НЕОПРЕДЕЛЕННОСТЬ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ ТЕПЛОПРОВОДНОСТИ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

ХАКИМОВ ОРТАГОЛИ ШАРИПОВИЧ, ТУГАЛОВ БОБУР ҚАРШИБОЙ ЎҒЛИ, ЭШМУРОДОВА ОЙГУЛ ШУХРАТ ҚИЗИ

Ташкентский Архитектурно-строительный университет, 100011, г. Ташкент, ул. Янги шаҳар 9 A, <u>ortagoli@yandex.ru</u>, тел. 94 642 65 53

Аннотация: Рассмотрены вопросы измерения теплопроводности строительных материалов. Приведены модель измерения и формулы для оценки суммарной стандартной неопределенности измерения теплопроводности.

Ключевые слова: измерение, теплопроводность, строительных материалов. суммарная стандартная неопределенность.

Annotatsiya: Ushbu maqolada Qurilish materiallarining issiqlik o'tkazuvchanligini o'lchash masalalari ko'rib chiqiladi. Issiqlik o'tkazuvchanligini o'lchashning umumiy standart noaniqligini baholash uchun o'lchov modeli va formulalar keltirilgan.

Kalit so'zlar: o'lchov, issiqlik o'tkazuvchanligi, qurilish materiallari. umumiy standart noaniqlik.

Abstract: The issues of measuring the thermal conductivity of building materials are considered. A measurement model and formulas for estimating the total standard uncertainty of thermal conductivity measurement are presented.

Key words: measurement, thermal conductivity, building materials. total standard uncertainty.

Введене.

В современной международной метрологической практике оценка и выражения точностных характеристик испытаний и измерений (далее -измерения) осуществляются в соответствии с требованиями, установленными в международных [1, 2] и национальном [3] документами. Согласно [1] точностная характеристика измерения должна выражаться неопределенностью измерения, вместо широко распространенного, особенно в странах СНГ, понятия «погрешность измерения». В данной работе рассмотрена концепция "неопределенности" применительна к оцениванию неопределенности результатов измерения теплопроводности рулонных строительных материалов. Приводятся результаты измерений теплопроводности при различных температуре и влажности. Оценены точностьные характеристики в виде суммарной стандартной неопределенности полученных в работе результатов.

Методы исследования

Свойства материалов, в том числе теплозащитные, как известно, изменяются в зависимости от целого ряда факторов, в том числе от влажности и температуры. С повышением содержания влаги в этих материалах их теплопроводность имеют тенденцию к возрастанию. Теплофизические исследования влажных материалов отличаются трудоемкостью и сравнительно не высокой точностью.

Влажность, как известно, приводит к увеличению теплопроводности материалов. Зависимость теплопроводности материалов от влажности выражаются известными линейными уравнениями

$$\lambda_{\rm W} = \lambda_{\rm C} + \alpha W$$
, $\lambda_{\rm T} = \lambda_{\rm o} + \beta T$, (1)

где λ_W , λ_C – коэффициенты теплопроводности влажного и сухого материала, соответственно, $W/(m\cdot K)$;

W – влажность материала, %;

 λ_T , λ_0 – коэффициенты теплопроводности при температуре T и T = 0 °C, W/(m·K));

 α , β – эмпирические коэффициенты, $W/(m \cdot K^2)$;

T – температура, °С.

Для определения этих коэффициентов и уточнения уравнения (1), описываемые зависимости теплопроводности от влажности и температуры материалов [4], нами проведены

соответствующие измерения теплопроводности и выполнена обработка полученных результатов.

Обработка экспериментальных данных осуществлена методом обработки результатов совместных измерений [5, 6]. В качестве функций, описываемые зависимости теплопроводности от влажности и температуры, нами использованы полиномы третьей (m=2) степени

$$\lambda_{T,k} = \lambda_0 + \beta_1 T_k + \beta_2 T_k^2, \quad k = 1, 2, ..., n.$$
 (2)

С целью определения значений $\lambda_{T,k}$, λ_0 и коэффициентов β_1 , β_2 , невязки δ_k , т.е. отклонения экспериментальных значений λ_k теплопроводности от расчетных $\lambda_{T,k}$, по предполагаемой функциональной зависимости (2), неопределенности нахождения значений $\lambda_{T,k}$, λ_0 и коэффициентов β_I , β_2 в заданных экспериментальных точках T_k условная система уравнений (2) приведена к нормальной форме (3)

