POSSIBILITIES OF OBTAINING HYDROPHOBIC CONSTRUCTION MATERIALS BY INTRODUCING POLYMER COMPOSITIONS INTO CONCRETE AND CERAMIC BRICK

Abstract

The article presents the synthesis of an organosilicon water-repellent based on vinyl ethynyl magnesium bromide for building materials. The reduction of water absorption due to the water repellent's effect on the material is also scientifically substantiated. A comparative analysis of the synthesized water repellent with existing water repellents is described.

European International Journal of Multidisciplinary Research and Management Studies
Source type: Journals
Years of coverage from 2021
inLibrary
Google Scholar
CC BY f
368-374
22

Downloads

Download data is not yet available.
To share
Rahimov Firuz Fazlidinovich, & Rakhmatullaev Asliddin. (2024). POSSIBILITIES OF OBTAINING HYDROPHOBIC CONSTRUCTION MATERIALS BY INTRODUCING POLYMER COMPOSITIONS INTO CONCRETE AND CERAMIC BRICK. European International Journal of Multidisciplinary Research and Management Studies, 4(12), 368–374. Retrieved from https://inlibrary.uz/index.php/eijmrms/article/view/61291
Crossref
Сrossref
Scopus
Scopus

Abstract

The article presents the synthesis of an organosilicon water-repellent based on vinyl ethynyl magnesium bromide for building materials. The reduction of water absorption due to the water repellent's effect on the material is also scientifically substantiated. A comparative analysis of the synthesized water repellent with existing water repellents is described.


background image

EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH
AND MANAGEMENT STUDIES

ISSN: 2750-8587

VOLUME04 ISSUE12

368


POSSIBILITIES OF OBTAINING HYDROPHOBIC CONSTRUCTION MATERIALS BY

INTRODUCING POLYMER COMPOSITIONS INTO CONCRETE AND CERAMIC BRICK

Rahimov Firuz Fazlidinovich

PhD, Associate Professor, Bukhara Engineering - Technological Institute, Uzbekistan

Rakhmatullaev Asliddin

M25-24 CMT Group Master's Student, Bukhara Engineering - Technological Institute, Uzbekistan

AB O U T ART I CL E

Key words:

Hydrophilization, cement, ceramic

material, vinyl ethynyl magnesium bromide,
tetraethoxysilane, water repellent.

Received:

20.12.2024

Accepted

: 25.12.2024

Published

: 30.12.2024

Abstract:

The article presents the synthesis of an

organosilicon water-repellent based on vinyl
ethynyl magnesium bromide for building

materials. The reduction of water absorption due

to the water repellent's effect on the material is

also scientifically substantiated. A comparative
analysis of the synthesized water repellent with

existing water repellents is described.

INTRODUCTION

Much attention is paid worldwide to the production of moisture protection products based on modern

technologies and their use to increase the moisture resistance of building materials and structures. The

production of chemical materials that increase hydrophobicity and their inclusion in building materials

is a pressing issue in all respects. Therefore, it is important to create a new generation of complex

chemicals based on innovative technologies to create moisture-resistant hydrophobic materials and use
them in various fields.

In the modern world, the target of research in the field of moisture resistance, including moisture

resistance of coatings under the influence of moisture and the production of highly effective

hydrophobic coatings of a new generation based on resources, is a serious task.

Optimal technological parameters of processing (consumption of hydrophobic material and

concentration of the working solution, hydrophilization technology), ensuring maximum efficiency and

VOLUME04 ISSUE12

DOI:

https://doi.org/10.55640/eijmrms-04-12-63

Pages: 368-374


background image

EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH
AND MANAGEMENT STUDIES

ISSN: 2750-8587

VOLUME04 ISSUE12

369

effectiveness of hydrophobic protection, depending on the properties of the material being processed,

such as density, porosity, binding properties, and chemical composition of the material.

However, the data of modern literature contain the most general recommendations on the technology

of surface hydrophilization of building materials, which complicates the application of this effective and

economical method in modern construction practice at the same time. Our research into the technology

of hydrophilization of surfaces of inorganic building materials by various methods shows that materials

of dense structures require special technology of hydrophobic protection. It should be noted that

organosilicon water repellents differ from other water repellents in that they protect materials from

the inside of the recycled building component that retain air and vapor permeability, and they have a
very long service life. This is because almost the only aggressive factor for organic silicon compounds

is sunlight. For laboratory studies of changes in the structural parameters of building materials, samples

of ceramic brick, cement, and heavy concrete were taken. Ceramic samples were made from semi-dry

substances, the average density of the samples was 1840 kg/m3, and the open porosity index was 20%.

