chiqarishning to‘liq integratsiyalashishiga imkon bermayapti. Bu esa o‘tkazilayotgan
izlanishlarning samaradorligini pasaytirmoqda.

Mavjud muammolarni hal qilish, shuningdek, innovatsion faoliyatni qo‘llab-quvvatlash,
innovatsion g‘oyalar, ishlanmalar va texnologiyalar, ilmiy yutuqlarni joriy etishni
rag‘batlantirish maqsadida 2017-yil 29-noyabrdagi O‘zbekiston Respublikasi Prezidenti
tomonidan “O°‘zbekiston Respublikasi Innovatsion rivojlanish vazirligini tashkil etish
to‘g‘risida”gi Farmon qabul qilindi [6].

Mazkur farmon strategik rejalashtirish tizimini yaratish, davlat boshgaruvining
innovatsion shakllarini amalga Kiritish, fan va innovatsiya faoliyatini rivojlantirishning
zamonaviy infratuzilmasini shakllantirish, investitsiyalarni keng jalb gilish, huqugiy bazani
takomillashtirish, ilmiy-tadgiqot va innovatsiya faoliyatini qo‘llab-quvvatlash, uni
rag‘batlantirish, ijtimoiy va iqtisodiy hayotning dolzarb sohalariga ilg‘or texnologiyalarni faol
joriy etish kabi mamlakat innovatsion rivojlanishining asosiy yo‘nalishlari belgilandi [5].

Innovatsiyani hayotga joriy gilishdan magsad biror bir ijobiy natijaga erishishdir. Bundan
shuni anglash mumkinki, innovatsiya sohasi 0‘z-o‘zidan investitsiya sohasi bilan chambarchas
bog‘ligligi sababli ta’lim tizimiga ham sarmoyalar kiritilib kelinmoqda. Ta'lim inson rivojlanishi
uchun muhim ahamiyatga ega. U shaxsning shakllanishi, hayotiy intilishlari va e'tiqodlarining
shakllanishi, odamlarning ma'naviy kamoloti uchun zamin yaratadi. Ta’limda innavatsion
g’oyalarni shakllantirish esa ma’naviy kamolotning ham shakllanishi kuchaytiradi. O’quvchilar
bilimini oshiradi. Bilimli o’quvchilar 0’z navbatida rivojlanib kelayotgan vatanimizni, iqtisodi
rivojlangan davlatlar gatoriga olib chigadi.

Foydalanilgan adabiyotlar ro‘yxati:
1. Prezidentimiz Shavkat Mirziyoyevning 2018 vyil 28 dekabrdagi Oliy Majlisga
Murojatnomasi. http://uza.uz.
2. Yoldoshev N.Q. va boshqgalar. «Innovatsion menejmenty». Darslik. TDIU. 2011y. — 312 b
3. Alibekov, D. (2020). Socio-philosophical basis of educational system development. 1SJ
Theoretical & Applied Science, 10 (90), 24-26. Soi: http://s-0-i.0rg/1.1/TAS-10-90-6 Doi:
https://dx.doi.org/10.15863/TAS.2020.10.90.6
4. Alibekov, D. (2021). COLMAJIBHO-®NJIIOCOD®CKHUE OCHOBBI PA3BUTHUA
CUCTEMBbI OBPA30OBAHUSL. JKypran myzviku u uckycemsa, 2(2).
Internet saytlar:
5. https://mineconomy.uz/
6. lex.uz.