$$\begin{cases} [\lambda_{\mathrm{T}}] = n\hat{\lambda}_{0} + [T]\hat{\beta}_{1} + [T^{2}]\hat{\beta}_{2}; \\ [\lambda_{\mathrm{T}}T] = [T]\hat{\lambda}_{0} + [T^{2}]\hat{\beta}_{1} + [T^{3}]\hat{\beta}_{2}; \\ [\lambda_{\mathrm{T}}T^{2}] = [T^{2}]\hat{\lambda}_{0} + [T^{3}]\hat{\beta}_{1} + [T^{4}]\hat{\beta}_{2} \end{cases}$$

$$(3)$$

где

$$[T] = \sum_{k=1}^n T_k$$
, $[T^m] = \sum_{k=1}^n T_k^m$, $[T^m \lambda_T] = \sum_{k=1}^n T_k^m \lambda_{T,k}$ -обозначения,

введенные Гауссом.

Решение системы нормального уравнения (3), как известно, наиболее кратко описывается с помощью определителей

$$\hat{\lambda}_0 = \frac{D_0}{D}, \quad \hat{\beta}_1 = \frac{D_1}{D}, \quad \hat{\beta}_2 = \frac{D_2}{D},$$
 (4)

где главный определитель D равен

$$D = \begin{bmatrix} n & [T] & [T^2] \\ [T] & [T^2] & [T^3] \\ [T^2] & [T^3] & [T^4] \end{bmatrix}, \tag{5}$$

а определители D_0 , D_1 , D_2 получаются из главного определителя D путем замены столбца с коэффициентами при неизвестных $\hat{\lambda}_0$, $\hat{\beta}_1$ è $\hat{\beta}_2$ (см.(3)), соответственно на столбец со свободными членами

$$D_{0} = \begin{bmatrix} \begin{bmatrix} \lambda_{T} \end{bmatrix} & \begin{bmatrix} T \end{bmatrix} & \begin{bmatrix} T^{2} \end{bmatrix} \\ \begin{bmatrix} \lambda_{T} \end{bmatrix} & \begin{bmatrix} T^{2} \end{bmatrix} \end{bmatrix}, \quad D_{1} = \begin{bmatrix} n & \begin{bmatrix} \lambda_{T} \end{bmatrix} & \begin{bmatrix} T^{2} \end{bmatrix} \\ \begin{bmatrix} T \end{bmatrix} & \begin{bmatrix} T^{3} \end{bmatrix} \end{bmatrix}, \quad D_{2} = \begin{bmatrix} n & \begin{bmatrix} T \end{bmatrix} & \begin{bmatrix} \lambda_{T} \end{bmatrix} \\ \begin{bmatrix} T^{2} \end{bmatrix} & \begin{bmatrix} \lambda_{T} T \end{bmatrix} \end{bmatrix}, \quad (6)$$

Анализ экспериментальных результатов

На рисунке 1 изображены результаты экспериментальных измерений теплопроводности материала по ГОСТ 28554 [4]. На этом рисунке представлены также теоретические кривые зависимости теплопроводности от влажности и температуры, полученные в результате обработки экспериментальных данных, используя полиномы третьей степенны. Параметры этой полиномы также изображены на рисунке 1 и представлены в таблице 1.

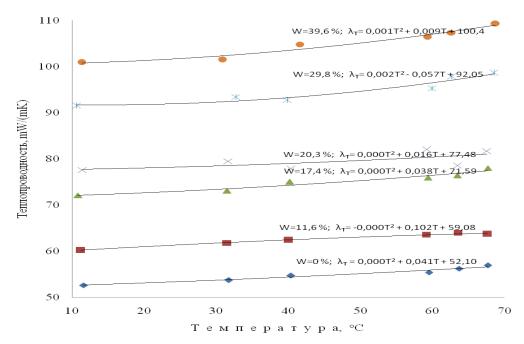


Рис. 1 – Теплопроводность трикотажного полотна по ГОСТ 28554

Суммарные неопределенности $u_c(\hat{\lambda}_0)$, $u_c(\hat{\beta}_1)$, $u_c(\hat{\beta}_2)$ нахождения (оценок) величин λ_0 , β_1 , β_2 (см.таблицу 1), найденных как результат совместных измерений, вычислены по формулам (7)