When we crushed a large concrete sample, the cement-lime-sand mixture (cement-sand ratio 1:2.5 and

W/C = 0.35) had an average density of 1950 kg/m3 with an open porosity of 14% (Table 1).

Table 1

Approximate indicators for which tests were conducted

Form material

Average

density,

kg/m

3

Degree of

porosity,

%

Total pore

volume,

cm

3

/g

Surface

consumption,

m

2

/g

Ceramic material

1840

20

0,1451

2,0521

Cement-sand

mixture

1950

14

0,1100

6,8563

Hydrolyzed polyacrylonitrile, urea-formaldehyde, and solutions based on PVETEOS, protected with a

tetraethoxysilane solution from 1% to 5%, were used as soluble organosilicon water repellents.

The hydrophobic method was carried out by gas drying buried samples of the side surface with air

drying, waterproofed in a resin-like aqueous solution, to a depth of 1 cm along the height of the sample.

The total construction time is 1 minute for cement-sand examples, 4 minutes for ceramic samples, the
duration of each processing stage is 30 seconds, and 2 minutes for cement-sand and ceramic samples,

respectively.

The control parameters of the hydrophobic method were the viscosity of the working solution and the

concentration of the active substance on the area of the material being processed.


background image

EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH
AND MANAGEMENT STUDIES

ISSN: 2750-8587

VOLUME04 ISSUE12

370

The main objectives of the surface hydrophilization technology, providing the maximum level of

moisture protection for a specific material, are:

1) to ensure better absorption of the material by a permeable solution;

2) optimal distribution of hydrophobic roots over the surface of pores and coatings of the waterproofing

agent.

Thus, the performance indicators of hydrophobic properties are determined in:

- the depth of the non-wetting layer on the surface of the waterproof material;

- the amount of water absorbed by the hydrophobic surface of the material under conditions of fine

assimilation for 24 hours of treatment.

The thickness indicators of the non-aqueous layer were determined by wetting the cut surface of

hydrophobic samples.

The concentration of hydrophobic radicals on the surface of a hydrophobic material depends mainly on

the concentration of the solution, as well as on the flat surface of the material being treated, i.e., on its

chemical nature.

The degree of absorption of a hydrophobic solution depends on its properties, such as density, surface

tension, and dynamic viscosity. These properties were determined experimentally for aqueous
solutions of polymers.

The data analysis shows that the proportional increase in viscosity with the increase in the

concentration of the polymer working solution from 1 to 5% indicates an increase in the number of

loops in the polymer. The maximum number of pores for the material types is about 0.1-0.5 mm for

small holes, but for cement-lime sand samples, a maximum of 10-

50 μm is mixed with a large hole area

and 90% of the total area. The cavity volume for ceramic samples is 0.1 -

in the region of 10 μm,i.e., the

porous structure of ceramic samples is even larger. The visible structure of cement-lime sand samples

is characterized by a more developed specific surface with a smaller porosity volume compared to

ceramic samples(Table 2).

Table 2

Parameters of samples before and after treatment


background image

EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH
AND MANAGEMENT STUDIES

ISSN: 2750-8587

VOLUME04 ISSUE12

371

Material

form

Before processing, porosity

volume, % and interval distance,

µm

Porosity after treatment in % and

spacing in µm

<0,1

0,1-1 1-10

10-
50

50-
250

<0,1

0,1-
1

1-10

0-
50

0-
250

Ceramic

material

5,31

39,01 51,00 2,27

2,41

5,15

37,8 49,47 2,2

2,33

Cement-

sand

mixture

21,91 7,73

5,73

55,27 9,36

21,25 7,47 5,56

53,6 9,08

The studies have shown (Table 2) that increasing the concentration of working polymer solutions in

the studied range does not affect the amount of impregnated solution and, consequently, the

penetration depth into ceramic and cement-lime sand samples.

