Нелокальная задача с условием разрывной склейки для нагруженного уравнения волновой диффузии с дробной производной

inLibrary
Google Scholar
Выпуск:
Отрасль знаний
Поделиться
Абдуллаев, О. (2024). Нелокальная задача с условием разрывной склейки для нагруженного уравнения волновой диффузии с дробной производной. Международный научный журнал «ALFRAGANUS», 1(6), 69–77. извлечено от https://inlibrary.uz/index.php/alfraganus/article/view/30318
Crossref
Сrossref
Scopus
Scopus

Аннотация

В данной работе исследовано существование и единственность решения нелокальной краевой задачи с условием непрерывной связности для нагруженного параболо-гиперболического уравнения, включающего дробную производную Римана-Лиувилля. Единственность решения доказывается методом интегральной энергии, а его существование доказывается методом интегральных уравнений.

 


background image

68

1 (6) 2024

Alfraganus

xalqaro ilmiy jurnali

Abdullayev Obidjon

Alfraganus University. Tashkent. Uzbekistan.

obidjon.mth@gmail.com

ORCID:

https://orcid.org/0000-0001-8503-1268

A NON-LOCAL PROBLEM WITH

DISCONTINUOS GLUING

CONDITION FOR A LOADED

WAVE-DIFFUSION EQUATION INVOLVES

FRACTIONAL DERIVATIVE.


background image

69

Alfraganus

xalqaro ilmiy jurnali

1 (6) 2024

ABSTRACT

:

In this work an existence and uniqueness of solution of non-local boundary

value problem with discontinuous matching condition for the loaded parabolic-hyperbolic
equation involving the Riemann-Liouville fractional derivative have been investigated. The
uniqueness of solution is proved by the method of integral energy and the existence is proved
by the method of integral equations.

Annotatsiya:

Ushbu ishda Rimann-Liuvill kasr hosilasi ishtirokidagi yuklangan

parabolik-giperbolik tenglama uchun uzlukli ulash shartli nolokal chegaraviy masala
yechimining mavjudligi va yagonaligi o‘rganildi. Yechimning yagonaligi integral energiya
usuli bilan, mavjudligi esa integral tenglamalar usuli bilan isbotlangan.

Key words and phrases:

Loaded equation, wave-diffusion equation, Riemann-Liouville

fractional derivative, existence and uniqueness of solution, non-local condition, discontinuous

matching condition, integral energy, integral equations..

Introduction.

Notice, that the modeling of many phenomena in various fields of science and

engineering reduce to the fractional differential. We can find numerous applications in
viscoelasticity, neurons, electrochemistry, control, porous media, electromagnetism, etc., (see
[1

–6

]). There has been significant development in fractional differential equations in recent

years; see the monographs of A.A. Kilbas, H.M. Srivastava, J.J. Trujillo [

7

], K.S.Miller and

B.Ross [

8

], I.Podlubny [9], S.G. Samko, A.A. Kilbas , O.I. Marichev. [

10

] and the references

therein.

Very recently some basic theory for the initial boundary value problems of fractional

differential equations involving a Riemann-Liouville differential operator of order

0

1

 

has been discussed by L. Lakshmikantham and A.S. Vatsala [11, 12]. In a series of papers (see
[13, 14]) the authors considered some classes of initial value problems for functional
differential equations involving Riemann-Liouville and Caputo fractional derivatives of order

0

1

 

:

For more details concerning geometric and physical interpretation of fractional

derivatives of Riemann-Liouville and Caputo types [15].

There are many works [16-19], devoted to the studying of boundary value problem

(BVP)s for parabolic-hyperbolic equations, involving fractional derivatives. BVPs for the

mixed type equations involving the Caputo and the Riemann-Liouville fractional differential
operators were investigated in works [20-22].

This paper deals the existence and uniqueness of solution of the non-local problem with

discontinuous matching condition for loaded mixed type equation involving the Riemann-
Liouville fractional derivative.


Problem formulation.