Таблица 1

Параметры	Влажность, %							
	0	11,6	17,4	20,3	29,8	39,6		
$\hat{\lambda}_0$, mW/(m·K)	52,10	59,08	71,60	77,48	92,06	100,44		
$\hat{\beta}_1$, mW/(m·K ²)	0,041	0,102	0,038	0,016	-0,058	0,010		
$\hat{\beta}_2$, mW/(m·K ³)	0,000	0,000	0,001	0,001	0,002	0,002		
δ_k^2 , $[mW/(m\cdot K)]^2$	0,433	0,123	1,448	9,952	3,052	2,216		
$u(\delta), mW/(m \cdot K)$	0,380	0,202	0,695	1,821	1,009	0,859		
$u_c(\hat{\lambda}_0), \text{ mW/(m·K)}$	0,729	0,378	1,266	3,457	1,794	1,596		
$u_c(\hat{\beta}_1), \text{ mW/(m-K^2)}$	0,041	0,022	0,073	0,197	0,102	0,091		
$u_c(\hat{\beta}_2), \text{ mW/(m·K}^3)$	0,000	0,000	0,001	0,002	0,001	0,001		
$u(\hat{\lambda}_0, \hat{\beta}_1), \text{mW}^2/(\text{m}^2 \cdot \text{K}^3)$	-0,028	-0,007	-0,084	-0,626	-0,166	-0,133		
$u(\hat{\lambda}_0, \hat{\beta}_2), \text{mW}^2/(\text{m}^2 \cdot \text{K}^4)$	0,000	0,000	0,001	0,007	0,002	0,001		

$u(\hat{\beta}_1, \hat{\beta}_2), \text{mW}^2/(\text{m}^2 \cdot \text{K}^5)$	0,000	0,000	0,000	0,000	0,000	0,000
$r(\hat{\lambda}_0, \hat{\beta}_1)$	-0,923	-0,920	-0,915	-0,921	-0,910	-0,918
$r(\hat{\lambda}_0, \hat{\beta}_2)$	0,846	0,840	0,832	0,843	0,823	0,837
$r(\hat{\beta}_1, \hat{\beta}_2)$	-0,982	-0,982	-0,981	-0,982	-0,980	-0,981
$U(\hat{\lambda}_0), \text{ mW/(m·K)}$	2,026	1,051	3,519	9,611	4,986	4,438
$U(\hat{\beta}_1)$, mW/(m·K²)	0,115	0,060	0,202	0,547	0,283	0,252
$U(\hat{\beta}_2)$, mW/(m·K ³)	0,001	0,001	0,002	0,007	0,003	0,003

$$u_{c}(\hat{\lambda}_{0}) = \sqrt{\frac{D_{11}}{D}} \cdot u(\delta); \quad u_{c}(\hat{\beta}_{1}) = \sqrt{\frac{D_{22}}{D}} \cdot u(\delta); \quad u_{c}(\hat{\beta}_{2}) = \sqrt{\frac{D_{33}}{D}} \cdot u(\delta), \quad (7)$$

где D_{11} , D_{22} , D_{33} , т.е. $D_{(j+1)(j+1)}$ - алгебраическое дополнение элементов главного определителя D, получаемое путем удаления из матрицы определителя столбца (j+1) и строки (j+1)

$$D_{11} = \begin{bmatrix} T^2 \\ T^3 \end{bmatrix} \begin{bmatrix} T^3 \\ T^4 \end{bmatrix}, \quad D_{22} = \begin{bmatrix} n & T^2 \\ T^2 \end{bmatrix} \begin{bmatrix} T^4 \end{bmatrix}, \quad D_{33} = \begin{bmatrix} n & [T] \\ T^2 \end{bmatrix}, \quad (8)$$

 $u(\delta)$ – стандартная неопределенность невязки, оцениваемая по типу A по формуле

$$u(\delta) = \sqrt{\frac{\sum\limits_{k=1}^{n} \delta_k^2}{n-m-1}} = \sqrt{\frac{\sum\limits_{k=1}^{n} \delta_k^2}{n-3}},$$
(9)

причем δ_k вычислены подстановкой в каждое условное уравнение (2) оценок искомых величин λ_0 , β_1 , β_2 .

Расширенные неопределенности $\hat{\lambda}_0$, $\hat{\beta}_1$ è $\hat{\beta}_2$ нахождения вычислены по формуле

$$U(\hat{\lambda}_0) = k \cdot u_c(\hat{\lambda}_0), \quad U(\hat{\beta}_1) = k \cdot u_c(\hat{\beta}_1), \quad U(\hat{\beta}_2) = k \cdot u_c(\hat{\beta}_2), \tag{10}$$

где коэффициент охвата k находится из распределения Стьюдента по числу степеней свободы (n-m-1)=3 и заданному уровню доверия P=0.95.