The solution consumption is 2.8 l/m2 for ceramic samples and 3

3.2 l/m2 for cement-lime sand

samples on average. The absorption rate in cement-lime sand samples is much higher than in ceramic

samples, which is more than 1 minute and more than 4 minutes for ceramic materials, which is

explained by the denser structure of ceramic samples and, consequently, lower absorption of the
solution (Table 3).

Table 3

Properties and efficiency of hydrophobic treatment of samples

Concentration of

working

solution, %

Consumption

of working

solution, l/m

2

Consumption

of active

substance,

g/m

2

The thickness of

the anhydrous

layer, cm

Water

absorption,

g/m

2

Ceramic samples

2,4
3,1
3,8

Sample

2,79
2,80
2,77

-

67
88

107

-

1,7
1,6
1,7

-

247
104

48

5112

Cement-lime sand solution

1

2.5

3
5

Sample

3,10
3,16
3,25
3,04

-

31
79

102
152

-

0.0

0,15
0,16
0,42

-

720
521
428
339

3465

According to the table data, the minimum water absorption in the hydrophobic ceramic samples is 1.7

cm at a working solution concentration of up to 2.4% when using a standard solution and an active
substance consumption of 67 g/m2.


background image

EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH
AND MANAGEMENT STUDIES

ISSN: 2750-8587

VOLUME04 ISSUE12

372

Treatment of ceramic materials in samples with concentrated solutions is ineffective since the degree

of water absorption in ceramic materials increases from 2.4 to 3.86%, which is 2-5 times higher than
that of a polymolecular organosilicon layer. As a result, the hydrophilic ends of hydrophobic molecules

are activated 1.3 - 1.6 times.

The thickness of the dehydrated layer of hydrophobic cement-lime sand samples, unlike ceramic

samples, directly depends on the concentration of the working solution and the consumption of the

active substance, up to a maximum of 0.42 cm when using a 5% working solution, the consumption of

the active substance is 152 g/m2, and the minimum water absorption rate is up to 339 g/m2.

The fact that the dehydrated layer of hydrophobic ceramic samples and cement-lime sand samples have
different characteristics can be explained by the fact that the specific surface of the pores is much more

developed. It can also be said that the polymer molecules have high adsorption activity. The reason is

that the nature of the hydrated formation of this surface can be explained by the specific surface with a

more developed adsorption activity than that of cement-sand samples and their polymer molecules

since the cement stones OH - groups are located in the active center of the hydrated OH - group in clinker

minerals and interact with them.

The study of the hydrophobic process of solid cement and ceramic materials showed that the efficiency
of hydrophobic treatment depends not only on their compositional properties but also on the

adsorption activity of the molecules of the water-repellent agent on the porous surface. The higher this

activity, the more concentrated the solution should be under these conditions. Under these conditions,

the concentration does not affect the structural nature of the material being processed, that is, the

swelling of the hydrophobic solution. The optimum technological parameters of hydrophobic treatment

of materials with aqueous polymer solutions have been determined. For ceramic bricks, it is
recommended to use active substances of at least 60-70 g/m2 if this solution is mixed in a ratio of 1:20,

40% for polymer product, 2.7 - 3 l/m2 of the working solution is consumed, so that 1. A layer of less

than 7 cm is formed, and water absorption is reduced by 100 times. For binders with a porous structure,

when mixing the solution in a ratio of 1:10, 40% polymer product consumes 2.7 - 3 l/m2 of the working

solution, forming a layer of less than 1.6 cm and absorbing water for 24 hours. Reduced by 10 times.

REFERENCES

1.

Ахмедов В.Н. и др. Гидрофобизация в строительстве. (монография) //Издательство Бухара,
Дурдона, c160. –

2018.


background image

EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH
AND MANAGEMENT STUDIES

ISSN: 2750-8587

VOLUME04 ISSUE12

373

2.

Рахимов Ф. Ф. Изучение магнитных характеристик слабого ферромагнетика FеBO3: Mg

//Техника и технологии: пути инновационного развития. –

2015.

С. 179

-181.

3.

Рахимов Ф. Ф., Шарипов А. А. Химические

добавки для строительных материалов на основе

гипса //Образование наука и инновационные идеи в мире. –

2023.

Т. 24. –

№. 3. –

С. 185

-188.

