МЕТОДЫ ПРОВЕДЕНИЯ АНАЛИЗА НА РАЗЛИЧНЫХ ЭКОЛОГИЧЕСКИХ ПОЧВЕННЫХ ШЕЛОЧНЫХ СРЕДАХ НА ВСХОЖЕСТЬ СЕМЯН ПОДСОЛНЕЧНИКА В ЛАБОРАТОРНЫХ УСЛОВИЯХ.

Матирзаев Шухрат Шукурлаевич

Заместитель директора учебно производственной части Амударинского инжинерного техникума Узбекистан, Республика Каракалпакистан, г.Мангит

АННАТАЦИЯ

В этой статье говариться о том, определение всхожести семян подсолнечника в разной экологической шелочной полевой среде и показатели их всхожести и энергия прорастания. Влияние температуры и продление лабораторных анализных дней, методы проведения анализа на различных экологических почвенных шелочных средах в чашке Петри в термостате. Также говариться как можно определить всхожести и энергии прорастания семян подсолнечника.

Ключевые слова: Термостат, Чашка Петри, Лакмусовая бумага, Засоление почвы, Почвенный раствор, рН метр, Экология, проба, влажность, температура, энергия прорастания, бюкс, всхожесть семян.

Введение

Подсолнечник относится к семейству Астровых (Asteraceae L.), или сложноцветных (Compositae L.), полиморфному роду Helianthus. В различных классификациях к этому роду относили от 50 до 264 видов. По классификации К. Хейзера (США), род Helianthus включает 68 многолетних и однолетних видов. Многолетних видов намного больше, но однолетние имеют значительно более широкий ареал.

В 1980 г. А.В.Анашенко (ВИР) на основе генетико-эволюционного изучения подсолнечника разработал классификацию, согласно которой род Helianthus включает десять видов: один сборный диплоидный однолетний вид - H. annuus L. и девять многолетних (ди-, тетра- и гексаплоидных).

В связи с проблемой высыхания Аральского моря и развитием и увеличением поливного посева в Республике Каракалпакистан состояние почвы ухудшается с каждым годом, происходит загрязнение почвы и масштабное засоление.

В процессе формирования экологической культуры целесообразно по отдельности анализировать два взаимосвязанных, но относительно независимых направления.

Первое - разумная организация производственного, технического и технологического развития, которое составляет практическую деятельность человека по изменению и освоению природы на основе теоретических знаний об экологии.

Второе - развитие у людей экологического сознания, мышления и мировоззрения на основе исторического экологического опыта, с помощью общественных институтов экологического образования и воспитания.

Засолений почв — это процесс накопления в почве более 0,05 % от ее массы солей, вредных для растений. Этот процесс наиболее распространен в засушливых районах, обычно в понижениях рельефа. Существуют разные типы засоления: хлоридное, сульфатное, сульфатно-хлоридное, карбонатное, причем самым опасным для растений считается хлоридное засоление (NaCl). Если содержание солей превышает 0,05 % (от веса почвы), вести культуру нецелесообразно: такая почва считается сильнозасоленной. Среднезасоленные почвы, имеющие концентрацию солей 0,02-0,05 %,

используются в сельском хозяйстве, но обычно при этом засолении дают пониженный урожай. При содержании солей 0,01-0,02 % вполне возможно произрастание всех полевых культур; такие почвы относятся к незасоленным. Культурные растения имеют различную солевыносливость, подсолнечник являеться устойчивым к солям.

Всхожесть семян-это каличество проросщих семян выраженных в процентах к пробе, взятой для анализа. К нормально проросщим семенам относиться семена, которое имеють корешок не менее 0,8-1,0 см в течении 4-8 дней в лабораторных условиях.

Энергия прорастания-это скорость прорастания, выражаемые в процентах семян в срок, установленный опытным прорастанием в течении 4-8 дней.

Мы хорошо знаем что всхожесть и энергия прорастания семян можно определить в лабораторных и полевых условиях. В полевых условиях всегда показателиниже чем в лабораторных.

При проведении анализа мы берем пробы почвы из разных местах возделиваемой сельскохозяйственной культуры почвенный грунт из солев гулбины 12-25 см и готовим почвенный раствор для опреления (рН) щелочной среды.