We consider the equation:

( , , ), at

0

0

( , , ), at

0

xx

oy

xx

yy

u

D u p x y u

y

u

u

q x y u

y

 



(1)


background image

70

1 (6) 2024

Alfraganus

xalqaro ilmiy jurnali

with operation [1],[22]:

0

1

(

)

( , )

(1

)

y

oy

d

D u

y t u x t dt

dy

 

, (2)

1

0

0

( , , )

( , )lim (

)

( , )

y

y

p x y u

p x y

y t

u x t dt

,

(3)

1

1

0

( , , )

( , ) (

)

( , 0)

x y

q x y u

q x y

x y t

u t

dt

 

. (4)

Let us,

is domain, bounded with segments:

1 2

{( , ):

1, 0

}

A A

x y x

y h

 

,

1 2

{( , ):

0, 0

}

B B

x y x

y h

 

,

2 2

{( , ):

, 0

1}

B A

x y y h

x

 

at the

0

y

,

and characteristics :

1

:

1

AC x y

 

;

1

:

0

B C x y

 

of the equation (1) at

0

y

,

where

 

1

1;0

A

,

 

2

1;

A

h

,

 

1

0;0

B

,

 

2

0;

B

h

,

1

1

;

2

2

C

.

We enter designations:

( )

,

2

2

x

x

x

.

(

0)

y

   

,

(

0)

y

   

,

1

2

1

:

1 ,

:0

2

I

x

x

I

y

y h

 

 

.

In the domain of

the following problem is investigated.


Problem I.

To find a solution

( , )

u x y

of the equation (1) from the following class of

functions:

 

1

2

0

:

( , )

( ), ( , )

( )

( ) ,

,

y

xx

oy

W

u D u x y C

u x y C

C

u

C

D u C

I

 

  

 

satisfies boundary conditions:

1 2

1

( , )

( )

A A

u x y

y

,

0

y h

 

,

1 2

2

( , )

( )

B B

u x y

y

,

0

y h

 

, (5)

1

( )

( ) ( , 0)

( ) ( , 0)

( ) ( , 0)

( ),

y

x

d u x a x u x

b x u x

c x u x

d x x I

dx

 

 

 

. (6)

and gluing conditions:

1

0

lim

( , )

( ) ( , 0)

y

y

y u x y

x u x



, (7)

1

1

0

lim

( , )

( ) ( , 0)

y

y

y

y

y u x y

x u x



,

1 1

( ,0)

x

A B

(8)

where

( ),

i

y

( )

a x

,

( )

b x

,

( )

c x

,

( )

d x

,

( )

x

and

( )

x

are given functions, besides

( ), ( ) 0

[0,1]

x

x

x

 

.


Method of investigation.

In order to complete prove well-posedness (correctness) of the formulated, required to

uniqueness and existence of solution of the posed problem. Uniqueness of the Problem I is
proved using by the method of integral energy and the existence is proved by the method of
integral equations.


background image

71

Alfraganus

xalqaro ilmiy jurnali

1 (6) 2024

We assume, that

1

( , )

(

)

(

)

q x y

q x y q x y

 

, then the equation (1) at

0

y

on

the characteristics coordinate

x y

 

and

x y

 

totally looks like:

*

1

0

1

( , 0)

( ) ( )

4

u t

u

q

q

dt

t



.

Let’s enter designations:

( , 0)

( ),

u x

x

 

0

1

x

 

;

( , 0)

( )

y

u x

x

 

,

0

1

x

 

.

Known,

that solution of the Cauchy problem for the equation (1) in the domain of

can be represented as follows:

(

)

(

) 1

( , )

( )

2

2

x y

x y

x y

x y

u x y

t dt

*

1

0

1

( )

( )

( )

4

x y

x y

x y

t

q

d

q d

dt

t

 

 

. (9)

After using condition (6) and taking (3) into account from (9) we will get:

1

0

0

1

( )

2 ( ) 1

( )

( ) ( )

2

x

x

t

a x

x

q x q d

dt

x t

 

'

1 2 ( )

( ) 2 ( ) ( ) 2 ( )

b x

x

c x

x

d x

 

(10)

Functional relation (10) we can rewrite as:

1

0

( )

2 ( ) 1

( )

( )

1 2 ( )

( ) 2 ( ) ( ) 2 ( )

x

t

a x

x Q x

dt

b x

x

c x x

d x

x t

 

,

where

0

( )

( )

( )

2

x

q x

Q x

q d

 

.