MONOLITHIC VS MICROSERVICES ARCHITECTURE
Saparov Khamdam Baxtiyor 0'g'li', Matyaqubov Bobur Qutlimurat 0'g'li® Xursandbek Sherxonov
Sheripboy 0'g'li®
123 Master of Urgench branch of Tashkent University of Information Technologies named after
Muhammad al-Khwarizmi
Annotation. Microservices are currently getting a lot of attention: articles, blogs,
discussions on social media, and conference presentations. They are rapidly heading towards the
peak of inflated expectations on the Gartner Hype cycle. At the same time, there are skeptics in
the software community who dismiss microservices as nothing new. Naysayers claim that the
idea is just a rebranding of SOA. However, despite both the hype and the skepticism,
the Microservices Architecture pattern has significant benefits — especially when it comes to
enabling the agile development and delivery of complex enterprise applications.
Keywords : Monolithic Applications, Microservices, REST API, Spring Boot, EC2,
RPC, Tomcat, Jetty, Similarly, Rails and Node.js, Ul with Selenium, SaaS applications, SOA,
VM or a Docker container, Ul services, APl Gateway.
Building Monolithic Applications

206


http://uza.uz/
https://dx.doi.org/10.15863/TAS.2020.10.90.6
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://microservices.io/patterns/microservices.html
https://www.nginx.com/learn/microservices-architecture/#5-Benefits-of-Microservices-Architecture

Let’s imagine that you were starting to build a brand new taxi-hailing application
intended to compete with Uber and Hailo. After some preliminary meetings and requirements
gathering, you would create a new project either manually or by using a generator that comes
with Rails, Spring Boot, Play, or Maven. This new application would have a
modular hexagonal architecture, like in the following diagram: (Picture.1.) [1]

At the core of the application is the business logic, which is implemented by modules that
define services, domain objects, and events. Surrounding the core are adapters that interface with
the external world. Examples of adapters include database access components, messaging
components that produce and consume messages, and web components that either expose APIs

or implement a Ul.
Monolithic
Architecture

S

Rest g w— TWILIO
AP / 4 \ ADAPTER
- / AL \
~ PASGENGER 2~
> NAMALEVE N I
1" 1
/ CB e = \
¥
L SN ) NOTHICATION P selnTh 3
\ 4
\ (c) 2T /
f‘x V) o D '/«'.'
\ The CRaveR o A o
N\ MAMATEVENT MANAENENT / ™~
wea O SENDGID

u ADAPTER

A
!
et
ADAPTER

Picture.1. Monolithic architecture.

Despite having a logically modular architecture, the application is packaged and deployed
as a monolith. The actual format depends on the application’s language and framework. For
example, many Java applications are packaged as WAR files and deployed on application
servers such as Tomcat or Jetty. Other Java applications are packaged as self-contained
executable JARs. Similarly, Rails and Node.js applications are packaged as a directory
hierarchy.

Applications written in this style are extremely common. They are simple to develop
since our IDEs and other tools are focused on building a single application. These kinds of
applications are also simple to test. You can implement end-to-end testing by simply launching
the application and testing the Ul with Selenium. Monolithic applications are also simple to
deploy. You just have to copy the packaged application to a server. You can also scale the
application by running multiple copies behind a load balancer. In the early stages of the project it
works well.

Marching Towards Monolithic Hell

Unfortunately, this simple approach has a huge limitation. Successful applications have a
habit of growing over time and eventually becoming huge. During each sprint, your development
team implements a few more stories, which, of course, means adding many lines of code. After a
few years, your small, simple application will have grown into a monstrous monolith. To give an
extreme example, | recently spoke to a developer who was writing a tool to analyze the
dependencies between the thousands of JARs in their multi-million line of code (LOC)

207


https://www.infoq.com/news/2014/10/exploring-hexagonal-architecture
https://microservices.io/patterns/monolithic.html

application. I’m sure it took the concerted effort of a large number of developers over many
years to create such a beast.[3]

Once your application has become a large, complex monolith, your development
organization is probably in a world of pain. Any attempts at agile development and delivery will
flounder. One major problem is that the application is overwhelmingly complex. It’s simply too
large for any single developer to fully understand. As a result, fixing bugs and implementing new
features correctly becomes difficult and time consuming. What’s more, this tends to be a
downwards spiral. If the codebase is difficult to understand, then changes won’t be made
correctly. You will end up with a monstrous, incomprehensible big ball of mud.