Суммарная стандартная неопределенность $u_c(\lambda_{T,k})$ нахождения $\lambda_{T,k}$ в заданной точке T_k по полученной аналитической зависимости с учетом попарной корреляции между оценками параметров λ_0 , β_1 , β_2 , определялся по формуле

$$u_{c}(\lambda_{T,k}) = \sqrt{u_{c}^{2}(\hat{\lambda}_{0}) + T_{k}^{2} \cdot u_{c}^{2}(\hat{\beta}_{1}) + T_{k}^{4} \cdot u_{c}^{2}(\hat{\beta}_{2}) + \left[T_{k} \cdot u(\hat{\lambda}_{0}, \hat{\beta}_{1}) + T_{k}^{2} \cdot u(\hat{\lambda}_{0}, \hat{\beta}_{2}) + T_{k}^{2} \cdot u(\hat{\beta}_{1}, \hat{\beta}_{1}) + T_{k}^{3} \cdot u(\hat{\beta}_{1}, \hat{\beta}_{2})\right]}$$

$$u(\hat{\lambda}_{0}, \hat{\beta}_{1}) = \frac{D_{12}}{D} \cdot u^{2}(\delta), \quad u(\hat{\lambda}_{0}, \hat{\beta}_{2}) = \frac{D_{13}}{D} \cdot u^{2}(\delta), \quad u(\hat{\beta}_{1}, \hat{\beta}_{2}) = \frac{D_{23}}{D} \cdot u^{2}(\delta) - \frac{D_{23}}{D} \cdot u^{2}(\delta)$$

$$u(\hat{\lambda}_{0}, \hat{\beta}_{1}) = \frac{D_{12}}{D} \cdot u^{2}(\delta), \quad u(\hat{\lambda}_{0}, \hat{\beta}_{2}) = \frac{D_{13}}{D} \cdot u^{2}(\delta), \quad u(\hat{\beta}_{1}, \hat{\beta}_{2}) = \frac{D_{23}}{D} \cdot u^{2}(\delta) - \frac{D_{23}}{D} \cdot u^{2}(\delta)$$

коэффициенты ковариации между параметрами λ_0 , β_1 , β_2 ;

где

Алгебраическое дополнение элементов главного определителя $D-(D_{12},D_{13},D_{23},\text{т.e. }D_{(i+1)(j+1)})$, получаемое путем удаления из матрицы определителя столбца (i+1) и строки (j+1) с умножением полученного определителя на $(-1)^{i+j+2}$, т.е.

$$D_{12} = -1 \cdot \begin{bmatrix} T \\ T^3 \end{bmatrix} \begin{bmatrix} T^2 \\ T^4 \end{bmatrix}, \quad D_{13} = \begin{bmatrix} T \\ T^2 \end{bmatrix} \begin{bmatrix} T^2 \\ T^3 \end{bmatrix}, \quad D_{23} = -1 \cdot \begin{bmatrix} n & T^2 \\ T \end{bmatrix}$$

Параметры зависимости теплопроводности λ материала от влажности и температуры, оценки степени отклонения δ_k экспериментальной зависимости от аналитической, неопределенности $u(\delta),\ u_c(\hat{\lambda}_0),\ u_c(\hat{\beta}_1),\ u_c(\hat{\beta}_2)$, невязки δ_k , коэффициентов корреляции $r(\lambda_0,\beta_1),\ r(\lambda_0,\beta_2),\ r(\beta_1,\beta_2),\ p$ асширенных неопределенностей $U(\hat{\lambda}_0),\ U(\hat{\beta}_1),\ U(\hat{\beta}_2)$ представлены в таблице 1.

Заключение

В заключении отметим, что наименьшая неопределенность измерения теплопроводности материала, как это следует из экспериментов и теоретических расчетов, наблюдается в диапазоне температур от 55 до 65 $^{\rm o}$ C.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА:

- 1 Guide to the Expression of Uncertainty in measurement: First edition. ISO, Geneva, 1993.
- 2 ISO/IEC 17025: 2005 General requirements for the competence of testing and calibration laboratories. ISO, Geneva, 2017.
- 3 O'z DSt ISO/IEC 17025: 2019 Общие требования к компетентности испытательных и калибровочных лабораторий.
- 4 ГОСТ 28554-90 Полотно трикотажное. Общие технические условия.
- 5 Захаров И.П., Кукуш В.Д. Теория неопределенности в измерениях. Учеб. пособие: Харьков, Консум, 2002 256 с.
- 6 Латипов В.Б., Хакимов О.Ш. Неопределенность результатов измерения теплопроводности трикотажного полотна // Ж. Химическая технология. Контроль и управление, № 4, 2009, с. 27–31
- 7. Jo'rayev M. B., Tugalov B. Q., Xolbekov S. R. ARMATURA QURILISH MATERIALLARIGA DOIR XAVFSIZLIK TALABLARINI BELGILASHDA TEXNIK REGLAMENTLARNING AFZALLIKLARI //Conferencea. 2022. C. 72-77.