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Abstract:    This article examines the models of basic Just-In-Time (JIT) systems using point processes in reverse time. This 

method permits certain presumptions regarding the workings of actual systems. We thus formulate and solve a few 

very basic optimal control problems for a system with bounded intensity and for a multi-stage just-in-time system. 

For the objective functions, results are computed as expected linear or quadratic forms of the trajectories' deviations 

from the intended values. The statements' proofs employ the martingale method. In logistics tasks, just-in-time 

systems are frequently taken into consideration, and only (or mostly) deterministic methods are used to describe them. 

Nonetheless, it is evident that stochastic events are frequently observed in these systems and the related processes. 

It is crucial to identify strategies for the best just-in-time process management in these kinds of stochastic situations. 

In this paper, we propose to use martingale methods for this description. Here, straightforward methods for stochastic 

JIT process optimization are shown. 

 

 

I. Introduction.  

In this article, we consider some stochastic models of 

simple just-in-time systems. The well-known principle 

of just-in-time system (abbreviated as JIT system) is 

used in many areas. Examples include just-in-time 

production systems, pedagogical strategies of just-in-

time teaching, and just-in-time compilation methods in 

computer programming. It should be noted that at 

present mathematical, especially stochastic, models 

for JIT systems are not sufficiently developed. Such 

models are necessary for solving optimal control 

problems, which could allow optimizing the allocation 

of system resources and implementing optimal 

planning of a stochastic JIT system. The purpose of 

this article is to present an approach to the stochastic 

description of JIT systems, which would be suitable 

for both analytical methods and computer simulation. 

Mathematical models of such systems should allow 

assuming that the trajectories of processes must take 

the given values at a fixed time. Such behavior of 

processes is known in stochastic bridges and stochastic 

processes in the reverse time. Thus, we should 

consider models of systems with the requirement of 

JIT in terms of processes with the behavior of 

trajectories close to stochastic bridges. Models should 

also allow investigating possible violations of this 

requirement that are unavoidable for real systems. 

Stochastic process time reversals have been the subject 

of research for many years. We observe that the study 

of these processes is the focus of several works 

pertaining to stochastic bridges. Furthermore, some 

studies on reversible Markov processes also adjoin 

process descriptions in the opposite direction. In this 

paper, we examine semi martingale models of 

elementary JIT systems for point processes near the 

previously mentioned Poisson bridge. Here, we'll 

grant some suppositions regarding the workings of 

actual systems. Thus, a system with bounded intensity 

and simple cases of multi-stage JIT systems are 

examined. As demonstrated, it is possible to formulate 

and solve basic optimal control problems for these 

situations. The semi martingale technique is used in 

the results proofs.  

II. Materials and Methods 

A basic JIT system's time reversal technique. Think 

about a Just-In-Time (JIT) system that can be 

explained using point processes, such as counting. We 

assume that, starting from the zero moment, a fixed 

time 𝑇 > 0 must be met by an integer number 𝐾 of 

operations within the system. This indicates that for 

every time t ∈ [0, 𝑇], the number of operations left, tr, 

is equal to the number p minus the value p_t of a 

counting process, t = (p_t)_t>0: tr = p_t − p_t. 

We now give a formal description of the mathematical 

model. Let (Ω, F, P) be a probability space populated 

with a nondecreasing right-continuous family of 𝜎- 

algebras F = (F𝑡)𝑡>0, complete with respect to P (i.e., 

the conditions of [13] hold). On the stochastic basis B 

= (Ω, F, F = (F𝑡)𝑡>0, P) the process 𝑋 = (𝑋𝑡)𝑡>0 is 

supposed to be the point process with trajectories in 

the Skorokhod space, 𝑋𝑡 ∈ N0 = {0, 1, 2, . . . } and 

∆𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡− ∈ {−1, 0}  

The process 𝑋 can be represented as a difference: 𝑋 = 

𝑋0 − 𝑁 = 𝐾 − 𝑁, where 𝑁 = (𝑁𝑡)𝑡>0 is the counting 

process of the number of negative jumps of 𝑋, with the 

initial value 𝑋0 = 𝐾 > 0 (i.e., 𝐾 ∈ N = {1, 2, . . . }, 𝑁0 

= 0, and 𝑋𝑡 = 𝐾 − 𝑁𝑡 , for all 𝑡 > 0).  