Another problem with a large, complex monolithic application is that it is an obstacle to
continuous deployment. Today, the state of the art for SaaS applications is to push changes into
production many times a day. This is extremely difficult to do with a complex monolith since
you must redeploy the entire application in order to update any one part of it. The lengthy
start-up times that I mentioned earlier won’t help either. Also, since the impact of a change is
usually not very well understood, it is likely that you have to do extensive manual testing.
Consequently, continuous deployment is next to impossible to do.

Monolithic applications can also be difficult to scale when different modules have
conflicting resource requirements. For example, one module might implement CPU-intensive
image processing logic and would ideally be deployed in Amazon EC2 Compute Optimized
instances. Another module might be an in-memory database and best suited for EC2
Memory-optimized instances. However, because these modules are deployed together you have
to compromise on the choice of hardware.

Microservices — Tackling the Complexity

Many organizations, such as Amazon, eBay, and Netflix, have solved this problem by adopting
what is now known as the Microservices Architecture pattern. Instead of building a single
monstrous, monolithic application, the idea is to split your application into set of smaller,
interconnected services.
A service typically implements a set of distinct features or functionality, such as order
management, customer management, etc. Each microservice is a mini-application that has its
own hexagonal architecture consisting of business logic along with various adapters. Some
microservices would expose an API that’s consumed by other microservices or by the
application’s clients. Other microservices might implement a web UI. At runtime, each instance
is often a cloud VM or a Docker container.

The Microservices Architecture pattern significantly impacts the relationship between the
application and the database. Rather than sharing a single database schema with other services,
each service has its own database schema. On the one hand, this approach is at odds with the
idea of an enterprise-wide data model. Also, it often results in duplication of some data.
However, having a database schema per service is essential if you want to benefit from
microservices, because it ensures loose coupling.

The Benefits of Microservices

The Microservices Architecture pattern has a number of important benefits. First, it
tackles the problem of complexity. It decomposes what would otherwise be a monstrous
monolithic application into a set of services. While the total amount of functionality is
unchanged, the application has been broken up into manageable chunks or services. Each service
has a well-defined boundary in the form of an RPC- or message-driven API. The Microservices
Architecture pattern enforces a level of modularity that in practice is extremely difficult to
achieve with a monolithic code base. Consequently, individual services are much faster to
develop, and much easier to understand and maintain.[1]

The Drawbacks of Microservices

Like every other technology, the Microservices architecture has drawbacks. One
drawback is the name itself. The term microservice places excessive emphasis on service size. In
fact, there are some developers who advocate for building extremely fine-grained 10-100 LOC

208


https://www.laputan.org/mud/
https://aws.amazon.com/about-aws/whats-new/2013/11/14/announcing-new-amazon-ec2-compute-optimized-instances/
https://aws.amazon.com/about-aws/whats-new/2013/11/14/announcing-new-amazon-ec2-compute-optimized-instances/
https://aws.amazon.com/about-aws/whats-new/2014/04/10/r3-announcing-the-next-generation-of-amazon-ec2-memory-optimized-instances/
https://aws.amazon.com/about-aws/whats-new/2014/04/10/r3-announcing-the-next-generation-of-amazon-ec2-memory-optimized-instances/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://microservices.io/patterns/microservices.html

services. While small services are preferable, it’s important to remember that they are a means to
an end and not the primary goal. The goal of microservices is to sufficiently decompose the
application in order to facilitate agile application development and deployment.[2]

Summary

Building complex applications is inherently difficult. A Monolithic architecture only
makes sense for simple, lightweight applications. You will end up in a world of pain if you use it
for complex applications. The Microservices architecture pattern is the better choice for
complex, evolving applications despite the drawbacks and implementation challenges.

