"Актуальные вопросы развития инновационноинформационных технологий на транспорте" АВРИИТТ-2021 І-Республиканская научно-техническая конференция (Ташкент, 24-25 ноября 2021 года)

- 2. Илесалиев Д.И. Обоснование метода переработки тарно-штучных грузов на перевалочных складах в цепях поставок: автореферат дис. ... канд. техн. наук. СПб., 2016. С. 16.
- 3. Илесалиев Д.И. Использование различных схем расположения проходов склада тарно-штучных грузов / Д.И. Илесалиев // Логистика: современные тенденции развития. 2015. № 1. С. 174–176.
- 4. Илесалиев Д.И. К вопросу о схеме размещения стеллажей на складе / И.Д. Илесалиев // Научно-технический вестник Брянского государственного университета. 2017. № 1. С. 99–106.

К ВОПРОСУ О ФУНКЦИОНИРОВАНИИ КОНТЕЙНЕРНОГО ТЕРМИНАЛА

Шахбоз АБДУВАХИТОВ,

PhD, Ташкентский государственный транспортный университет, Ташкент, Узбекистан

Азиз ИСМАТУЛЛАЕВ,

докторант, Ташкентский государственный транспортный университет, Ташкент, Узбекистан

Жамол ШИХНАЗАРОВ,

ассистент, Ташкентский государственный транспортный университет, Ташкент, Узбекистан

Дурдона УМАРОВА,

студентка магистратуры, Ташкентский государственный транспортный университет, Ташкент, Узбекистан

DOI: https://doi.org/10.47689/978-9943-7818-0-1-pp249-252

Аннотация: В данной работе описан переход системы из одного состояния в другое, который выражается прибытием и отправлением различных видов транспорта в процессе взаимодействия контейнерного терминала (КТ) с внешней средой.

Ключевые слова: железнодорожный транспорт, контейнерный терминал, контейнерная площадка, контейнер.

Построив вероятностную модель этого явления можно вычислить значения параметров, характеризующие эффективность этой операции. Успешное применение математического аппарата, с применением так называемых «Марковских случайных процессов» [1-4]. Рассматриваются Илесалиевым Д.И. в своей диссертационной работе «Обоснование метода переработки тарно-штучных грузов на перевалочных складах в цепях поставок», данная работа может описать операции такого рода. Исследуемые КТ по теории Марковских случайных процессов, рассматриваются как сложная

технико-экономическая система. Как известно, $Y=\{y_i\}$, i=1,n – конечное множество и имеет множество рёбер $Z=\{z_{i,j}\}$, i,j=1,n. Основные вершины графа состояний работы КТ выглядят следующим образом: y_1 – ЖД ПРУ; y_2 – технологический участок таможенный зоны; y_3 – АВТО ПРУ; y_4 – технологический участок хранения.

Переходы из одного состояния в другое, описаны следующим образом: z_{12} – выгрузка контейнеров из ЖДТ в таможенный участок; z_{13} – перегрузка контейнеров из ЖДТ на автотранспорт; z_{14} – выгрузка контейнеров из ЖДТ, в участок хранения, минуя таможенный участок; z_{21} –погрузка контейнеров из таможенного участка на ЖДТ; z_{23} –погрузка контейнеров из таможенного участка на автотранспорт; z_{24} –перемещение контейнеров из таможенного участка в участок хранения; z_{31} –перегрузка контейнеров из автомобильного транспорта на железнодорожный транспорт;

 z_{32} –выгрузка контейнеров из автотранспорта на таможенный участок; z_{34} – выгрузка контейнеров из автотранспорта на участок хранения, минуя таможенную зону; z_{41} – погрузка контейнеров из участка хранения на ЖДТ; z_{42} –

перемещение контейнеров из участка хранения в таможенную зону; z_{43} погрузка контейнеров из участка хранения на автотранспорт.

На рисунке 1 показан результирующий вид графа состояний КТ.



