

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 02,2025

Journal: https://www.academicpublishers.org/journals/index.php/ijai

STUDY OF CHEMICAL, MINERALOGICAL AND FRACTIONAL COMPOSITION OF PHOSPHORITES OF KARATAU AND CENTRAL KYZYLKUM

Mikhliev Oybek Avloyorovich

Karshi State Technical University

Nazarov Hasan Nurali ugli

Master, Karshi State Technical University

Abstract: The chemical composition of phosphogypsum was determined by X-ray analysis and calculation, which consists mainly of CaSO4·2H2O, CaSO4·H2O, CaCO3, CaCl3 b CaF2, as well as MgSO4·H2O and other compounds.

Keywords:MOPC, X-ray diffraction pattern, IR spectrum, energy dispersive spectrum and quantitative composition of MOPC elements on a scanning electron microscope, electron microscopy (SEM).

ИЗУЧЕНИЕ ХИМИЧЕСКИХ, МИНЕРАЛОГИЧЕСКИХ И ФРАКЦИОННЫХ СОСТАВ ФОСФОРИТОВ КАРАТАУ И ЦЕНТРАЛЬНЫХ КЫЗЫЛКУМОВ

Михлиев Ойбек Авлоёрович

Каршинский государственный технический университет

Назаров Хасан Нурали ўгли

Магистр, Каршинский государственный технический университет

Аннотация:Определен химический состав фосфогипса рентгенографическим методом анализа и расчетным путем, который состоит в основном из CaSO4·2H2O, CaSO4·H2O, CaCO3, CaCl3 b CaF2, а также, MgSO4·H2O и других соединений.

Ключевые слова:МОФК, Рентгенограмма, ИК-спектр, Энергодисперсионный спектр и количественный состав элементов МОФК на сканирующем электронном микроскопе, Электронно-микроскопического (SEM).

На начальных этапах экспериментальной работы был изучен состав фосфоритов МОФК ЦК и Каратау с использованием современных методов физико-химического анализа. На рисунке 1 приведена рентгенограмма МОФК. При снятии образца применялась камера с вращением, где скорость вращения равна 30 об./мин. Расшифровку рентгенограмм проводили с использованием базы данных американской картотеки «The American Mineralogist crystal structure database» и рентгенометрического определителя минералов Михеева. Рентгенограмма характеризуется интенсивными пиками соответствующими пиками $Ca_5(PO_4)_3F$ - 56%, $Ca_2F_2(CO_3)$ - 18 %, $Fe_3Al_2Si_3$ - 4%, $CaCO_3$ - 6%, CaO - 16%.

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 02,2025

1500 03 MOFK 01-083-0577; Calcite; Calcium Carbonate; Ca (C O 3) 01-076-6178; Brenkite; Calcium Fluoride Carbonate; Ca (E O 3) 01-076-6178; Brenkite; Calcium Fluoride Carbonate; Ca (E O 3) 01-074-4177; Fluorapatite, syn; Calcium Fluoride Phosphate; Ca (P O 4) 3 F 01-085-0514; Calcium Peroxide; Ca O 2 01-080-7710; Calcium Oxide; Ca O 01-080-7710; Calcium Oxide; Ca Oxide; Ca Oxide; Ca Ox

Journal: https://www.academicpublishers.org/journals/index.php/ijai

Рис. 1 - Рентгенограмма МОФК.

На ИК - спектре (рис. 2) имеются частоты колебаний, характеризующие колебания, относящиеся к PO_4^{3-} 586,39-1050,29 см⁻¹ и CO_3^{-2} - 1445,71 см⁻¹. Данные ИК-спектроскопии МОФК подтверждают данные химического и рентгенографического методов анализа.

Position [°20] (Copper (Cu))

На ИК-спектре проявляются явные полосы пропускания в области частот 586,39 см⁻¹ и 1050,29 см⁻¹, соответствующие антисимметричным и деформационным колебаниям иона PO_4^{3-} . О замещении иона PO_4^{3-} на CO_3^{2-} группу, вероятно, объясняется смещением максимумов полосы колебания PO_4^{3-} в высокочастотную область за счет наложения карбонатной полосы поглощения в структуре фосфатного минерала. В спектре МОФК частоты колебаний 1445,71 см⁻¹ относятся к карбонат - иону. Области 773,49 см⁻¹ характерны к валентным колебаниям Si-O-Si-связей.