Considering designations

1

0

0

( ) lim

( , )

y

y

x

D u x y

,

1

1

0

lim

( , )

( )

y

y

y

y u x y

x



and

1

1

0

0

0

lim

( )

( )lim

( )

y

y

y

D f y

y f y

 

gluing condition (7) , (8) we can rewrite as

( )

( ) ( ) ( )

x

x

x

  

 

,

1

( )

( ) ( ).

x

x

x

(11)

Further from the Eq. (1) at

0

y

 

owing to account (2), (11)

we get [20]:

( ) ( )

( ) ( ) ( ) ( ( ) ( )

( )) ( ) 0

x

x

x

x

x p x

x

x

 

  





 

, (12)

where

( )

( ),

x

x

1

0

1

0

( ) lim

( , )

y

y

p x

D p x y

.

Main Result-1. The Uniqueness of solution of the Problem

I.

Theorem 1.

If satisfies conditions

(0)

(0) 0,

2 (0) 1 (0)

Q

a


( )

( )

0

( )

x

p x

x



, (13)

( )

( )

0

2 ( ) 1 ( )

Q x

x

a x

x


,

( )

( ) 0

2 ( ) 1 ( )

c x

x

a x

x


,

1 2 ( ) ( )

0

2 ( ) 1 ( )

b x

x

a x

x


(14)


background image

72

1 (6) 2024

Alfraganus

xalqaro ilmiy jurnali

then, the solution

( , )

u x y

of the Problem I is unique.

Proof

. Known, that, if homogeneous problem has only trivial solution, then we can state

that original problem has unique solution. For this aim we assume that the Problem I has two

solutions, then denoting difference of these as

( , )

u x y

we will get appropriate homogenous

problem.

Equation (12) we multiply to

( )

x

and integrated from 0 to 1:

1

1

0

0

( )

( ) ( )

( )

( ) ( )

( )

x

x x dx

x

x dx

x

 



 

1

2

1

0

( ) ( )

0

x p x dx

, (15)

Where

1

( ) ( )

( )

( )

( )

x p x

x

p x

x



We will investigate the integral

1

0

( )

( )

( ) ( )

( )

x

I

x

x dx

x

 

 

1

2

1

0

( ) ( )

0

x p x dx

.

Taking (10) into account

( ) 0

d x

we get:

1

1

0

0

0

( ) ( )

( )

( )

1 2 ( ) ( )

( )

( )

( )

( ) ( )

2

2 ( ) 1 ( )

2 ( ) 1 ( )

x

Q x

x

b x

x

I

x D

x dx

x

x dx

a x

x

a x

x

 

 

1

1

2

2

1

0

0

( )

( )

2 ( )

( )

( ) ( )

2 ( ) 1 ( )

c x

x

x dx

x p x dx

a x

x

 

1

1

1

2

0

0

0

( )

( )

( )

( ) 1 2 ( ) ( )

( )

(

)

( )

( )

2

2 ( ) 1 ( )

2

2 ( ) 1 ( )

x

Q x

x

b x

x

x dx x t

t dt

d

x

a x

x

a x

x

1

2

0

( )

( )

2 ( )

( )

2 ( ) 1 ( )

c x

x

x dx

a x

x

 

1

2

1

0

( ) ( )

x p x dx

. (16)

Considering

(1) 0,

(0) 0

(which deduced from the conditions (4), (5) in

homogeneous case) and on a base of the formula [23]:

 

1

0

2

,

1

0

1

x t

z cos z x t dz

cos

 

