результаты и методы представленные в работе могут быть использованы при чтении специальных курсов по функциональному анализу и теорий операторных алгебр.

Область применения: теория мер, функциональный анализ, теория операторных алгебр, математическая физика и их приложения.

25 **RESUME**

Thesis of Kudaybergenov Karimbergen Kadirbergenovich on the scientific degree competition of the doctor of physical and mathematical sciences, speciality 01.01.01 – mathematical analysis

subject:

«Measurable bundles of linear operators and their applications to operator algebras and derivations».

Key words: derivation, inner derivation, lifting, Banach – Kantorovich module, von Neumann algebra, measurable operator, Arens algebra. *C Subject of the inquiry: Banach – Kantorovich module, -algebras, measurable Banach bundles, non commutative Arens algebras, derivation. Aim of the inquiry: the realization of -algebras over *C L as algebras of operators on a Hilbert – Kaplansky module and description of derivation of the algebras of locally measurable operators affiliated with von Neumann algebra and of its subalgebras. Method of inquiry: In the work methods of measurable banach Bundles, of functional analysis, of theory operator algebras are used.

The results achieved and their novelty:

It is proved that any cyclically compact operator on a Banach - Kantorovich

module can be represented as a measurable bundle of compact operators; it is proved that every ∇ -Fredholm operator can be represented as a measurable bundle of Fredholm operators; it is proved that every -algebras over $^*C^0L$ is isometrically *-isomorphic to a closed subalgebra of the algebra of all 0L -bounded 0L -linear operators on a Hilbert – Kaplansky module; a general form of derivations of the algebras of locally measurable operators affiliated with a von Neumann algebra is given; a complete description of derivations on the non commutative Arens algebras associated with von Neumann algebra and faithful normal semi-finite trace is obtained.

Practical value: the work has a theoretical character.

Degree of embed and economic effectivity: Results and methods introduced in the work can be used in special courses on functional analysis and theory of operator algebras.

Sphere of usage: the measure theory, functional analysis, theory of operator algebras, mathematical physics.