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Abstract: In this article, we establish new traveling wave solutions for the 
loaded Benjamin-Bona-Mahony and the loaded modified Benjamin-Bona-Mahony 
equation by the functional variable method. The performance of this method is 
reliable and effective and gives the exact solitary wave solutions and periodic wave 
solutions. All solutions of these equations have been examined and three-
dimensional graphics of the obtained solutions have been drawn by using the 
MATLAB program. We get some traveling wave solutions, which are expressed by 
the hyperbolic functions and trigonometric functions. This method is effective in 
finding exact solutions of many other similar equations. 
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Benjamin-Bona-Mahony (BBM) equation is well known in the analysis of 

the surface waves of long wavelength in liquids, hydromagnetic waves in a cold 
plasma, acoustic-gravity waves in compressible fluids, and acoustic waves in 
harmonic crystals and it describes the model for propagation of long waves which 
incorporates nonlinear and dissipative effects [1]. In the last two decades, various 
versions of the BBM equation have been investigated in the literature [2].  

In 1972, Benjamin, Bona, and Mahony formulated a model equation for the 
unidirectional propagation of small-amplitude long waves on the surface of water 
in a channel [3]. A general form of the BBM equation is 

 
0,x t x txxu u uu u+ − − =  

 
where ( , )u x t  is an unknown function, x R , 0t  ,   is any constant. 

The BBM equation has been investigated as a regularized version of the KdV 
equation for shallow water waves [4]. In certain theoretical investigations the 
equation is studied as a model for long waves and from the standpoint of existence 
and stability, the equation offers considerable technical advantages over the KdV 
equation [5]. In addition to shallow water waves, the equation applies to the study 
of drift waves in plasma or the Rossby waves in rotating fluids. Under certain 
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conditions, it also provides a model of one-dimensional transmitted waves. 
The modified Benjamin-Bona-Mahony equation is a special type of the BBM 

equation. By changing the nonlinear term of the form ( 2)n

xu u n =  the new 

modified form is obtained as follows:  
 

2 0,x t x txxu u u u u+ − − =  

 
BBM equation can be solved by many methods. This equation is solved by 

( )G / G  - the expansion method [6], the exp-function method [7, 8], the homotopy 

perturbation method [9, 10], and the variation iteration method [11]. Zabusky 
and Kruskal investigated the interaction of solitary waves and the recurrence of 
initial states [12]. The Adomian decomposition method is another method to 
design some of the exact solitary wave solutions of the generalized form of the 
BBM equation [13]. Besides the analytical and exact solutions of the BBM 
equation, many numerical techniques from different families are developed and 
implemented for the numerical solutions to various evolution problems for the 
BBM equation [14, 15].  

In this article, we consider the following the loaded BBM equation and the 
loaded modified BBM equation 

 

1( ) (0, ) 0,x t x txx xu u uu u t u t u + − − + =  
2

2( ) (0, ) 0,x t x txx xu u u u u t u t u + − − + =  

 
where ( , )u x t  is an unknown function, x R , 0t  ,   and   are constants, 1( )t  and 

2 ( )t  are the given real continuous functions.  

We construct exact travelling wave solutions of the loaded BBM equation 
and modified BBM equation by the functional variable method. All solutions of 
these equations have been examined and three-dimensional graphics of the 
obtained solutions have been drawn by using the MATLAB program. We get some 
traveling wave solutions, which are expressed by the hyperbolic functions and 
trigonometric functions. The functional variable method is flexible, reliable and 
straightforward to find solutions of some nonlinear evolution equations arising in 
engineering and science. 
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