4.

Rakhimov F. F. Organosilicon Polymer Compositions for Building Materials //Texas Journal of

Engineering and Technology.

2023.

Т. 24. –

С. 8

-12.

5.

Fazlidinovich R. F., Azimovich S. A. Chemical additives for obtaining plasticized gypsum //Galaxy

International Interdisciplinary Research Journal.

2023.

Т. 11. –

№. 7. –

С. 29

-31.

6.

Рахимов Ф. Ф., Шарипов А. А. Винилэтинилмагнийбромид асосидаги кремнийорганик
полимер композициялардан фойдаланиб гидрофоб бетон олиш технологияси

//Образование наука и инновационные идеи в мире. –

2023.

Т. 24. –

№. 3. –

С. 189

-193.

7.

Рахимов Ф. Ф., Шарипов А. А. Мочевинаформалдегид асосидаги кремний органик полимер

композициялар ёрдамида гидрофоб бетон олиш технологияси //Образование наука и

инновационные идеи в мире. –

2023.

Т. 24. –

№. 3. –

С. 180

-184.

8.

Rakhimov, F.F., and V.N. Akhmedov. "Physio-chemical analysis of polyvinylethynyltrietoxysisilane

ACADEMICIA An International Multidisciplinary Research Journal India Issue 10." (2021): 1782-
1787.

9.

Rakhimov F.F., Sharipov A.A. Chemical Additives for the Production of Plasticized Gypsum //Nexus:

Journal of Advances Studies of Engineering Science.

2022.

Т. 1. –

№. 4. –

С. 7

-11.

10.

Koldoshevna K.G., Fazlidinovich R.F. Qualitative analysis of aromatic oxide compounds

//Образование наука и инновационные идеи в мире. –

2023.

Т. 18. –

№. 3. –

С. 124

-128.

11.

Rakhimov F., Sharipov A., Abdullayev R. Obtaining gypsum with hydrophobic properties based on
silicon polymers //AIP Conference Proceedings.

AIP Publishing, 2023.

Т. 2789. –

№. 1.

12.

Firuz R., Gulhayo X. Gidroxinonning va gidroxinon asosida olingan kremniyorganik birikmaning

kimyoviy tahlili //Involta Scientific Journal.

2023.

Т. 2. –

№. 2. –

С. 14

-19.

13.

Fazlidinovich R.F. et al. Kremniyorganik polimer kompozitsiya orqali gips nambardoshlilik xossasini

oshirish imkoniyatlari //Образование наука и инновационные идеи

в мире. –

2023.

Т. 18. –

№.

3.

С. 129

-133.

14.

Рахимов Ф.Ф., Aхмедов В.Н., Аминов Ф.Ф, Способ получения гидрофобных композиций
Universum: химия и биология журнал 4(70) Москва 2020 63

-

65 С.

15.

Беков У.С., Рахимов Ф.Ф. Спектральный анализ кремнийорганических соединений на основе

фенола //Universum: химия и биология. –

2021.

№. 5

-2 (83).

С. 27

-30.


background image

EUROPEAN INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH
AND MANAGEMENT STUDIES

ISSN: 2750-8587

VOLUME04 ISSUE12

374

16.

Rakhimov F.F., Ibodova S.I., Khaydarov A.A. Technology for Obtaining Organosilicon Polymers

//Central Asian journal of theoretical & applied sciences.

2021.

Т. 2. –

№. 12. –

С. 209

-212.

17.

Rakhimov F.F., Ibodova S.I., Kholikova G.K. Synthesis of organosilicon polymer based on hydrolyzed

polyacrylonitrile //International Scientific and Current Research Conferences.

2021.

С. 1

-4.

18.

Аминов Ф., Рахимов Ф., Ахмедов В. Гидрофобизатор на основе мочевинаформальдегида и

тетраэтоксилана //Збірник наукових праць ΛΌГOΣ. –

2020.

С. 69

-71.

19.

Рахимов Ф.Ф. Технология получение поливинилетинилтриэтоксисила на основе

тетраэтоксисилана // Universum: технические науки:электрон. научн. журн. 2021. 10(91).

URL:https://7universum.com/ru/tech/archive/item/12347

20.

