УДК: 581:57.02:633

ВЛИЯНИЕ ХАРАКТЕРА И СТЕПЕНИ ЗАСОЛЕНИЯ ПОЧВЫ НА ПРОРАСТАНИЕ CEMЯН – SALSOLAGEMMASCENS

Ж.Н.Нажмиддинов, А.Ю.Эргашов, Н.И.Казаков Бухарский научно-производственный центр семеноводства пастбищный кормовых растений

Аннотация. В данной статье приведены результаты исследования по виляние различных концентрации хлоридов, сульфатов и их смесей на прорастание семян солянки почечканосной, следующие концентрации в %: хлоридное — 0,2-2,0; сульфатное — 0,2-2,2; сульфатно-хлоридное — 0,4-3,2; и хлоридно-сульфатное — 0,4-3,2. Контрольный вариант проращивание семян проводились на пресном субстрате. Опыты семян солянки почечканосной имеет достаточно высокую всхожесть. Эти полученный материи доказывают, а том что семян этого растений широко распространённые на различных пустынных засолённых почвах произрастает.

Ключевые слова: семян, хлоридный, сульфатный, солей и их смешений соотношении.

Abstract. This article presents the results of a study on the influence of various concentrations of chlorides, sulfates and their mixtures on germinated seeds of solyanka bud, the following concentrations in%: chloride -0.2-2.0; sulfate -0.2-2.2;, sulfate-chloride -0.4-3.2; and sulfate chloride -0.4-3.2. A control option for seed germination was provided on fresh subsoil. According to our version of the experiment with solyanka kidney-bearing seeds, a high growth rate is sufficient. These obtained materials prove that the seeds of this plant grow widely on various desert saline soils.

Key words: seeds, chloride, sulfate, salts and their mixtures ratio.

Засоленные почвы наиболее широко распространены в аридных районах Средней Азии. Соли — это второй важнейший в пустыни минимум-фактор, который играет большую роль в распространении и жизнедеятельности растений /Коровин.[1]

При введении в культуру растений из дикорастущей флоры очень важно знать их отношение к разным типам засоления почвы, что позволит выбрать наиболее оптимальные районы для их посева. Судя по литературным данным, Salsola gemmascens довольно солеустойчивое растение. Однако, сведений о влиянии солей на прорастание семян этого растений почти нет.

Мы последовали влияние различных концентраций хлоридов, сульфатов и их смесей на прорастание семян Salsola gemmascens. Были искусственно созданы следующие типы заселения в концентрациях (%): хлоридное (натрий хлоридный) -0,2; 0,4; 0,6; 0,8; 1,0; 1,2; 1,4; 1,6; и 2,0 сульфатное (натрий сернокислый) – 0,2; 0,4; 0,6; 0,8; 1,0; 1,2; 1,4; 1,6; 1,8; 2,0; и 2,2; сульфатно-хлоридное (натрий сернокислый + натрий хлористый – 1:2) – 0,4; 0,8; 1,2; 1,6; 2,0; 2,4; 2,6; И 3,2; хлоридно-сульфатное (натрий хлористый-натрий сернокислый – 1:2) – 0,4; 0,8; 1,2; 1,6; 2,0; 2,4; 2,6 и 3,2.

Контроль – проращивание семян на пресном субстрате. На протяжении всего опыта поддерживалась заданная влажность. В течение 24 часов смоченные раствором селей семена выдерживались в холодные при температуре $-1^{\circ}..0^{\circ}$ С, после чего семена переносились в термостат, где на протяжении всего периода проращивания поддерживалась температура $+0^{\circ}$ - $+25^{\circ}$ С.

Первые всходы появились на третьи-четвертые сутки после закладка опыта. Было установлено, что Salsola gemmascens довольно устойчив к хлоридному засолению. При концентрации солей 0,2-0,6 % выявлена довольно высокая энергия прорастания — основная масса семян проросла в первые 5 дней. Более высокие концентрации этой соли

(1-2%) значительно снижают энергию прорастания семян. Общая же всхожесть довольно высока при всех концентрациях солей, правда, при более низких концентрациях (0,2-0,6%) она выше на 10-20% по сравнению с более высокими концентрациями (0,8-2,0%).

Как видно из данных табл. 1 общая всхожесть семян при низких концентрациях хлоридных солей но сравнению с контролем ниже всего на 2-3 %. Этот опыт показал, что семена Salsola gemmascens более устойчивы к хлоридному засолению, чем кейреук /Ширинская, [5] и изень/ Чалбаш, [4], у которых при 1,2% хлоридном засолении семена во все не прорастают.