We suppose that the submartingale 𝑁 and 

supermartingale 𝑋 on B admit the well-known Doob–

Meyer decompositions (see, e.g., [13]):  

𝑁𝑡 = 𝑁˜ 𝑡 + 𝑚𝑁 𝑡, 𝑋𝑡 = 𝑋˜ 𝑡 − 𝑚𝑁 𝑡 (1) with the 

compensators 𝑁˜ = (𝑁˜ 𝑡) 𝑡>0 and 𝑋˜ = (𝑋˜ 𝑡)𝑡>0, 

 and the square-integrable martingale 𝑚𝑁 = (𝑚𝑁 𝑡) 
𝑡>0 with the quadratic characteristic ⟨𝑚𝑁 ⟩ 𝑡 = 𝑁˜ 𝑡 
for all 𝑡 > 0. 
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 We also suppose in this article that 𝑁˜ 𝑡 = ∫︁ 𝑡 0 (𝐾 − 

𝑁𝑠) · 1 𝑇 − 𝑠 · I {𝑠 < 𝑡} 𝑑𝑠, (2) where I{·} is an 

indicator function (i.e., I{true} = 1, I{false} = 0). From 

(1) and (2) it follows that the process 𝑋 has the 

decomposition: 𝑋𝑡 = 𝐾 − ∫︁ 𝑡 0 𝑋𝑠 · 1 𝑇 − 𝑠 · I{𝑠 < 𝑡} 

𝑑𝑠 − 𝑚𝑁 𝑡 . (3)  

In the general case, for the basic model we assume that 

the point process 𝑋 admits the representation: 𝑋𝑡 = 𝐾 

− ∫︁ 𝑡 0 ℎ𝑠 𝑑𝑠 + 𝑚𝑋𝑡.  
With the intensity of negative jumps ℎ = ℎ(𝑋) = 

(ℎ𝑡(𝑋))𝑡>0 and the martingale 𝑚𝑋 = (𝑚𝑋 𝑡 )𝑡>0. In the 

particular case (3), the following equality holds: 

 ℎ𝑡 = ℎ𝑡(𝑋) = 𝑋𝑡 · I{𝑠 < 𝑡}/(𝑇 − 𝑠), (5) and 𝑚𝑋 = −𝑚𝑁 

, i.e. 𝑚𝑋 𝑡 = −𝑚𝑁 𝑡 for all 𝑡 > 0. 

 It is well known that the compensator of the point 

process defined by formula (2) corresponds to the 

bridge of a Poisson process. 

Consider a standard Poisson process 𝜋 = (𝜋𝑠)𝑠∈[0,𝑇] 

on the stochastic basis B with the initial value 𝜋0 = 0 

and any positive intensity 𝜆 > 0. Let F0 𝑡 = 𝜎{𝜋𝑠 : 𝑇 − 

𝑡 6 𝑠 6 𝑇} for 𝑡 ∈ [0, 𝑇], F0 𝑡 = F0 𝑇 for 𝑡 > 𝑇, and 

nondecreasing family 𝜎-algebras F = (F𝑡)𝑡>0 be the 

right continuous completion of (F0 𝑡 )𝑡>0.  

Define the reverse time supermartingale 𝑌 = (𝑌𝑡)𝑡>0 

as 𝑌 = 𝜋𝑇 −𝑡 for 𝑡 ∈ [0, 𝑇] and 𝑌𝑡 = 𝜋0 = 0 for 𝑡 > 𝑇. 

Then 𝑌 is F-adapted and it has the decomposition (as 

it easily follows, from Theorem 2.6 in [8]): 𝑌𝑡 = 𝜋𝑇 − 

∫︁ 𝑡 0 𝑌𝑠 𝑇 − 𝑠 · I{𝑠 < 𝑡} 𝑑𝑠 + 𝑚𝑌 𝑡 , (6) where 𝑚𝑌 = 

(𝑚𝑌 𝑡 )𝑡>0 is a square-integrable martingale with the 

quadratic characteristic ⟨𝑚𝑌 ⟩ 𝑡 = ∫︁ 𝑡 0 𝑌𝑠 𝑇 − 𝑠 · I{𝑠 

< 𝑡} 𝑑𝑠.  

The comparison of (3) and (6) illustrates the fact 

known for bridge processes: the representation of the 

process 𝑋 = 𝐾 − 𝑁 (with the initial value 𝐾 and the 

Poisson bridge 𝑁) coincides with the reverse time 

representation 𝑌 of the Poisson process 𝜋 (with any 

strictly positive intensity 𝜆) under the condition for the 

initial value 𝑌0 = 𝜋𝑇 = 𝐾. Thus, we can consider the 

behavior of the trajectories of the process 𝑋 with 𝑋0 = 

𝐾 and 𝑋𝑡 = 0 for 𝑡 > 𝑇 as the embodiment of the just-

in-time requirement.  

