Filtration of Suspensions with The Formation of a Nonlinearly Compressible Sedimentary Layer

Abstract

The article considers the problem of filtration of suspensions with the formation of a nonlinearly compressible sedimentary layer. Based on numerical calculations, the dependence of filtration characteristics on nonlinear effects is established.

European International Journal of Multidisciplinary Research and Management Studies
Source type: Journals
Years of coverage from 2021
inLibrary
Google Scholar
CC BY f
19-23
18

Downloads

Download data is not yet available.
To share
Parmonov J.T., Nishanov.U.A., & Nurmatov K.J. (2025). Filtration of Suspensions with The Formation of a Nonlinearly Compressible Sedimentary Layer. European International Journal of Multidisciplinary Research and Management Studies, 5(04), 19–23. Retrieved from https://inlibrary.uz/index.php/eijmrms/article/view/81749
Crossref
Сrossref
Scopus
Scopus

Abstract

The article considers the problem of filtration of suspensions with the formation of a nonlinearly compressible sedimentary layer. Based on numerical calculations, the dependence of filtration characteristics on nonlinear effects is established.


background image

European International Journal of Multidisciplinary Research
and Management Studies

19

https://eipublication.com/index.php/eijmrms

TYPE

Original Research

PAGE NO.

19-23

DOI

10.55640/eijmrms-05-04-04



OPEN ACCESS

SUBMITED

09 February 2025

ACCEPTED

12 March 2025

PUBLISHED

08 April 2025

VOLUME

Vol.05 Issue04 2025

COPYRIGHT

© 2025 Original content from this work may be used under the terms
of the creative commons attributes 4.0 License.

Filtration of Suspensions
with The Formation of a
Nonlinearly Compressible
Sedimentary Layer

Parmonov J.T.

Samarkand State University of Architecture and Civil Engineering named
after Mirzo Ulugbek, Jizzakh State Pedagogical University, Uzbekistan

Nishanov.U.A.

Samarkand State University of Architecture and Civil Engineering named
after Mirzo Ulugbek, Jizzakh State Pedagogical University, Uzbekistan

Nurmatov K.J

Samarkand State University of Architecture and Civil Engineering named
after Mirzo Ulugbek, Jizzakh State Pedagogical University, Uzbekistan

Abstract:

The article considers the problem of filtration

of suspensions with the formation of a nonlinearly
compressible sedimentary layer. Based on numerical
calculations, the dependence of filtration characteristics
on nonlinear effects is established.

Keywords:

Suspension, filter, moving boundary, filter

layer, sediment, pressure.

Introduction:

Filtration of suspensions refers to

complex technological processes and depends on a
large number of micro- and macrofactors. Models of
filtration of suspensions are based on fundamental
equations of mechanics of multiphase, multicomponent
media and the theory of filtration consolidation [1,2,3].
The problem of pressure distribution in the sediment
layer is reduced to the solution of the classical parabolic
equation with moving boundary conditions. Real
physical conditions during filtration of suspensions are
such that the sediment is heterogeneous in its structure
and filtration-capacitive properties and consolidates
under the action of pressure and other forces. Thus, in
the general case, the consolidation coefficient is
variable, depending on the pressure distribution over
the sediment thickness. In this paper, the process of
sedimentation during filtration of suspensions is


background image

European International Journal of Multidisciplinary Research
and Management Studies

20

https://eipublication.com/index.php/eijmrms

European International Journal of Multidisciplinary Research and Management Studies

analyzed taking into account the variability of the
consolidation coefficient.

Let there be a flat filter element. The suspension is
placed in such a way that it contacts the initially
existing filter layer of some thickness. Under the action
of the pressure difference, which remains constant
over time, the process of separation of the suspension
begins, the thickness of the sediment continuously
increases due to the movement of the sediment -
suspension boundary. Thus, two regions can be

distinguished- the filter layer region, and - the sediment
region, where is the moving boundary. Due to the listed
conditions, the Stefan problem can be formulated for
the filtration process. Let be the pore pressure, - the
liquid pressure at the initial moment of time, at the
entrance to the sediment layer, at the exit from the filter
layer.

The mathematical model of filtration is written as
follows [1,2]

( )

2

2

z

p

p

b

t

p

=

,

T

t

0

,

2

z

,

(1)

( )

( )

z

p

z

p

0

0

,

=

,

1

z

,

(2)

( )

2

,

0

p

t

p

=

T

t

0

,

(3)

( )

1

,

p

t

t

h

p

=

,

T

t

0

,

(4)

dt

dh

l

z

p

=

,

T

t

0

,

(5)

Where

(

)

1

0

0

)

(

,

)

0

(

p

p

e

b

p

b

z

h

=

=

- consolidation ratio,

(

)

0

2

1

2

0

z

p

p

z

p

p

+

=

,

0

0

z

z

u

r

l

=

,

r

-

sediment resistivity,

- viscosity coefficient,

u

- external sedimentation coefficient,

- parameter.