 

after some simplifications from (16) we will get:

2

2

1

1

0

0

0

( ) (0)

(0)

( )

( )

(0)

4 (1

)sin

(2 (0) 1)

2

cos

sin

Q

I

t

dt

t

dt

dz

a

z

zt

zt



 

2

2

1

0

0

0

0

( )

( )

( )

( )

( )

( ) 2 ( ) 1

4 (1

)sin

2

cos

x

x

x

Q x

dz

t

dt

t sin dt

dx

x

x a x

z

zt

zt



 

 

 

1

1

2

2

0

0

( )

( ) 1 2 ( )

( )

( )

( )

2 ( )

( )

2

( ) 2 ( ) 1

2 ( ) 1 ( )

x

b x

c x

x

x

dx

x dx

x a x

a x

x

 


background image

73

Alfraganus

xalqaro ilmiy jurnali

1 (6) 2024

1

2

1

0

( ) ( )

x p x dx

. (17)

Thus, owing to (13),(14) from (17) it is concluded, that

( ) 0

x

. Hence, based on the

solution of the first boundary problem for the Eq.(1) [21],[26] owing to account (4) and (5) we
will get

( , ) 0

u x y

in

.

Further, from functional relations (10), taking into account

( ) 0

x

we get that

( ) 0

x

. Consequently, based on the solution (9) we obtain

( , ) 0

u x y

in closed

domain

.


Main Result-2. The existence of solution of the Problem I.


Theorem 2.

If satisfies conditions (13), (14) and

 

 

1

1

2

2

( )

( 1,2)

i

y

y C I

C I

i

,

 

1

( , )

,

q x y C

 

2

1

1 1

1 1

( ,0), ( )

p x

Q x C A B

C A B

, (18)

 

 

1

1

1

( )

x C I

C I

,

 

 

2

1

1

( )

x C I

C I

,

 

 

1

2

1

1

( ), ( ), ( ), ( )

a x b x c x d x C I

C I

(19)

then the solution of the investigating problem exists.

Proof.

Taking (10) into account from Eq. (12) we will obtain

( )

( ) ( )

( )

( ) ( )

x

A x

x

f x

B x x



(20)

where

0

( ) ( ) ( ) ( )

( )

( )

2(2 ( ) 1) ( )

x

x Q x

f x

D

x

a x

x

 

2 ( ) ( ) ( )

2 ( ) 1 ( )

d x

x

a x

x


(21)

( )(1 2 ( )) ( )

( )

2 ( ) 1

( )

b x

x

A x

a x

x


,

1

2 ( ) ( ) ( )

( )

( )

1 2 ( ) ( )

c x

x

B x

p x

a x

x


(22)

Solution of the equation (20) together with conditions

1

(0)

(0)

,

2

(1)

(0)

(23)

has a form

1

2

1

1

1

0

(0)

(0)

( )

( )

( ) ( )

( ) ( )

(1)

x

x

A x

B t t

f t A t dt

A

1

1

1

1

1

1

1

1

0

0

( )

( )

( )

( ) ( )

( )

( ) ( )

( )

(0)

(1)

( )

( )

x

A x

A t

A t

B t t

f t

dt

B t t

f t

dt

A

A t

A t

(24)

where

1

0

0

( )

( )

x

t

A x

exp A z dz dt

(25)

Further, considering (21) and using (3) from (24) we will get:

1

1

1

1

0

0

0

( )

( ) ( ) ( )

( )

( )

( ) ( ) ( )

(

)

( )

2

2 ( ) 1 ( )

x

x

t

Q t A t

t

x

A x

A t B t t dt

dt t s

s ds

a t

t


background image

74

1 (6) 2024

Alfraganus

xalqaro ilmiy jurnali

1

1

1

1

1

0

( )

( ) ( ) ( )

(1)

( )

A x A t B t t dt

A

A t

1

1

0

( ) ( ) ( )

( )

x

A t B t t dt

A t

1

1

1

1

1

1

0

0

( )