References

1. Monolith to Microservices: Evolutionary Patterns to Transform Your Monolith by Sam
Newman Paperback Released November 2019[100-108 p]
ISBN: 9781492047841
2. Building Microservices: Designing Fine-Grained Systems by Sam Newman Paperback [64-
108 p]
3. Monolith to Microservices: Refactoring Approaches compared: Transforming Applications to
could-ready Software Architectures by Jonas Fritzsch /Apr 24, 2018 [64-80 p]
4. Building Event-Driven Microservices: Leveraging Organizational Data at Scale 1st Edition
by Adam Bellemare 2020 [189-192 p]

ZAMONAVIY TEXNOLOGIYALARNI KUTUBXONA FAOLIYATIGA TADBIQ
QILISH

Tojiyev Alisher Hasan o°g‘li
O zbekiston Milliy universiteti Jizzax filiali o ‘qituvchisi

Annotatsiya: Bugungi kunda intellektual tizimlarni kutubxonalarda joriy qilish va
foydalanish kutubxona sohasini yangi bosqichga olib chigadi. Tizim yordamida ma lumotlarini
to ‘plash, saqlash, nazorat qilish va tartibga solish muhim ahamiyat kasb etadi. Bu orqali
kutubxonalarda o ‘qilayotgan kitoblar, janrlar, yozuvchi va shoirlarga bo ‘lgan talab,
talabalarning qizigishlari hagidagi dolzarb axborotlarga ega bo ‘lish, talabalarni o ‘qishi,
qiziqishi, faolligi, dunyoqarashi kabi muhim ko ‘rsatkichlar bo ‘yicha turli guruhlarga ajratish,
xulosalar chigarish imkoniyati paydo bo ‘ladi.

Kalit so‘zlar: texnologiya, kutubxona, axborot, statistika, tizim.

Bugungi kunga kelib ijtimoiy-siyosiy, iqtisodiy va ma’naviy-madaniy sohalarda tub
o‘zgarishlar jarayoni har gqachongidan ham jadallashgan. Kundan-kunga axborot
kommunikatsiya texnologiyalarining hayotimizdagi roli oshib bormogda. Mamlakatimizda ulkan
yuksalishlar gatorida kutubxona tizimi xalgaro standartlar asosida rivojlanib, tizim faoliyati
takomillashayotganiga guvoh bo‘lmoqdamiz.

Kundalik turmushimizda deyarli barcha sohalarda ma’lumotlar bilan ishlaymiz.
Ma’lumotlarni to‘plash, saqlash va uzatishda axborot tizimi orqali katta natijalarga erisha olamiz.
Ushbu tizimning vazifasi inson ro‘lisiz ma’lumotlarni tahlil qilishdan iborat[5]. Zamonaviy
texnologiyalar yordamida kutubxona sohasini yangi bosgichga olib chigish mumkin. Kutubxona
faoliyati kitobxon va kutubxona xodimi o‘rtasidagi munosabatlarga asoslanadi. Ushbu faoliyatni
tizimlashtirish vositasi yordamida to‘plab boriladigan ma’lumotlarni tahlil qilish orqali
kutubxona faoliyati va kitobxonlarga turli xil xulosalar berish mumkin[3]. Shunday ekan shu va
shu kabi zamonaviy tizimlar yaratish, hayotga tadbiq gilish dolzarb masalalarga aylandi[1].

Ushbu intellektual tizim yordamida kutubxonada Kkitoblarni joylashtirish va undan
qgidirish tizimi kutubxonalarda kitoblar bilan ishlashda ma’lumotlarni to‘plash, saqlash, nazorat
qilish va tartibga solish muhim ahamiyat kasb etadi. Bu orqali kutubxonalarda o‘qilayotgan
kitoblar, janrlar, yozuvchi va shoirlarga bo‘lgan talab, kitobxonlarning qiziqishlari haqidagi
dolzarb axborotlarga ega bo‘lish, kitobxonlarni o‘qishi, qiziqishi, faolligi, dunyoqarashi kabi

209


https://www.amazon.com/Adam-Bellemare/e/B08CWWXPZJ/ref=dp_byline_cont_book_1