Therefore, the main idea of the presented description 

of JIT systems is the realization of the corresponding 

behavior of trajectories by means of proper control of 

ℎ = (ℎ𝑡)𝑡>0, which is the intensity of the negative 

jumps of 𝑋 in the base model (4). This intensity can be 

regarded as a negative feedback tending to −∞ as 𝑡 → 

𝑇 in the case of nonzero 𝑋𝑡.  
Note that in (6) it does not directly depend on the 

intensity 𝜆 of the initial process 𝜋. The distribution of 

the main process 𝑋 in (4) is determined by the intensity 

of the negative jumps ℎ, which in the particular case of 

(5) depends on the values of 𝐾 and 𝑇 > 0. Along with 

𝑋, we define for the base model (4) the auxiliary 

functions for E𝑋𝑡, E𝑋2 𝑡 and E(𝑋𝑡−𝑅𝑡) 2 = 𝐺𝑡−𝑅2 𝑡 
(i.e., for the mean, the second moment, and the 

variance of 𝑋, respectively).  

For the functional ℎ = ℎ(𝑋) of general form in (4), and 

the initial value 𝐾, it is assumed that 𝑅𝑡 = 𝑅𝑡(𝐾; ℎ) = 

E𝑋𝑡 , 𝐺𝑡 = 𝐺𝑡(𝐾; ℎ) = E𝑋2 𝑡 , 𝑉𝑡 = 𝑉𝑡(𝐾; ℎ) = E(𝑋𝑡 
−𝑅𝑡) 2 . (7)  

In the particular case (5), these functions depend only 

on the values of 𝑡, 𝐾, and 𝑇. Therefore, for (5) we use 

the notations: 𝑟𝑡(𝐾; 𝑇) = 𝑅𝑡 = E(𝑋𝑡 /𝑋0 = 𝐾; 𝑋𝑡 = 0), 

(8) 𝑔𝑡(𝐾; 𝑇) = 𝐺𝑡 = E(𝑋2 𝑡 /𝑋0 = 𝐾; 𝑋𝑡 = 0), (9) 𝑣𝑡(𝐾; 

𝑇) = 𝑉𝑡 = E((𝑋𝑡 − 𝑅𝑡) 2 |𝑋0 = 𝐾; 𝑋𝑡 = 0) = 𝑔𝑡(𝐾; 𝑇) − 

𝑟𝑡(𝐾; 𝑇) 2 . (10)  

For the functions (8), (9) and (10) defined for 𝑋 in (4) 

with the intensity (5), we have 𝑟𝑡(𝐾; 𝑇) = 𝐾 · 𝑇 − 𝑡 𝑇 

· I{𝑡 6 𝑇}, 

𝑔𝑡(𝐾; 𝑇) = ( 𝐾 · 𝑇 − 𝑡 𝑇 )2 · /{𝑡 6 𝑇} + 𝐾 · (𝑇 − 𝑡) · 𝑡 
𝑇2 · /{𝑡 6 𝑇}, (12) 𝑣𝑡(𝐾; 𝑇) = 𝐾 · (𝑇 − 𝑡) · 𝑡 𝑇2 · /{𝑡 6 

𝑇}.  

Problems of optimal planning for a multi-stage JIT 

process. Consider a model of simple multi-stage JIT 

systems in terms of the proposed description. We 

assume that it is a set of separate processes in reverse 

time (or bridges of corresponding processes) with a 

single aggregate plan. This section presents a simple 

solution to the problem of the optimal times for 

changing the stages for the model. In the cases 

considered here, the mean-square deviations of the 

trajectories from the planned values are minimized. In 

addition, we consider the problem of optimal 

rescheduling for the case of two stages and for its 

multistage generalization. 2.1. Separate processes in 

reverse time. Let us consider optimal control problem 

for the following scheduling model. Let the execution 

of (𝐾 + 1) operations in time 𝑇 be subdivided into 𝑛 ∈ 

N stages: every successive 𝐾(𝑖) operations must be 

performed in stage 𝑖, which lasts the time 𝜍(𝑖), for all 𝑖 
= 1, 2, . . . , 𝑛.  