Область поглощения 2011,84-3754,60 см⁻¹ характерны к валентным и деформационным колебаниям кристаллизационной, адсорбированной и воды (рис. 2).

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 02,2025

Journal: https://www.academicpublishers.org/journals/index.php/ijai

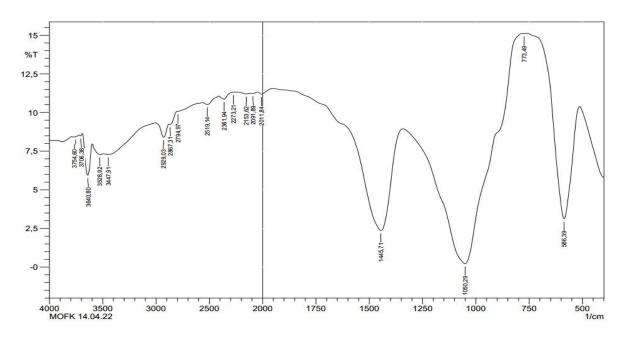
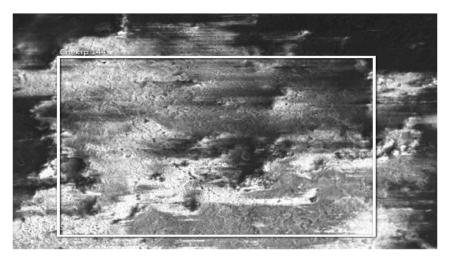


Рис. 2 - ИК-спектр МОФК.

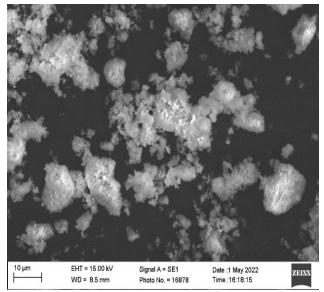
Морфология поверхности и исследование микроструктуры образцов осуществляли с помощью сканирующего электронного микроскопа SEM - EVO MA 10 (Carl Zeiss, производство Германия) с рентгеновским спектрометром Aztec Energy Advanced X-Act — Oxford Instruments [1.2]. Данный прибор предназначен для микроскопического анализа структуры и дефектов, включая определение локального элементного состава с помощью энерго-дисперсионной спектроскопии.

Эксперименты на сканирующем электронном микроскопе проводили следующим образом. Для проведения процесса пробоподготовки, на предметный столик микроскопа был установлен держатель из металлического сплава, поверх которого приклеена алюминиевая фольга с двухсторонней клейкой поверхностью. На эту фольгу наносили исследуемый образец. Далее предметный столик устанавливали в рабочую камеру микроскопа, из которой был откачен воздух для создания вакуума. Для проведения измерения на филамент подавали ускоряющее напряжение 12 кВ, при этом рабочее расстояние составляло 8,5 мм. Изображения получены в масштабах от 2 мкм.

На рисунке 3 приведены энергодисперсионный спектр и количественный состав элементов МОФК на сканирующем электронном микроскопе.



ISSN: 2692-5206, Impact Factor: 12,23


American Academic publishers, volume 05, issue 02,2025



Journal: https://www.academicpublishers.org/journals/index.php/ijai

б в

Элемент	Bec.%	Сигма Вес.%
С	4.78	0.22
О	33.66	0.31
F	2.89	0.20
Na	0.49	0.11
Mg	0.36	0.09

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 02,2025

Journal: https://www.academicpublishers.org/journals/index.php/ijai

A1 0.45 0.12 Si 1.50 0.08 P 11.44 0.23 S 2.60 0.33 C1 0.13 0.04 Ca 41.39 0.29 Fe 0.31 0.10 100.00

Cnexrp 144

Bec.% o

Ca 41.4 0.3

O 33.7 0.3

P 11.4 0.2

C 4.8 0.2

F 2.9 0.2

S 2.6 0.3

Si 1.5 0.2

Na 0.5 0.1

Al 0.4 0.1

Mg 0.4 0.1

Fe Al

C Mrl S

The Color of the co

Рис. 3 - Энергодисперсионный спектр и количественный состав элементов МОФК.