Fazlidinovich R. F., Nizamiddinovich G. Z. Construction Hydrophobizer Based On SiliconOrganic

Compounds And Its Comparative Analysis //The Peerian Journal.

2023.

Т. 24. –

С. 94

-99.

21.

Fazlidinovich R.F. et al. Sement ishlab chiqarishda maydalash tegirmonlarining qiyosiy tahlili va

unumdorligi //The Role of Exact Sciences in the Era of Modern Development.

2023.

Т. 1. –

№. 5.

С. 38

-42.

22.

Fazlidinovich R.F., Shokirovich S.A. Qurilish materiallarining termobarqarorligini oshirish

imkoniyatlari //Ta'lim innovatsiyasi va integratsiyasi.

2023.

Т. 9. –

№. 2. –

С. 112

-116.

23.

Akhmedov V.N. et al. Method for producing siliconorganic compounds //News of Kazakhstan

Science/Novosti nauki Kazahstana.

2019.

№. 3.

24.

Рахимов Ф. Ф., Ахмедов В. Н., Махмуджонов С. Синтез и исследование основных свойств

кремнийорганических полимеров ХХII Всероссийская конференция молодых учёных

-

химиков (с международным участием) тезисы докладов Нижний Новгород, 23

-

25 апреля

2019 г. –

2019.

25.

Рахимов Ф. Ф., Адизова Н. З. Атмосферные оптические линии связи для промышленных

предприятий //Инновации, качество и сервис в технике и технологиях. –

2014.

С. 107

-109.

26.

Ахмедов В. Н. и др. Гидрофобизация в строительстве.(монография) //Издательство Бухара,

Дурдона, c160. –

2018.

27.

Akhmedov V. N. et al. The method of producing hydrophobic organosilicon polymers based on

hydrolyzed polyacrylonitrile //Chemical Journal of Kazakhstan.

2019.

28.

Рахимов

Ф.

Ф.,

Ахмедов

В.

Н.

Физико

-

химический

анализ

превращения

поливинилэтинилтриена

в

гидроксисилан

//АКАДЕМИЯ:

международный

междисциплинарный исследовательский журнал. –

2021.

Т. 11. –

С. 1782

-1787.

References

Ахмедов В.Н. и др. Гидрофобизация в строительстве. (монография) //Издательство Бухара, Дурдона, c160. – 2018.

Рахимов Ф. Ф. Изучение магнитных характеристик слабого ферромагнетика FеBO3: Mg //Техника и технологии: пути инновационного развития. – 2015. – С. 179-181.

Рахимов Ф. Ф., Шарипов А. А. Химические добавки для строительных материалов на основе гипса //Образование наука и инновационные идеи в мире. – 2023. – Т. 24. – №. 3. – С. 185-188.

Rakhimov F. F. Organosilicon Polymer Compositions for Building Materials //Texas Journal of Engineering and Technology. – 2023. – Т. 24. – С. 8-12.

Fazlidinovich R. F., Azimovich S. A. Chemical additives for obtaining plasticized gypsum //Galaxy International Interdisciplinary Research Journal. – 2023. – Т. 11. – №. 7. – С. 29-31.

Рахимов Ф. Ф., Шарипов А. А. Винилэтинилмагнийбромид асосидаги кремнийорганик полимер композициялардан фойдаланиб гидрофоб бетон олиш технологияси //Образование наука и инновационные идеи в мире. – 2023. – Т. 24. – №. 3. – С. 189-193.

Рахимов Ф. Ф., Шарипов А. А. Мочевинаформалдегид асосидаги кремний органик полимер композициялар ёрдамида гидрофоб бетон олиш технологияси //Образование наука и инновационные идеи в мире. – 2023. – Т. 24. – №. 3. – С. 180-184.

Rakhimov, F.F., and V.N. Akhmedov. "Physio-chemical analysis of polyvinylethynyltrietoxysisilane ACADEMICIA An International Multidisciplinary Research Journal India Issue 10." (2021): 1782-1787.

Rakhimov F.F., Sharipov A.A. Chemical Additives for the Production of Plasticized Gypsum //Nexus: Journal of Advances Studies of Engineering Science. – 2022. – Т. 1. – №. 4. – С. 7-11.