The following conditions for the time and number of 

operations must be fulfilled:  

∑︁𝑛 𝑖=1 𝜍(𝑖) = 𝑇, (14) ∑︁𝑛 𝑖=1 𝐾(𝑖) = 𝐾. (15)  

We also define the condition for the uniformity of the 

operations: 

 𝐾(𝑖) = 𝐾(𝑖) · 𝜍(𝑖)/𝑇 for all 𝑖 = 1, 2, . . . , 𝑛.  

 Thus, the model of this JIT system is a set of separate 

processes in reverse time (or of proper bridges). 

Suppose that we must insure the uniform fulfillment of 

the plan 𝜍 = {𝜍(1), 𝜍(2), . . . , 𝜍(𝑛)} in the sense of , 

minimizing the weighted variance of the deviation 

from it.  

We consider the problem of finding an optimal plan 𝜍 
* = {𝜍 * (1), 𝜍* (2), . . . , 𝜍* (𝑛)} for which Φ(𝜍 *) = inf 

𝜍 Φ(𝜍), (17) where the objective function Φ(𝜍) is the 

sum of weighted variances (10) for the processes in (4) 

with initial values 𝐾(𝑖) and times of performance 𝜍(𝑖), 
𝑖 = 1, 2, . . . , 𝑛: Φ(𝜍) = ∑︁𝑛 𝑖=1 𝛼(𝑖) · ∫︁ 𝜍(𝑖) 0 𝑣𝑡(𝐾(𝑖), 
𝜍(𝑖)) 𝑑𝑠 (18) under conditions (14) and (15), and for 

strictly positive weights: 𝛼(𝑖) > 0 for all 𝑖 = 1, 2, . . . , 

𝑛. 

Theorem 1. For the plan that minimizes the objective 

function Φ(𝜍), 𝜍 * (𝑖) = 𝑇 · { 𝛼(𝑖) · 𝑛 · ∑︁𝑛 𝑗=1 1/𝛼(𝑗) 
}−1/2 for all 𝑖 = 1, 2, . . . , 𝑛. (20) Remark 1. Theorem 

1 implies the trivial consequence that for equal weights 

the equal times are optimal: for 𝛼(1) = 𝛼(2) = . . . = 

𝛼(𝑛) > 0, 𝜍 * (𝑖) = 𝑇 /𝑛 for all 𝑖 = 1, 2, . . . , 𝑛. (21) 2.2. 

The problem of optimal rescheduling for a two-stage 

JIT process. As it follows from (21), for 𝑛 = 2, in the 

case of equal weights, it then holds that 𝜍 * (1) = 𝜍 * 

(2) = 𝑇 /2. 



But in real systems, rescheduling—a process for 

reviewing the plan while it's being implemented—

occurs in addition to a priori stage planning. The JIT 

system's operations in this instance are carried out in 

line with the process intensity in (3) for the planned 

initial value 𝐍 and the planned time 𝑇 for the following 

cases: 𝐡 ∈ [0, 𝜎], 𝜎 ∈ [0, 𝑇], where 𝜎 is the 

rescheduling time. Thus, the initial plan with the 

values of 𝐾 and 𝑇 is executed in the first stage for 𝑡 ∈ 

[0, 𝜎]. The subsequent re-planning process is put into 

action at time 𝜏. The time interval [𝜎, 𝑇] is when the 

second stage is completed. Here, following the 

rescheduling, the new execution time (𝑇 −𝜎) and the 

starting value of the number of operations (𝑋𝜎) are set 

in the interval [𝜎, 𝑇] for the new process in reserve 

time. 

plan in the first stage and the deviation from the new 

plan in the second stage. Thus, we consider the 

problem of finding an optimal value 𝜎 * for which Ψ(𝜎 

* ) = inf 𝜎 Ψ(𝜎), (23) where the objective function 

Ψ(𝜎) is the integrated variance (7) for the intensity ℎ = 

ℎ(𝑋) is equal to Ψ(𝜎) = ∫︁ 𝑇 0 𝑉𝑡(𝐾; ℎ) 𝑑𝑠. (24) Here the 

intensity for the rescheduling is equal to ℎ𝑡(𝑋) = ℎ (1) 

𝑡 (𝑋) · I{𝑡 ∈ [0, 𝜎)} + ℎ (2) 𝑡 (𝑋) · I{𝑡 ∈ [𝜎, 𝑇)}, (25) 

where ℎ (1) 𝑡 (𝑋) = 𝑋𝑡/(𝑇 − 𝑡), ℎ(2) 𝑡 (𝑋) = 𝑋𝑡/(𝑇 − 𝜎 

− 𝑡). (26) Lemma 2. For the time 𝜎 that minimizes the 

objective function Ψ(𝜎), 𝜎 * = 𝑇 /3. 

