
206

chiqarishning to‗liq integratsiyalashishiga imkon bermayapti. Bu esa o‗tkazilayotgan

izlanishlarning samaradorligini pasaytirmoqda.

Mavjud muammolarni hal qilish, shuningdek, innovatsion faoliyatni qo‗llab-quvvatlash,

innovatsion g‗oyalar, ishlanmalar va texnologiyalar, ilmiy yutuqlarni joriy etishni

rag‗batlantirish maqsadida 2017-yil 29-noyabrdagi O‗zbekiston Respublikasi Prezidenti

tomonidan ―O‗zbekiston Respublikasi Innovatsion rivojlanish vazirligini tashkil etish

to‗g‗risida‖gi Farmon qabul qilindi [6].

Mazkur farmon strategik rejalashtirish tizimini yaratish, davlat boshqaruvining

innovatsion shakllarini amalga kiritish, fan va innovatsiya faoliyatini rivojlantirishning

zamonaviy infratuzilmasini shakllantirish, investitsiyalarni keng jalb qilish, huquqiy bazani

takomillashtirish, ilmiy-tadqiqot va innovatsiya faoliyatini qo‗llab-quvvatlash, uni

rag‗batlantirish, ijtimoiy va iqtisodiy hayotning dolzarb sohalariga ilg‗or texnologiyalarni faol

joriy etish kabi mamlakat innovatsion rivojlanishining asosiy yo‗nalishlari belgilandi [5].

 Innovatsiyani hayotga joriy qilishdan maqsad biror bir ijobiy natijaga erishishdir. Bundan

shuni anglash mumkinki, innovatsiya sohasi o‗z-o‗zidan investitsiya sohasi bilan chambarchas

bog‗liqligi sababli ta‘lim tizimiga ham sarmoyalar kiritilib kelinmoqda. Ta'lim inson rivojlanishi

uchun muhim ahamiyatga ega. U shaxsning shakllanishi, hayotiy intilishlari va e'tiqodlarining

shakllanishi, odamlarning ma'naviy kamoloti uchun zamin yaratadi. Ta‘limda innavatsion

g‘oyalarni shakllantirish esa ma‘naviy kamolotning ham shakllanishi kuchaytiradi. O‘quvchilar

bilimini oshiradi. Bilimli o‘quvchilar o‘z navbatida rivojlanib kelayotgan vatanimizni, iqtisodi

rivojlangan davlatlar qatoriga olib chiqadi.
Foydalanilgan adabiyotlar roʻyxati:

1. Prezidentimiz Shavkat Mirziyoyevning 2018 yil 28 dekabrdagi Oliy Majlisga

Murojatnomasi. http://uza.uz.

2. Yoldoshev N.Q. va boshqalar. «Innovatsion menejment». Darslik. TDIU. 2011y. — 312 b

3. Alibekov, D. (2020). Socio-philosophical basis of educational system development. ISJ

Theoretical & Applied Science, 10 (90), 24-26. Soi: http://s-o-i.org/1.1/TAS-10-90-6 Doi:

https://dx.doi.org/10.15863/TAS.2020.10.90.6

4. Alibekov, D. (2021). СОЦИАЛЬНО-ФИЛОСОФСКИЕ ОСНОВЫ РАЗВИТИЯ

СИСТЕМЫ ОБРАЗОВАНИЯ. Журнал музыки и искусства, 2(2).

Internet saytlar:

5. https://mineconomy.uz/

6. lex.uz.

MONOLITHIC VS MICROSERVICES ARCHITECTURE

Saparov Khamdam Baxtiyor o'g'li
1
, Matyaqubov Bobur Qutlimurat o'g'li

2
Xursandbek Sherxonov

Sheripboy o'g'li
3

1,2,3
Master of Urgench branch of Tashkent University of Information Technologies named after

Muhammad al-Khwarizmi

Annotation. Microservices are currently getting a lot of attention: articles, blogs,

discussions on social media, and conference presentations. They are rapidly heading towards the

peak of inflated expectations on the Gartner Hype cycle. At the same time, there are skeptics in

the software community who dismiss microservices as nothing new. Naysayers claim that the

idea is just a rebranding of SOA. However, despite both the hype and the skepticism,

the Microservices Architecture pattern has significant benefits – especially when it comes to

enabling the agile development and delivery of complex enterprise applications.

Keywords : Monolithic Applications, Microservices , REST API, Spring Boot, EC2,

RPC, Tomcat, Jetty, Similarly, Rails and Node.js, UI with Selenium, SaaS applications, SOA,

VM or a Docker container, UI services, API Gateway.
Building Monolithic Applications

http://uza.uz/
https://dx.doi.org/10.15863/TAS.2020.10.90.6
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://microservices.io/patterns/microservices.html
https://www.nginx.com/learn/microservices-architecture/#5-Benefits-of-Microservices-Architecture

207

Let‘s imagine that you were starting to build a brand new taxi-hailing application

intended to compete with Uber and Hailo. After some preliminary meetings and requirements

gathering, you would create a new project either manually or by using a generator that comes

with Rails, Spring Boot, Play, or Maven. This new application would have a

modular hexagonal architecture, like in the following diagram: (Picture.1.) [1]

At the core of the application is the business logic, which is implemented by modules that

define services, domain objects, and events. Surrounding the core are adapters that interface with

the external world. Examples of adapters include database access components, messaging

components that produce and consume messages, and web components that either expose APIs

or implement a UI.