( )

( )(

)

( )

( )

( )

(1)

( )

2(2 ( ) 1) ( )

t

A x A t

Q t t s

t

dt

s ds

A

A t

a t

t



1

1

1

1

0

0

( )

( )

( )

( )

(

)

( )

( )

( )

2(2 ( ) 1) ( )

x

t

A t

Q t

t

dt

t s

s ds f x

A t

a t

t



(24)

where

1

1

1

1

1

1

1

0

0

( )

2 ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

1

2 ( ) ( )

(1)

( )(2 ( ) 1) ( )

2 ( ) 1 ( )

x

x

A x

d t A t

t

d t A t

t

f x

dt

A x

dt

A

A t a t

t

a t

t

 

1

1

1

2

1

1

1

1

1

0

( ) 2 ( ) ( ) ( ) ( )

( )

(0)

(0)

(0)

(1)

( )(2 ( ) 1) ( )

(1)

x

A x

d t A t

t

A x

dt

A

A t a t

t

A

(25)

After some simplifications (24) we will rewrite on the form:

1

1

1

1

0

( )

( ) ( ) ( )

( )

( ) ( )

( ) ( )

(

)

2

2 ( ) 1 ( )

x

x

t

Q s A s

s

x

A x

t A t B t

s t

ds dt

a s

s

1

1

0

( ) ( ) ( )

( )

x

A t B t t dt

A t

1

1

1

0

( )

( )

( )

( )

( )

(

)

2

( ) 2 ( ) 1 ( )

x

x

t

A s

Q s

s

t dt

s t

ds

A s a s

s

1

1

1

1

1

0

( )

( ) ( ) ( )

(1)

( )

A x A t B t t dt

A

A t

-

1

1

1

1

1

1

1

1

0

( )

( )

( )(

)

( )

( )

( )

( )

(1)

( ) 2(2 ( ) 1) ( )

t

A x

A s Q s s t

s

t dt

ds f x

A

A s

a s

s



i.e. totally, we have integral equation:

1

1

0

( )

( , ) ( )

( )

x

K x t t dt f x

. (26)

Here

1

2

( , );

0

,

( , )

( , );

1.

K x t

t x

K x t

K x t

x t

 

 

 

(27)

1

1

1

1

1

1

( )

( ) ( )(

)

( )

( , )

( ) ( )

2

( )(2 ( ) 1)

( )

t

x

s Q s t s

A s

K x t

A x A s

ds

s a s

A s

1

1

1

1

1

1

1

1

( )

( ) ( )

( ) ( )

( )

( )

(1) ( )

A t

A x A t

A x A t

B t

A t

A

A t

1

1

1

1

1

1

( )

( ) ( )(

)

( )

( )

(1)

( ) 2(2 ( ) 1) ( )

t

A x A s Q s s t

s ds

A

A s

a s

s



, (28)


background image

75

Alfraganus

xalqaro ilmiy jurnali

1 (6) 2024

1

1

1

1

1

1

2

1

1

1

1

( ) ( )

( )

( ) ( )(

)

( )

( , )

( )

( )

.

(1) ( )

(1)

( ) 2(2 ( ) 1) ( )

t

A x A t

A x A s Q s s t

s

K x t

B t

ds

A A t

A

A s

a s

s

 

 

(29)

Owing to class (18), (19) of the given functions and after some evaluations from (28), (29)

and (25), (27) we will conclude, that,

( , )

K x t

const

,

1

( )

f x

const

.

Since kernel

( , )

K x t

is continuous and function in right-side

( )

F x

is continuously

differentiable, solution of integral equation (26) we can write via resolvent-kernel:

1

1

1

0

( )

( )

( , ) ( )

x

f x

x t f t dt

 

, (30)

where

( , )

x t

is the resolvent-kernel of

( , )

K x t

.