Услолвия и методика приготовление почвеннгого раствора:

Для анализа мы берем пробы почвы и помещаем на бюкс и поместим в нагревательный термостать где происходить испарение влаги из почвы. Остатки высохщей почвы растворим на дистилированной воде и размещаем до остатка, чтобы не осталаось осадки почвы в бюксе. Затем фильтруем почвенный раствор на фильтровалной бумаге на воронке. Таким оброзом мы получаем почвенный раствор на всех почвах и с помощью рН метра (Рис1,2)

и универсальной индикаторной бумагой (лакмусовая бумага) определяем степень засоления почвы.

Рисунок 1. Исследование на лабароторном Лабароторный

Рисунок 2.

рН метре. рН метр.

Условия и методика проведения исследований:

Исслодованием объекта были семена подсолнечника **Родник Р-453** включен в Государственный реестр Узбекистана 2011 году, номер заявки 2008033, номер организатора сорта 55 и рекомендован к посеву по всем регионам Узбекистана.

Вторым объектам была семена подсолнечника **КК-1** включен в Государственный реестр Узбекистана 2008 году, номер заявки 2005021, номер организатора сорта 15 и рекомендован к посеву по всем регионам Узбекистана. Исследование проводились Нукусском филиале Тошкентского Аграрного Университета нижеследующим варианте:

- 1.Контрольный вариант рН=6,8-7
- 2. Вариант рН-7,15-7,5
- 3. Вариант рН-7,75-8,0
- 4. Вариант рН-8,15-8,5

Для определение всхожести семян подсолнечника мы применяли Чашки Петри (рис3). Исследование проводились на основе стандартно-нормативных документах.(Таблица-1).

Для начала по реестру мы взяли семена подсолнечника **Родник Р-453 и КК-1**, затем определяли засоренность, чистоту и массу 1000 семян. Для определения всхожести семян по 100 семян с каждого сорта для каждого варианта. Таким образом мы отобрали 400 семян из сорта подсолнечника **Родник Р-453** и 400 семян из сорта **КК-1**.

К первому контрольному варианту мы на дно чашки Петри вложили фильтровальную бумагу туда вложили по 100 семян подсолнечника **Родник Р-453 и КК-1** не задев друг друга. После вложения семян Чашку Петри увлажняли (дис. водой), семена в других вариантах 2-го,3-го и 4-го на дно чашки Петри вложили фильтровальную бумагу наливали почвенным растворам и на них высевали семена и поверхности закрывали и полажили на термостат.(ТПС-120). Таблица №1

Всхожесть семян подсолнечника в лабораторных условиых с различной степенью засоления. Tаблица N2I

№	Сорта	Чист	Macca	Темпер	Почвенный	Сутки	Всхож
	подсолнечн	ота	1000	атура,	раствор		есть,
	ика	%	семян	⁰ C	(с различной		%
					степенью		
					засоления)		
					1.		
1	Родник (P-453)	08.0	70	22-24 ^o C	Контрольный	8/10	91
		98,0			вариант с	0/10	
					дис.водой		

					pH=6,75-7,0		
					2. Вариант		92
					pH-7,15-7,5		
					3. Вариант		76
					pH-7,75-8,0		
					4. Вариант		52
					pH-8,15-8,5		
					1.С дис.водой		92
					pH=6,8-7		72
					2. Вариант		93
2	KK-1	96,0	73	22-24 ⁰ C	pH-7,15-7,5	8/10	
2	KK-1 90,	90,0	73	22-24 C	3. Вариант	0/10	78
					pH-7,75-8,0		
					4. Вариант		62
					pH-8,15-8,5		

Внутри камеры термостата температура дольна быть 22-24°C. После вложения чашки Петри с почвенным раствором и семена на термостат мы фиксировали дату и время анализа. Потому что каждый день в то же время 4-5 минут надо проветривать и увлажнять. В течении 8 дней мы наблюдали за анализом (4 дней для определения энергии прорастания семян и в следующий 4 дней для всхожести семян).(Рис.3, 4)