Результаты сканирующего электронно-микроскопического (SEM) анализа указывают на следующий состав: C-4,78%, O-33,66%, F-2,89%, Na-0,49%, Mg-0,36%, Al-0,45%, Si-1,50%, P-11,44%, S-2,60%, Cl-0,13%, Ca-41,39%, Fe-0,31%, что соответствует их содержанию в МОФК.

Результаты лабораторных экспериментов, проведенных для изучения химического состава $MO\Phi K$, были основаны на результатах современного физико-химического анализа.

Состав фосфоритов Каратау, выбранных в качестве объекта исследования, также был изучен с использованием методов физико-химического анализа. По результатам

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 02,2025

Journal: https://www.academicpublishers.org/journals/index.php/ijai

рентгеноструктурного анализа было установлено, что состав этих фосфоритов в основном состоит из CaO и P_2O_5 , помимо присутствия соединений $F_3Al_2Si_3$. (4 рис.).

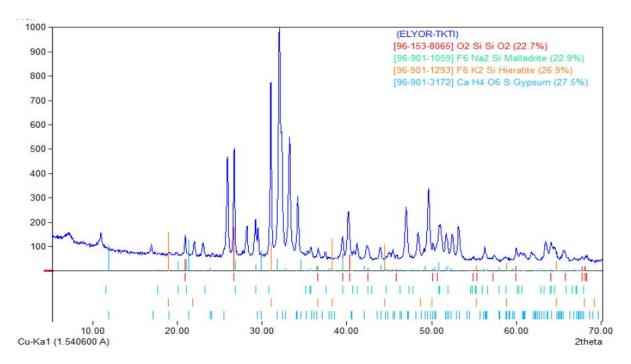


Рис. 4 - Рентгенограмма фосфоритов Карату

Результаты ИК-спектрального анализа фосфоритов Каратау представлены на рис 5.

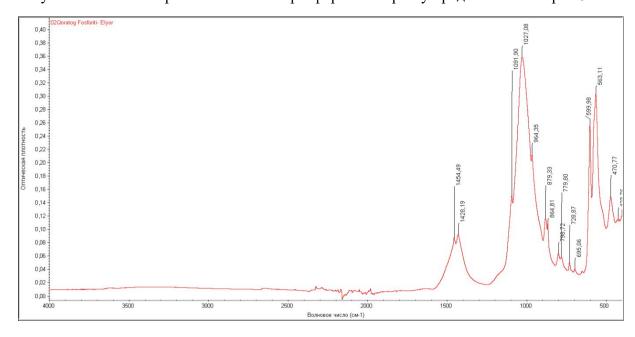


Рис. 5 - ИК-спектр фосфоритов Карату

ORIGINAL ARTICLE

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

Journal: https://www.academicpublishers.org/journals/index.php/ijai

На ИК-спектре проявляются явные полосы пропускания в области частот 586,39 см⁻¹ и 1050,29 см⁻¹, соответствующие антисимметричным и деформационным колебаниям иона PO_4^{3-} . О замещении иона PO_4^{3-} на CO_3^{2-} группу, вероятно, объясняется смещением максимумов полосы колебания PO_4^{3-} в высокочастотную область за счет наложения карбонатной полосы поглощения в структуре фосфатного минерала. В спектре МОФК частоты колебаний 1445,71 см⁻¹ относятся к карбонат - иону. Области 773,49 см⁻¹ характерны к валентным колебаниям Si-O-Si-связей.

ЛИТЕРАТУРЫ:

- 1. Мирзакулов Х.Ч. Разработка ресурсосбергающей технологии переработки фосфоритов Центральных Кызылкумов на фосфорсодержащие удобрения / Автор. дис. докт. техн. наук. Ташкент, 2009. С. 52.
- 2. Zschornack G. Handbook of X-ray data. Berlin, Heidelberg: Springer- Verlag. 2007. 969 p.