Unknown functions

( )

x

and

( )

x

we will found accordingly from (10) and (11):

1

1

1

1

1

0

0

0

( )

( )

( )

(

)

( , ) ( )

(

)

( )

2 2 ( ) 1

2 2 ( ) 1

x

x

Q x

Q x

x

t x dt

t s f s ds

t x

f t dt

a x

a x

1

1

1

1

0

1 2 ( )

1 2 ( )

( , )

2 ( )

( )

( )

( )

2 ( ) 1

2 ( ) 1

2 ( ) 1

b x

b x

x t

c x

f x

f t dt

f x

a x

a x

x

a x



1

1

0

2 ( )

2 ( )

( , ) ( )

2 ( ) 1

2 ( ) 1

c x

d x

x t f t dt

a x

a x

and

( )

( ) ( )

x

x

x

 

.

Solution of the Problem I in the domain

we write as follows [21]

1

1

2

0

0

0

0

( , )

( , ,0, ) ( )

( , ,1, ) ( )

(

, ) ( )

y

y

u x y

G x y

d

G x y

d

G x

y

d

   

   

   

1

1

0 0

( , ,0, ) ( , ) ( )

y

G x y

p

d d

     



Here

0

0

1

(

, )

( , , , ) ,

(1

)

y

G x

y

G x y

d

  

 

2 1

1, 2

1, 2

1, 2

1, 2

2

2

2

2

(

)

( , , , )

2

(

)

(

)

n

x

n

x

n

y

G x y

e

e

y

y

 



 

 

Is the Green’s function of the first boundary problem Eq. (1) in the domain

[27],

1,

1,

0

( )

! (

)

n

n

z

e z

n

n

 

 

is the Wright type function [27].


background image

76

1 (6) 2024

Alfraganus

xalqaro ilmiy jurnali

Solution of the Problem I in the domain

will be found by the formulate (9). Hence,

the Theorem 2 is proved.

Conclusion.

Under certain conditions for given functions, the uniqueness and existence

of the formulated problem is proved. Investigated problem generalizes a number of local

problems with continuous and discontinuous gluing conditions.

R E F E R E N C E S

[1]

K. Diethelm, A.D. Freed.

On the solution of nonlinear fractional order differential

equations used in the modeling of viscoelasticity, in: F. Keil,W. Mackens, H. Voss, J. Werther (Eds.),
Scientific Computing in Chemical Engineering II—Computational Fluid Dynamics, Reaction
Engineering and Molecular Properties, Springer-Verlag, Heidelberg.(1999), pp. 217–224.

[2] B.N. Lundstrom, M.H. Higgs, W.J. Spain, A.L. Fairhall.

Fractional differentia-tion by

neocortical pyramidal neurons, Nat. Neurosci. 11 (2008) 1335–1342.

[3] W.G. Glockle, T.F. Nonnenmacher.

A fractional calculus approach of self-similar protein

dynamics, Biophys. J. 68 (1995) 46–53.

[4] R. Hilfer.

Applications of Fractional Calculus in Physics, World Scientific, Singapore,

(2000).

[5] F. Mainardi.

Fractional calculus: some basic problems in continuum and statistical

mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum
Mechanics, Springer-Verlag, Wien.(1997), pp. 291–348.

[6] J.W. Kirchner, X. Feng, C. Neal.

Fractal streamchemistry and its implications for

contaminant transport in catchments, Nature 403 (2000) 524–526.

[7] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo.

Theory and Applications of Fractional

Differential Equations, in: North-Holland Mathematics Studies, vol. 204,

Elsevier Science B.V., Amsterdam. (2006).

[8] K.S. Miller, B. Ross.

An Introduction to the Fractional Calculus and Differential Equations,

John Wiley, New York, (1993).

[9] S.G. Samko, A.A. Kilbas, O.I. Marichev.

Fractional Integral and Derivatives: Theory and

Applications, Gordon and Breach, Longhorne, PA, (1993).

[10]

I. Podlubny.

Fractional Differential Equations, Academic Press, New York, (1999).

[11]. V. Lakshmikantham and A. S. Vatsala.