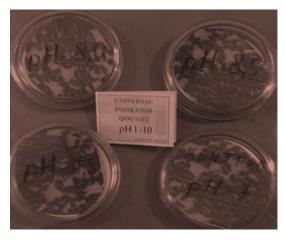
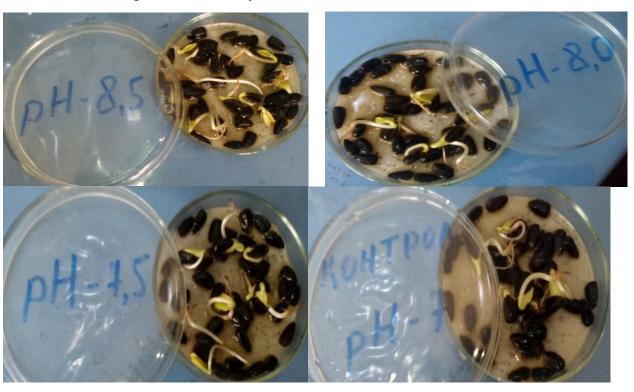


Рисунок 3. Высеенные семена на чашке Петри

Рисунок 4. Лабароторный термостат

В итоге исследований общая всхожесть семян масличного подсолнечника Родник Р-453 составило в среднем (%)нижеследующей (Таблица-2)

Варианти	Степень	Высенная	Общая	В
	засоления	семена, шт.	всхожесть	среднем, %
	рН среда		семян, шт.	
1.Контрольный				
вариант с	pH=6,75-7,0	100	91	91
дис.водой				
2. Вариант	pH-7,15-7,5	100	92	92
3. Вариант	pH-7,75-8,0	100	76	76
4. Вариант	pH-8,15-8,5	100	52	52


В итоге исследований общая всхожесть семян масличного подсолнечника **КК-1** составило в среднем (%)нижеследующей (Таблица-3)

Варианти	Степень	Высенная	Общая	В
	засоления	семена, шт.	всхожесть	среднем, %
	рН среда		семян, шт.	
1.	pH=6,75-7,0	100	92	92

Контрольный				
вариант с				
дис.водой				
2. Вариант	pH-7,15-7,5	100	93	93
3. Вариант	pH-7,75-8,0	100	78	78
4. Вариант	pH-8,15-8,5	100	62	62

Выводы: Принято считать, что образцы полученные из России семена подсолнечника Родник Р-453 всхожесть семян при рН-7,15-7,5 слабо засоленной почвенной среде составило 92% по сравнению с остальными вариантами.

Вторым объектам была семена подсолнечника **КК-1** включен в Государственный реестр Узбекистана 2008 году не терял свою всхожесть при рН-7,15-7,5 слабо засоленной почвенной среде составило 93% по сравнению с остальными вариантами. Рисунок №5

При содержании солей 0,01-0,02 % вполне возможно произрастание семян подсолнечника такие почвы относятся к незасоленным. Лабораторные исследование показали, что подсолнечник хорошо прорастает при слобозасаленных почвенных растворах и даёт хорощий всхожесть при рН-7,15-7,50 по сравнению с контрольным (рН-6,8-7,0) вариантам.

По рузультатам лабораторного исследования водородный показатель почвенного раствора с выще pH = 8,13, что показывает щелочность среде всхожесть и прорастание семян сильно уменщаеться (52-62%).

Экологические знания необходимы и для обеспечения баланса между стремительно растущими потребностями человечества и сокращающимися естественными ресурсами планеты.

Если человек не ощущает себя частью природы, она разрушается, гибнет в условиях хищнического истребления. Все живые существа в природе страдают от человеческого фактора

Список литературы:

- 1. Аскарова Г.Ш., Орынбеков Д.Д., Асанова Г.Ж. Международный журнал прикладных и фундаментальных исследований. 2017. № 6-1. С. 79-82;
- 2. Никитчин, Д.И. Подсолнечник. Биохимия, селекция, возделывание/ Д.И.Никитчин. – Пологи, Украина, 2002. – 116 с
- 3. Пустовойт, В.С. Подсолнечник (Монография). Под общ. Ред. Акад. В.С. Пустовойта. М.: Колос, 1975. 592с.
- 4. Э. И. Чембарисов, Т. Ю. Лесник Научно-исследовательский институт ирригации и водных проблем при Ташкентском институте ирригации и мелиорации, Ташкент, Республика Узбекистан Т. Э. Чембарисов Национальный Университет Узбекистана им. М. Улугбека, Ташкент, Республика Узбекистан 2013. 127-128