Introducing a new variable

(

)

1

)

(

0

=

=

p

p

e

a

b

d

v

,

1

0

1

p

e

b

a

=

we will receive

 +

=

1

ln

1

a

v

p

.

(6)

Then equation (1) is transformed to the form

=

z

p

v

v

k

z

t

v

)

(

)

(

,

(

)

a

v

v

k

+

=

1

)

(

.

(7)

After transforming conditions (2) - (5) we arrive at

( )

( )

(

)

1

|

0

0

0

=

=

=

z

p

t

e

a

z

v

v

,

(8)

(

)

1

|

2

2

0

=

=

=

p

z

e

a

v

v

,

(9)

(

)

1

|

1

1

)

(

=

=

=

p

t

h

z

e

a

v

v

,

(10)


background image

European International Journal of Multidisciplinary Research
and Management Studies

21

https://eipublication.com/index.php/eijmrms

European International Journal of Multidisciplinary Research and Management Studies

dt

dh

l

z

p

v

v

k

=

)

(

)

(

.

(11)

To solve problem (7)-(11) we use the finite difference method [4].

Let's introduce a uniform grid

z

with a step

f

j

m

i

if

z

z

i

i

+

=

=

=

+

=

,...,

1

,

0

,

|

2

1

, where in time

we will use a non-uniform grid [4]

T

t

N

m

m

j

t

t

t

t

t

N

m

j

j

j

=

+

+

=

=

+

=

=

=

,

,...,

2

,

1

,

0

,

|

1

with variable pitch

0

j

. The time interval step should be selected

1

,

+

j

j

t

t

so that the moving boundary moves

exactly one step along the spatial grid. This approach is known as the grid node front catching method [4]. For the

boundary node of the dynamic stack we use the notation

( )

f

i

t

f

z

j

j

=

=

.

We approximate equation (7) with a purely implicit scheme





=

+

+

+

+

+

+

+

f

v

v

f

v

v

f

v

v

j

i

j

i

i

j

i

j

i

i

j

i

j

i

1

1

1

1

1

1

1

1

1

,

1

,...

2

,

1

=

N

i

,

(12)

где

( ) ( )

j

i

j

i

i

v

k

v

k

1

5

,

0

+

=

.

Approximation of the initial and boundary conditions (8)-(10) gives

(

)

1

exp

0

0

=

i

i

p

a

v

,

(

)

mf

p

p

if

p

p

i

2

1

2

0

+

=

,

m

i

,...

1

,

0

=

,

(13)

2

1

0

v

v

j

=

+

,

(14)

1

1

v

v

j

i

=

+

,

1

1

h

i

z

j

+

=

.

(15)

Condition (11) taking into account

1

+

j

f

dt

dh

we discretize it like this

(

)

0

1

1

1

1

1

1

=

+

+

+

+

+

+

j

j

i

j

i

j

i

f

l

f

v

v

a

v

,

f

i

z

j

1

+

=

.

(16)

Equation (12) is reduced to the form

i

j

i

i

j

i

i

j

i

i

F

v

B

v

C

v

A

=

+

+

+

+

+

1

1

1

1

1

,

j

i

,

1

=

,

(17)

where

2

f

A

i

i

=

,

2

1

f

B

i

i

+

=

,

2

1

2

1

f

f

C

i

i

i

+

+

+

=

,

j

i

i

v

F

=

.

To solve the nonlinear difference problem (12) - (16) at each new time layer

1

+

=

j

t

t

iterative processes can be

used. The simplest of these is associated with iterative refinement of the time step

1

+

j

[4]. Let the initial


background image

European International Journal of Multidisciplinary Research
and Management Studies

22

https://eipublication.com/index.php/eijmrms

European International Journal of Multidisciplinary Research and Management Studies

approximation be given

0

1

+

j

. Given

s

j

1

+

the corresponding approximation for

1

+

j

i

v

we find their solutions to the

following nonlinear difference problem

i

j

s

i

i

j

s

i

i

j

s

i

i

F

v

B

v

C

v

A

=

+

+

+

+

+

1

,

1

1

,

1

,

1

,

j

i

,

1

=

,

(18)

2

1

,

0

v

v

j

s

=

+

,

(19)

1

1

,

v

v

j

s

i

=

+

,

в

узел

f

i

z

j

i

1

+

=

.

(20)

To solve this problem we use a three-point sweep. Relation (16) is used to determine the time step and in the

simplest case we have [4]

(

)

1

1

1

1

1

1

1

1

+

+

+

+

+





+

=

f

v

v

a

v

lf

j

i

j

i

j

i

s

j

,

в узле

f

i

z

j

i

1

+

=

.