The problem of the optimal level of resources of a 

simple system with possible violations of the 

condition. In this section, we consider some 

assumptions about violations of the JIT condition in 

processes inherent in real systems. Thus, we assume 

that the intensities of point processes can be bounded. 

We note that such a representation of the process 𝑋 in 

(4) does not correspond to the time reversal procedure 

for a point process with fixed initial value. 

Nevertheless, such a representation in terms of point 

processes is useful for describing a controlled system 

with a violation of the condition of JIT. For such a 

model, the task of optimal control arises – to find the 

value of the maximum level of intensity of the point 

process for each operation under conditions of 

payment for the value of this boundary, and payment 

for non-compliance with the JIT requirement. We 

suppose that the intensity h in (4) can be represented 

as ℎ𝑡 = ℎ𝑡(𝑋) = 𝑋𝑡 · min{Λ,I{𝑡 < 𝑇}/(𝑇 − 𝑡)}, (32) 

where Λ ∈ [0, ∞) is a finite maximum level of intensity 

for each operation. Under this assumption for ℎ, the 

JIT-condition 𝑋𝑇 = 0 may not hold, and obviously  

P{𝜔 : 𝑋𝑇 (𝜔) > 1} > 0 and E𝑋𝑇 > 0. 

We assume that the payment for this violation of the 

JIT condition is proportional to the mean value of the 

number of uncompleted operation E𝑋𝑇. The 

coefficient of proportionality is denoted by 𝛼. The 

greater the upper level Λ, the smaller the value of E𝑋𝑇 

and the closer to the fulfillment of the JIT requirement. 

Since the resources of the real system provide the level 

Λ, it also has a certain positive cost with a 

proportionality factor of 𝛽. Moreover, Λ can serve as 

a control parameter in the system (4). Thus, we 

consider the problem of optimal control of the process 

𝑋 in (4) for fixed 𝐾 ∈ N and 𝑇 > 0, and under the 

assumption for ℎ. It is necessary to find an optimal 

value Λ * for which the problem is analogous to the 

problems (17), (23) and (29): Θ(Λ* ) = inf Λ>0 Θ(Λ), 

(33) where the objective function Θ(Λ) is equal to 

Θ(Λ) = 𝛼 · E𝑋𝑇 + 𝛽 · Λ (34) under the conditions: 𝛼 

> 0, 𝛽 > 0. (35) Theorem  

For the maximum intensity level, which minimizes the 

objective function  

Θ(Λ), Λ * = √︃ 𝛼 · 𝐾 𝛽 · 𝑒 · 𝑇 if 𝛼 · 𝐾 · 𝑇 /𝛽 ∈ [𝑒, 

+∞), (36) Λ * = [log(𝛼 · 𝐾 · 𝑇 /𝛽)]/𝑇 if 𝛼 · 𝐾 · 𝑇 /𝛽 ∈ 

(1, 𝑒), (37) and Λ * = 0 if 𝛼 · 𝐾 · 𝑇 /𝛽 ∈ (0, 1]. 

III. Discussion.  

The main purpose of this article is to show the 

possibilities of using of the time reversal approach in 

problems concerning just-in-time. We demonstrate 

simple methods for optimizing JIT systems, for the 

case of a point (counting) process, represented in 

semimartingale terms. We also note that the statements 

of Theorem 1, Lemma 2, and Theorem 2 are valid in 

the case of a random walk in reverse time (Lemma 1 

and Theorem 2 remain true if the coefficients are 

properly replaced). In this case, the semimartingale 

representation methods and optimal control problems 

are close. In the case of nonstationary processes in 

direct time, the results are also anticipated. Finally, 

note that the method of representing JIT systems 

discussed in the article in terms of predictable 

semimartingale characteristics creates opportunities 

for simple and clear computer modeling. Obviously, 

the simulation is easy to implement on the basis of the 

infinitesimal relation for  

𝑋: P{∆𝑋𝑡 = 𝑋𝑡+Δ − 𝑋𝑡 = −1|F𝑡} = ℎ𝑡(𝑋) · ∆ + 𝑜(∆) 

as ∆ → 0, for all 𝑡 > 0. 

 Thus, it follows that the discussed approach can serve 

as an initial step for the analysis of stochastic JIT 

systems. 
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