Табл. 1 Влияние хлоридного засоления на прорастание семян- Salsola gemmascens

Концен-		Проросшие семена												
трация рас-			фев	раль			Ma	Всего, %						
твора, %	20.02	21.02	22.02	24.02	26.02	28.02	2.03	5.03	6.03	11.03				
0,2	11,2	32,0	11,2	13,2	8,0	5,2	2,6	-	0,6	-	84,0±3,76			
0,4	23,8	18,6	11,0	10,0	8,0	7,0	4,6	-	-	-	83,0±1,52			
0,6	7,2	17,2	14,6	16,0	8,0	15,4	4,6	-	1	-	83,0±2,00			
0,8	18,6	17,2	12,4	12,0	8,2	5,2	2,0	2,0	-	0,6	$78,0\pm2,00$			
1,0	2,6	8,6	12,6	3,6	8,0	15,2	12,4	10,0	-	-	78,0±4,16			
1,2	1,2	6,6	3,2	3,6	8,6	14,0	14,0	10,0	5,2	6,6	$78,0\pm 5,00$			
1,4	1,2	8,0	5,2	3,6	8,0	10,6	7,2	9,2	4,0	8,0	$70,0\pm3,00$			
1,6	2,0	4,2	3,2	10,0	6,6	12,0	12,0	10,0	6,0	4,0	70,0±2,00			
1,8	-	6,6	6,6	6,0	9,2	12,6	8,6	12,6	3,2	4,0	68,0±5,03			
2,0	-	8,6	5,2	7,2	8,0	7,2	8,0	14,3	2,0	8,6	66,0±3,05			
Контрол ь	18,6	18,6	14,0	25,2	4,6	4,0	0,6	-	-	-	86,0±2,50			

Влияние сульфатного засоления. Небольшие концентрации сульфатных солей также не влияют на энергию прорастания семян Salsola gemmascens. Так, при концентрациях 0,2-1,0% основная масса семян прорастает в первые пять дней, при более высоких концентрациях период прорастания семян сильно растянут. Сульфатные соли практически мало снижают или вообще не снижают общую всхожесть семян по сравнению с контролем.

Так, в контроле всхожесть была 86,0%, а при концентрации сульфатных солей 0,2-1,0% - 84,6-84,0%. При концентрации солей 1,6-1,8% всхожесть была такой же как и в контрольной группы (табл. 2). Лишь при концентрации солей 2,0-2,2% всхожесть снижается на 3,0-14,0%.

На основании полученных данных можно сделать вывод о том, что для посева Salsola gemmascens можно использовать участки с сульфатным типом засоления. Влияние сульфатно-хлоридного засоления. Отрицательное влияние на прорастание семян Salsola gemmascens этого типа засоления начинает сказываться при концентрации солей 0,4% (при которой всхожесть снижается на 3,6% по сравнению с контролем). Начиная с концентрации 0,8%, идет опять увеличение появления всходов. Угнетение прорастания семян начинается при концентрации солей 2,0%, что выражается в снижении всхожести и растягивании периода прорастания семян. Наименее низкий процент всхожести (38,6) зафиксирован при концентрации 3,2% (табл. 3).

Табл. 2 Влияние сульфатного засоления на прорастание семян- Salsola gemmascens

genniascens											
Концен-	Проросшие семена										
трация раст-			фев	раль	март				Всего, %		
воре, %	20.02	21.02	22.02	24.02	2.03	5.03	6.03	11.03			
0,2	26,6	19,2	14,6	12,6	9,2	0,6	1,2	-	-	-	84,6±2,3
0,4	11,4	18,0	19,2	16,6	7,2	4,6	3,2	2,6	1,2	-	84,0±5,0
0,6	12,0	20,6	17,2	12,0	11,2	4,6	4,6	1,2	-	0,6	84,0±0,4
0,8	10,0	22,6	15,6	19,2	9,2	4,0	2,0	1,0	-	1,0	84,6±5,3
1,0	19,2	20,0	11,2	9,2	8,4	10,0	4,0	1	2,0	-	84,0±4,2
1,2	8,0	18,6	14,0	20,0	8,6	4,5	6,0	1,0	-	0,6	82,6±2,4
1,4	10,6	25,0	10,6	15,2	8,0	6,0	2,6	4,0	1,2	2,0	85,2±2,9
1,6	6,0	28,0	11,2	14,0	8,4	6,0	7,2	2,6	2,0	0,6	86,0±2,1
1,8	6,0	15,2	18,0	21,2	7,4	5,2	7,2	5,2	0,6	-	86,0±2,0
2,0	9,0	18,6	10,0	12,0	6,6	10,0	6,6	4,0	0,6	0,6	78,0±1,52
2,2	7,2	22,0	10,6	8,6	2,0	7,2	3,2	7,2	2,0	0,3	86,0±2,5
Контроль	18,6	18,6	14,0	25,2	4,6	4,0	0,6	-	-	-	86,0±2,5