Picture.1. Monolithic architecture.

Despite having a logically modular architecture, the application is packaged and deployed

as a monolith. The actual format depends on the application‘s language and framework. For

example, many Java applications are packaged as WAR files and deployed on application

servers such as Tomcat or Jetty. Other Java applications are packaged as self-contained

executable JARs. Similarly, Rails and Node.js applications are packaged as a directory

hierarchy.

Applications written in this style are extremely common. They are simple to develop

since our IDEs and other tools are focused on building a single application. These kinds of

applications are also simple to test. You can implement end-to-end testing by simply launching

the application and testing the UI with Selenium. Monolithic applications are also simple to

deploy. You just have to copy the packaged application to a server. You can also scale the

application by running multiple copies behind a load balancer. In the early stages of the project it

works well.

Marching Towards Monolithic Hell

Unfortunately, this simple approach has a huge limitation. Successful applications have a

habit of growing over time and eventually becoming huge. During each sprint, your development

team implements a few more stories, which, of course, means adding many lines of code. After a

few years, your small, simple application will have grown into a monstrous monolith. To give an

extreme example, I recently spoke to a developer who was writing a tool to analyze the

dependencies between the thousands of JARs in their multi-million line of code (LOC)

https://www.infoq.com/news/2014/10/exploring-hexagonal-architecture
https://microservices.io/patterns/monolithic.html

208

application. I‘m sure it took the concerted effort of a large number of developers over many

years to create such a beast.[3]

Once your application has become a large, complex monolith, your development

organization is probably in a world of pain. Any attempts at agile development and delivery will

flounder. One major problem is that the application is overwhelmingly complex. It‘s simply too

large for any single developer to fully understand. As a result, fixing bugs and implementing new

features correctly becomes difficult and time consuming. What‘s more, this tends to be a

downwards spiral. If the codebase is difficult to understand, then changes won‘t be made

correctly. You will end up with a monstrous, incomprehensible big ball of mud.

Another problem with a large, complex monolithic application is that it is an obstacle to

continuous deployment. Today, the state of the art for SaaS applications is to push changes into

production many times a day. This is extremely difficult to do with a complex monolith since

you must redeploy the entire application in order to update any one part of it. The lengthy

start-up times that I mentioned earlier won‘t help either. Also, since the impact of a change is

usually not very well understood, it is likely that you have to do extensive manual testing.

Consequently, continuous deployment is next to impossible to do.

Monolithic applications can also be difficult to scale when different modules have

conflicting resource requirements. For example, one module might implement CPU-intensive

image processing logic and would ideally be deployed in Amazon EC2 Compute Optimized

instances. Another module might be an in-memory database and best suited for EC2

Memory-optimized instances. However, because these modules are deployed together you have

to compromise on the choice of hardware.

Microservices – Tackling the Complexity

Many organizations, such as Amazon, eBay, and Netflix, have solved this problem by adopting

what is now known as the Microservices Architecture pattern. Instead of building a single

monstrous, monolithic application, the idea is to split your application into set of smaller,

interconnected services.

A service typically implements a set of distinct features or functionality, such as order

management, customer management, etc. Each microservice is a mini-application that has its

own hexagonal architecture consisting of business logic along with various adapters. Some

microservices would expose an API that‘s consumed by other microservices or by the

application‘s clients. Other microservices might implement a web UI. At runtime, each instance

is often a cloud VM or a Docker container.

The Microservices Architecture pattern significantly impacts the relationship between the

application and the database. Rather than sharing a single database schema with other services,

each service has its own database schema. On the one hand, this approach is at odds with the

idea of an enterprise-wide data model. Also, it often results in duplication of some data.

However, having a database schema per service is essential if you want to benefit from

microservices, because it ensures loose coupling.

The Benefits of Microservices

The Microservices Architecture pattern has a number of important benefits. First, it

tackles the problem of complexity. It decomposes what would otherwise be a monstrous

monolithic application into a set of services. While the total amount of functionality is

unchanged, the application has been broken up into manageable chunks or services. Each service

has a well-defined boundary in the form of an RPC- or message-driven API. The Microservices

Architecture pattern enforces a level of modularity that in practice is extremely difficult to

achieve with a monolithic code base. Consequently, individual services are much faster to

develop, and much easier to understand and maintain.[1]