Koldoshevna K.G., Fazlidinovich R.F. Qualitative analysis of aromatic oxide compounds //Образование наука и инновационные идеи в мире. – 2023. – Т. 18. – №. 3. – С. 124-128.

Rakhimov F., Sharipov A., Abdullayev R. Obtaining gypsum with hydrophobic properties based on silicon polymers //AIP Conference Proceedings. – AIP Publishing, 2023. – Т. 2789. – №. 1.

Firuz R., Gulhayo X. Gidroxinonning va gidroxinon asosida olingan kremniyorganik birikmaning kimyoviy tahlili //Involta Scientific Journal. – 2023. – Т. 2. – №. 2. – С. 14-19.

Fazlidinovich R.F. et al. Kremniyorganik polimer kompozitsiya orqali gips nambardoshlilik xossasini oshirish imkoniyatlari //Образование наука и инновационные идеи в мире. – 2023. – Т. 18. – №. 3. – С. 129-133.

Рахимов Ф.Ф., Aхмедов В.Н., Аминов Ф.Ф, Способ получения гидрофобных композиций Universum: химия и биология журнал 4(70) Москва 2020 63-65 С.

Беков У.С., Рахимов Ф.Ф. Спектральный анализ кремнийорганических соединений на основе фенола //Universum: химия и биология. – 2021. – №. 5-2 (83). – С. 27-30.

Rakhimov F.F., Ibodova S.I., Khaydarov A.A. Technology for Obtaining Organosilicon Polymers //Central Asian journal of theoretical & applied sciences. – 2021. – Т. 2. – №. 12. – С. 209-212.

Rakhimov F.F., Ibodova S.I., Kholikova G.K. Synthesis of organosilicon polymer based on hydrolyzed polyacrylonitrile //International Scientific and Current Research Conferences. – 2021. – С. 1-4.

Аминов Ф., Рахимов Ф., Ахмедов В. Гидрофобизатор на основе мочевинаформальдегида и тетраэтоксилана //Збірник наукових праць ΛΌГOΣ. – 2020. – С. 69-71.

Рахимов Ф.Ф. Технология получение поливинилетинилтриэтоксисила на основе тетраэтоксисилана // Universum: технические науки:электрон. научн. журн. 2021. 10(91). URL:https://7universum.com/ru/tech/archive/item/12347

Fazlidinovich R. F., Nizamiddinovich G. Z. Construction Hydrophobizer Based On SiliconOrganic Compounds And Its Comparative Analysis //The Peerian Journal. – 2023. – Т. 24. – С. 94-99.

Fazlidinovich R.F. et al. Sement ishlab chiqarishda maydalash tegirmonlarining qiyosiy tahlili va unumdorligi //The Role of Exact Sciences in the Era of Modern Development. – 2023. – Т. 1. – №. 5. – С. 38-42.

Fazlidinovich R.F., Shokirovich S.A. Qurilish materiallarining termobarqarorligini oshirish imkoniyatlari //Ta'lim innovatsiyasi va integratsiyasi. – 2023. – Т. 9. – №. 2. – С. 112-116.

Akhmedov V.N. et al. Method for producing siliconorganic compounds //News of Kazakhstan Science/Novosti nauki Kazahstana. – 2019. – №. 3.

Рахимов Ф. Ф., Ахмедов В. Н., Махмуджонов С. Синтез и исследование основных свойств кремнийорганических полимеров ХХII Всероссийская конференция молодых учёных-химиков (с международным участием) тезисы докладов Нижний Новгород, 23-25 апреля 2019 г. – 2019.

Рахимов Ф. Ф., Адизова Н. З. Атмосферные оптические линии связи для промышленных предприятий //Инновации, качество и сервис в технике и технологиях. – 2014. – С. 107-109.

Ахмедов В. Н. и др. Гидрофобизация в строительстве.(монография) //Издательство Бухара, Дурдона, c160. – 2018.

Akhmedov V. N. et al. The method of producing hydrophobic organosilicon polymers based on hydrolyzed polyacrylonitrile //Chemical Journal of Kazakhstan. – 2019.

Рахимов Ф. Ф., Ахмедов В. Н. Физико-химический анализ превращения поливинилэтинилтриена в гидроксисилан //АКАДЕМИЯ: международный междисциплинарный исследовательский журнал. – 2021. – Т. 11. – С. 1782-1787.