Рисунок 1. Граф состояний и переходов КТ

Граф состояний КТ позволяет удобно хранить матрица смежности в формуле (1), а также производить с ним операции.

$$A = \begin{bmatrix} z_{11} & z_{12} & z_{13} & z_{14} \\ z_{21} & z_{22} & z_{23} & z_{24} \\ z_{31} & z_{32} & z_{33} & z_{34} \\ z_{41} & z_{42} & z_{43} & z_{44} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix},$$

$$(1)$$

Под влиянием прибытия и отправления транспорта в процессе функционирования КТ, данная система переходит из одного состояния в другое. Состояния

характеризуются большим или меньшим числом технологических операций [1]. Согласно теории Марковских случайных процессов, исследуемые КТ будем рассматривать как физическую систему W с дискретными состояниями $W_1, W_2, \ldots W_n$, причём переходы системы из состояния в состояние возможны, только в моменты: $t_1, t_2, \ldots t_k \ldots$ [1]. Случайный процесс, происходящий на КТ, состоит в том, что в последовательные моменты времени, система ведет себя, следующем образом:

$$W_1 \rightarrow W_2 \rightarrow W_4 \rightarrow W_1 \dots,$$
 (2)

Или же в моменты времени, система может оставаться в прежнем состоянии:

$$W_1 \rightarrow W_1 \rightarrow W_2 \rightarrow W_3 \rightarrow W_4 \rightarrow W_1 \dots,$$
 (3)

Зная ежесуточную статистику прибытия и отправления транспорта можно вычислить среднее время нахождения лов в том или ином состоянии, а также можно определить вероятности состояний $P_i(k)$ после k-шага переходов [1]:

$$P_{i}(k) = \sum_{j=1}^{n} P_{j}(k-1)P_{ji} (i = 1,...n),$$
(4)

где $P_j(k-1)$ — вероятность пребывания системы в W_i состоянии, в предыдущий дискретный момент времени (k-1) [1].

На производстве чаще всего, встречаются ситуации, когда переходы системы из одного состояния в другое происходят в случайное время. Описанное выше, связано с неравномерностью прибытия и отправления железнодорожного и автомобильного транспорта. Схема Марковского случайного процесса с непрерывным временем применяется для описания таких процессов [1].

Вероятность $P_i(t)$ того, что в момент времени t система КТ будет находиться в состоянии W_1, W_2, W_3, W_4 , при этом для любого момента времени t сумма вероятностей равна единице [1].

Вероятностью перехода системы КТ в случае непрерывного времени становится плотность вероятности перехода. Предел отношения вероятности перехода за время Δt из состояния W_i в состояние W_j к длине промежутка Δt называется плотностью вероятности перехода λ_{ij} [1]:

$$\lambda_{ij} = \lim_{\Delta t \to 0} \frac{P_{ij}(\Delta t)}{\Delta t},\tag{5}$$

где $P_{ij}(\Delta t)$ – вероятность того, что система КТ, находившаяся в момент t в состоянии W_i , за время Δt перейдёт из него в состояние W_i .

На рисунке 1 отражен граф состояний системы КТ. Вероятности состояний системы как функции времени можно определить, зная размеченный граф состояний [1]:

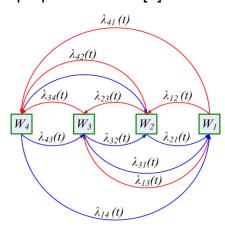


Рисунок 2. Граф состояния системы КТ в процессе непрерывного времени

$$P_1(t), P_2(t), \dots P_n(t), (6)$$

Вероятности удовлетворяют дифференциальным уравнениям, определенного вида, называемым уравнением Колмогорова [1]:

$$\begin{cases} \frac{dP_{1}(t)}{dt} = -\lambda_{12}P_{1}(t) - \lambda_{13}P_{1}(t) - \lambda_{14}P_{1}(t) + \lambda_{21}P_{2}(t) + \lambda_{31}P_{3}(t) + \lambda_{41}P_{4}(t) = \\ = -P_{1}(t) \cdot (\lambda_{12} + \lambda_{13} + \lambda_{14}) + \lambda_{21}P_{2}(t) + \lambda_{31}P_{3}(t) + \lambda_{41}P_{4}(t); \\ \frac{dP_{2}(t)}{dt} = -\lambda_{21}P_{2}(t) - \lambda_{23}P_{2}(t) - \lambda_{24}P_{2}(t) + \lambda_{12}P_{1}(t) + \lambda_{32}P_{3}(t) + \lambda_{42}P_{4}(t) = \\ = -P_{2}(t) \cdot (\lambda_{21} + \lambda_{23} + \lambda_{24}) + \lambda_{12}P_{1}(t) + \lambda_{32}P_{3}(t) + \lambda_{42}P_{4}(t); \\ \frac{dP_{3}(t)}{dt} = -\lambda_{31}P_{3}(t) - \lambda_{32}P_{3}(t) - \lambda_{34}P_{3}(t) + \lambda_{13}P_{1}(t) + \lambda_{23}P_{2}(t) + \lambda_{43}P_{4}(t) = \\ = -P_{3}(t) \cdot (\lambda_{31} + \lambda_{32} + \lambda_{34}) + \lambda_{13}P_{1}(t) + \lambda_{23}P_{2}(t) + \lambda_{43}P_{4}(t); \\ \frac{dP_{4}(t)}{dt} = -\lambda_{41}P_{4}(t) - \lambda_{42}P_{4}(t) - \lambda_{43}P_{4}(t) + \lambda_{14}P_{1}(t) + \lambda_{24}P_{2}(t) + \lambda_{34}P_{3}(t) = \\ = -P_{4}(t) \cdot (\lambda_{41} + \lambda_{42} + \lambda_{43}) + \lambda_{14}P_{1}(t) + \lambda_{24}P_{2}(t) + \lambda_{34}P_{3}(t); \end{cases}$$

$$, (7)$$

При составлении этой системы дифференциальных уравнений можно записать ее таким образом:

$$\frac{dP_i(t)}{dt} = -\sum_{j=0}^n \lambda_{ij} P_i(t) + \sum_{j=0}^n \lambda_{ji} P_i(t)$$
(8)

Система уравнений (7) описывает динамику вероятности нахождения КТ в одном из состояний.

Исследованные системы функционирования КТ, по которым можно заключить, что система переходит из одного состояния в другое под влиянием прибытия и отправления транспорта.

Предложена методика определения необходимого количества ПРМ на основе теории "Марковских случайных процессов" в зависимости от взаимодействия различных видов транспорта

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ:

- 1. Илесалиев Д. И. Обоснование метода переработки тарно-штучных грузов на перевалочных складах в цепях поставок: автореферат дис. ... канд. техн. наук. СПб., 2016. 16 с
- 2. Илесалиев Д.И. Влияние расположения проходов между стеллажами на показатели работы склада водного транспорта / Д.И. Илесалиев, Е.К. Коровяковский / Вестник Государственного университета морского и речного флота имени адмирала С.О. Макарова. 2015. Вып. 6 (34). С. 52-59.
- 3. Илесалиев Д.И. Исследования функционирования контейнерного терминала / Илесалиев Д.И., Абдувахитов Ш.Р. // Транспорт: наука, техника, управление. Научный информационный сборник. 2019. № 11. С. 59-62.
- 4. Илесалиев Д.И. Обоснование этапности развития железнодорожного участка Ахангаран-Тукимачи-Сырдарьинская / Илесалиев Д.И., Сатторов С.Б., Махматкулов Ш.Г. // Транспорт: наука, техника, управление. Научный информационный сборник. 2020. № 6. С. 15-23.