The Drawbacks of Microservices

 Like every other technology, the Microservices architecture has drawbacks. One

drawback is the name itself. The term microservice places excessive emphasis on service size. In

fact, there are some developers who advocate for building extremely fine-grained 10–100 LOC

https://www.laputan.org/mud/
https://aws.amazon.com/about-aws/whats-new/2013/11/14/announcing-new-amazon-ec2-compute-optimized-instances/
https://aws.amazon.com/about-aws/whats-new/2013/11/14/announcing-new-amazon-ec2-compute-optimized-instances/
https://aws.amazon.com/about-aws/whats-new/2014/04/10/r3-announcing-the-next-generation-of-amazon-ec2-memory-optimized-instances/
https://aws.amazon.com/about-aws/whats-new/2014/04/10/r3-announcing-the-next-generation-of-amazon-ec2-memory-optimized-instances/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://microservices.io/patterns/microservices.html

209

services. While small services are preferable, it‘s important to remember that they are a means to

an end and not the primary goal. The goal of microservices is to sufficiently decompose the

application in order to facilitate agile application development and deployment.[2]

Summary

Building complex applications is inherently difficult. A Monolithic architecture only

makes sense for simple, lightweight applications. You will end up in a world of pain if you use it

for complex applications. The Microservices architecture pattern is the better choice for

complex, evolving applications despite the drawbacks and implementation challenges.

References

1. Monolith to Microservices: Evolutionary Patterns to Transform Your Monolith by Sam

Newman Paperback Released November 2019[100-108 p]

ISBN: 9781492047841

2. Building Microservices: Designing Fine-Grained Systems by Sam Newman Paperback [64-

108 p]

3. Monolith to Microservices: Refactoring Approaches compared: Transforming Applications to

could-ready Software Architectures by Jonas Fritzsch /Apr 24, 2018 [64-80 p]

4. Building Event-Driven Microservices: Leveraging Organizational Data at Scale 1st Edition

by Adam Bellemare 2020 [189-192 p]

ZAMONAVIY TEXNOLOGIYALARNI KUTUBXONA FAOLIYATIGA TADBIQ

QILISH

Tojiyev Alisher Hasan o‗g‗li

O‗zbekiston Milliy universiteti Jizzax filiali o‗qituvchisi

Annotatsiya: Bugungi kunda intellektual tizimlarni kutubxonalarda joriy qilish va

foydalanish kutubxona sohasini yangi bosqichga olib chiqadi. Tizim yordamida ma‘lumotlarini

to‗plash, saqlash, nazorat qilish va tartibga solish muhim ahamiyat kasb etadi. Bu orqali

kutubxonalarda o‗qilayotgan kitoblar, janrlar, yozuvchi va shoirlarga bo‗lgan talab,

talabalarning qiziqishlari haqidagi dolzarb axborotlarga ega bo‗lish, talabalarni o‗qishi,

qiziqishi, faolligi, dunyoqarashi kabi muhim ko‗rsatkichlar bo‗yicha turli guruhlarga ajratish,

xulosalar chiqarish imkoniyati paydo bo‗ladi.

Kalit so‗zlar: texnologiya, kutubxona, axborot, statistika, tizim.

Bugungi kunga kelib ijtimoiy-siyosiy, iqtisodiy va ma‘naviy-madaniy sohalarda tub

o‗zgarishlar jarayoni har qachongidan ham jadallashgan. Kundan-kunga axborot

kommunikatsiya texnologiyalarining hayotimizdagi roli oshib bormoqda. Mamlakatimizda ulkan

yuksalishlar qatorida kutubxona tizimi xalqaro standartlar asosida rivojlanib, tizim faoliyati

takomillashayotganiga guvoh bo‗lmoqdamiz.

Kundalik turmushimizda deyarli barcha sohalarda ma‘lumotlar bilan ishlaymiz.

Ma‘lumotlarni to‗plash, saqlash va uzatishda axborot tizimi orqali katta natijalarga erisha olamiz.

Ushbu tizimning vazifasi inson ro‗lisiz ma‘lumotlarni tahlil qilishdan iborat[5]. Zamonaviy

texnologiyalar yordamida kutubxona sohasini yangi bosqichga olib chiqish mumkin. Kutubxona

faoliyati kitobxon va kutubxona xodimi o‗rtasidagi munosabatlarga asoslanadi. Ushbu faoliyatni

tizimlashtirish vositasi yordamida to‗plab boriladigan ma‘lumotlarni tahlil qilish orqali

kutubxona faoliyati va kitobxonlarga turli xil xulosalar berish mumkin[3]. Shunday ekan shu va

shu kabi zamonaviy tizimlar yaratish, hayotga tadbiq qilish dolzarb masalalarga aylandi[1].

 Ushbu intellektual tizim yordamida kutubxonada kitoblarni joylashtirish va undan

qidirish tizimi kutubxonalarda kitoblar bilan ishlashda ma‘lumotlarni to‗plash, saqlash, nazorat

qilish va tartibga solish muhim ahamiyat kasb etadi. Bu orqali kutubxonalarda o‗qilayotgan

kitoblar, janrlar, yozuvchi va shoirlarga bo‗lgan talab, kitobxonlarning qiziqishlari haqidagi

dolzarb axborotlarga ega bo‗lish, kitobxonlarni o‗qishi, qiziqishi, faolligi, dunyoqarashi kabi

https://www.amazon.com/Adam-Bellemare/e/B08CWWXPZJ/ref=dp_byline_cont_book_1