(21)

Now, to solve the difference problem (18) - (20), we use the counter sweep method [3]. Here

)

(

0

,

t

h

m

m

i

=

- internal node. In the area

m

i

0

the solution is calculated using the right-hand sweep formulas

1

1

,

1

1

1

,

+

+

+

+

+

+

=

i

j

s

i

i

j

s

i

v

v

0

,

1

,...,

2

,

1

=

m

m

i

,

(21)

где

i

i

i

i

i

A

C

B

=

+

1

,

1

,...,

2

,

1

=

m

i

,

0

1

=

,

(22)

i

i

i

i

i

i

i

A

C

B

A

F

+

=

+

1

,

1

,...,

2

,

1

=

m

i

,

2

1

v

=

,

(23)

and in the region

)

(

t

h

i

m

- according to the left-hand sweep formulas

1

1

,

1

1

,

1

+

+

+

+

+

+

=

i

j

s

i

i

j

s

i

v

v

,

1

,...,

1

,

+

=

N

m

m

i

,

(24)

where

1

+

=

i

i

i

i

i

B

C

A

,

m

N

N

i

,...,

2

,

1

=

,

0

=

N

,

(25)

1

1

+

+

+

=

i

i

i

i

i

i

i

B

C

B

F

,

m

N

N

i

,...,

2

,

1

=

,

0

v

N

=

.

(26)

Considering (21), (24) in the node

m

i

=

we find

m

m

m

m

m

j

s

m

v

+

=

+

1

1

,

.

(27)

Based on the obtained numerical results, graphs of the

moving boundary were constructed.

( )

t

h

, pressure

distribution in the filter and sediment layer (Fig. 1-4).

From the presented graphs, one can estimate the

growth of the sediment layer and the pressure

distribution in it.


background image

European International Journal of Multidisciplinary Research
and Management Studies

23

https://eipublication.com/index.php/eijmrms

European International Journal of Multidisciplinary Research and Management Studies

Growing importance

contributes to a corresponding

change in the consolidation coefficient, which in turn

affects the growth of the sediment layer and the

pressure distribution in it. With an increase in the value

lagging growth dynamics can be observed

( )

t

h

. The

graphs also show the dynamics of pressure at fixed

points of the sediment layer. As the sediment layer

grows, the pressure at fixed points decreases.

REFERENCES

Федоткин И.М., Воробьев Е.И., Вьюн В.И.
Гидродинамическая

теория

фильтрования

суспензией. Киев:Вища. шк.,Головное изд

-

во.1986.

-

166с

Федоткин И.М. Математическое моделирование
технологических процессов. Киев: Вища шк.,
Головные изд

-

во. 1988.

-

415с.

Нигматулин Р.И. Динамика многофазных сред. Т. II.

М., Наука, 1987.

-

389с.

Самарский А.А., Вабищевич П.Н. Вычислительная
теплопередача. –М.: Едиториал УРСС, 2003

-

784 с.

Самарский А.А. Теория разностных схем. –

М.:

Наука, 1977.

-

656с.

0,0011

0,0031

0,0051

0,0071

0,0091

0

50

100

150

200

250

300

350

0,25

0,28

0,31

0,34

0,37

0,4

0,43

0,0011

0,0031

0,0051

0,0071

0,0091

0,25

0,28

0,31

0,34

0,37

0,4

0,43

0,0011

0,0031

0,0051

0,0071

0,0091

0,0111

0,35

0,37

0,39

0,41

0,43

0

50

100

150

200

250

300

350

400

Fig. 1. Change in the thickness of the filter layer at

different

6

10

=

-1

;

7

10

=

-1

;

8

10

=

-1

.

350

=

t

s.

t

)

(

t

h

,

м

p

, М Pа

,

м

Fig. 2. Distribution of pressure across the sediment thickness

at different

6

10

=

-1

;

7

10

=

-1

;

8

10

=

-1

350

=

t

s.

Рис 3. Distribution of pressure across the sediment

thickness.

6

10

=

Pа.

150

=

t

s

;

300

=

t

s

;

400

=

t

s

Fig. 4. Pressure distribution at fixed points of the sediment layer

6

10

=

Pа.

3

10

03

,

4

=

z

м );

3

10

75

,

4

=

z

м

3

10

65

,

5

=

z

м

p

, М Pа

p

, М Pа

)

(

t

h

,

м

t

References

Федоткин И.М., Воробьев Е.И., Вьюн В.И. Гидродинамическая теория фильтрования суспензией. Киев:Вища. шк.,Головное изд-во.1986. -166с

Федоткин И.М. Математическое моделирование технологических процессов. Киев: Вища шк., Головные изд-во. 1988.-415с.

Нигматулин Р.И. Динамика многофазных сред. Т. II.

М., Наука, 1987.-389с.

Самарский А.А., Вабищевич П.Н. Вычислительная теплопередача. –М.: Едиториал УРСС, 2003-784 с.

Самарский А.А. Теория разностных схем. – М.: Наука, 1977. -656с.