Табл. 3 Влияние сульфатно-хлоридного засоления на прорастание семян- Salsola gemmascens

Концен-	Проросшие семена											
Концен-		1 1										
трация			фев	раль			ма					
раст- воре, %	20.02	21.02	22.02	24.02	26.02	28.02	2.03	5.03	6.03	11.03	Всего, %	
0,4	7,2	14,0	14,0	18,6	8,6	8,0	4,0	4,0	2,0	0,2	82,4±2,73	
0,8	0,2	19,2	18,0	18,6	12,0	5,6	3,2	2,0	-	-	84,8±3,71	
1,2	3,2	16,6	14,6	16,6	7,2	10,0	5,2	6,6	2,6	-	84,6±2,45	
1,6	2,0	12,0	8,0	12,6	14,0	12,6	10,6	6,6	2,0	-	80,6±1,71	
2,0	1	3,2	4,6	14,6	9,2	11,2	12,6	12,0	2,0	2,0	$71,2\pm3,71$	
2,4	1	0,6	5,2	9,2	5,2	10,0	10,0	12,6	1,2	3,0	62,0±5,03	
2,8	-	2,0	2,0	8,0	9,2	10,0	7,2	13,2	4,6	4,5	56,2±5,61	
3,2	1	4,0	3,2	5,2	3,2	4,6	-	3,2	1,6	12,6	38,6±4,67	
Контрол ь	18,6	18,6	14,0	25,2	4,6	4,0	0,6	1	-	-	86,0±3,50	

При хлоридно-сульфатном засолении (табл. 4), по мере увеличения концентрации солей, наблюдается постепенное уменьшение всхожести семян, а также, как и в других вариантах опыта, увеличение содержания солей отодвигает начало прорастания, т.е. соли, очевидно, оказывают консервирующее действие. Хлоридно-сульфатное засоление является менее токсичным по сравнению с сульфатно-хлоридным для семян Salsola gemmascens. Однако, лучше семена Salsola gemmascens прорастают на дистиллированной воде, хотя Salsola gemmascens и является галогипсофитом. Этот факт подтверждает мнение Люнденгарда [2] о том, что семена галофитов имеют оптимум прорастания не в соленой, а в пресной воде. Их стойкость к солям, очевидно, следует рассматривать как онтогенетическое приспособление. Нажмиддинов. [3]

Табл. 4 Влияние хлоридно-сульфатного засоления на прорастание семян- Salsola gemmascens

Концен-		Проросшие семена										
трация раст-			фев	раль			ма	Всего, %				
воре, %	20.02 21.02 22.02 24.02 26.02 2						2.03	5.03	6.03	11.03		
0,4	10,0	19,2	16,6	13,8	6,0	7,2	5,2	4,0	-	2,0	84,0±2,45	
0,8	6,0	19,2	15,2	20,6	11,0	8,0	4,0	-	-	-	84,0±3,05	
1,2	-	17,2	16,0	19,2	10,0	7,2	8,0	4,0	2,6	-	84,2±1,39	
1,6	2,6	9,2	12,0	14,2	7,2	13,2	7,2	7,2	-	5,2	$78,6\pm2,90$	
2,0	4,0	6,6	12,6	16,6	7,2	10,6	7,0	4,0	-	4,0	$72,6\pm5,80$	
2,8	-	8,6	8,0	11,2	6,6	9,2	9,2	8,6	3,3	3,3	69,0±4,16	
3,2	-	4,6	3,2	8,6	4,6	5,2	3,2	10,6	5,2	18,0	$62,0\pm1,52$	
Контроль	18,6	18,6	14,0	25,2	4,6	4,0	0,6	-	-	_	$86,0\pm2,50$	

Полученные нами данные позволяют считать, что Salsola gemmascens является растением более устойчивым к высоким концентрациям разных видов солей, чем кейреук и изень.

Список литературы.

- 1. Коровин Е.П. Растительность Средней Азии и Южного Казахстана Ташкент. 1961.
- 2. Люнденгард Γ . Влияние климата и почвы на жизнь растений (перевод с немецкого). М. 1937.
- 3. Нажмиддинов Ж.Н. «Биолого-хозяйственное изучение солянки почечконосной (Salsola Gemmoscels) для введения в культуры в условиях Юго-Западного Кызылкума» автореферат канд. дисс. канд. биол. наук Сант-Петербург. 1992.
- 4. Чалбаш Р.М. Эколого биологические основы возделывания изеня (Kochia prostrata 4.) в Карнабчуль Афтореф. дисс. канд.б.н. Ашхабад. 1963.
- 5. Ширинскоя В.Н. Полевая всхожесть семян перспективных пастбищных растений и некоторые агротехнические приёмы их повышения. Разработка научных основ улучшения и рационального использования каракулеводческих пастбищ (тезисы докладов). Ташкент. 1967.