Basic theory of fractional di®erential equations.

Nonlinear Anal.

69(2008), No. 8, 2677-2682.

[12]. V. Lakshmikantham and A. S. Vatsala.

Theory of fractional di®erential inequalities and

applications.

Commun. Appl. Anal.

11(2007), No. 3-4, 395-402.

[13]. A. Belarbi, M. Benchohra, A. Ouahab.

Uniqueness results for fractional functional

differential equations with infinite delay in Frechet spaces.

Appl. Anal.

85(2006),No. 12, 1459-1470.

[14]. M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab

. Existence results for fractional

order functional differential equations with infinite delay.

J. Math. Anal.Appl.

338(2008), No. 2, 1340-

1350.

[15]. I. Podlubny.

Geometric and physical interpretation of fractional integration and

fractional differentiation. Dedicated to the 60th anniversary of Prof. Francesco Mainardi.

Fract. Calc.

Appl. Anal.

5(2002), No. 4, 367-386.

[16].A. A. Kilbas., O. A. Repin.

“An analog of the Tricomi problem for a mixed type equation

with a partial fractional derivative,” Fractional Calculus & Applied Analysis. (2010) vol. 13, no. 1,
pp. 69–84.

[17].V. A. Nakhusheva.

“Boundary problems for mixed type heat equation,” Doklady AMAN

(2010) vol. 12, no. 2, pp. 39–44. In russian.


background image

77

Alfraganus

xalqaro ilmiy jurnali

1 (6) 2024

[18].E. Y. Arlanova.

“A problem with a shift for the mixed type equation with the generalized

operators of fractional integration and differentiation in a boundary condition,” Vestnik Samarsk
Gosudarstvennogo Universiteta. (2008) vol. 6, no. 65, pp. 396–406.

[19]. A. A. Kilbas., O. A. Repin

“An analogue of the Bitsadze-

Samarski˘ı prob

-lem for an

equation of mixed type with a fractional derivative,” Differentsial’nye Uravneniya. (2003) vol. 39,
no. 5, pp. 638–719, Translation in Journal of Difference Equations and Applications. (2003). vol. 39,
no. 5, pp. 674–680.

[20].B.J. Kadirkulov.

Boundary problems for mixed parabolic-hyperbolic equations with two

lines of changing type and fractional derivative. EJDE, Vol. 2014 (2014), No. 57, pp. 1–7. ISSN: 1072-
6691.

[21].

E.T.Karimov., J.Akhatov.

A boundary problem with integral gluing condition for a

parabolic-hyperbolic equation involving the Caputo fractional derivative. EJDE.14(2014)

[23].O.Kh. Abdullaev.

About a method of research of the non-local problem for the loaded

mixed type equation in double-connected domain

\\

Bulletin KRASEC. Phys. & Math. Sci, 2014, vol.

9, no. 2, pp. 11-16. ISSN 2313-0156

[25]. M.M. Smirnov.

Mixed type equations, M.Nauka.(2000).

[26].A.V.Pskhu.

Uravneniye v chasnykh proizvodnykh drobnogo poryadka. (Russian)

[Partial differential equation of fractional order] “Nauka”, Moscow, (2005).200pp.

[27].A.V.Pskhu

. Solution of boundary value problems fractional diffusion equation by the

Green function method. Differential equation, 39(10) (2003), pp 1509-1513


Obidjon Kh. Abdullaev.
Alfraganus University. Tashkent, Uzbekistan
E-mail address:

obidjon.mth@gmail.com

.

ORCID:

https://orcid.org/0000-0001-8503-1268

Библиографические ссылки

K. Diethelm, A.D. Freed. On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity, in: F. Keil,W. Mackens, H. Voss, J. Werther (Eds.), Scientific Computing in Chemical Engineering II—Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg.(1999), pp. 217–224.

B.N. Lundstrom, M.H. Higgs, W.J. Spain, A.L. Fairhall. Fractional differentia-tion by neocortical pyramidal neurons, Nat. Neurosci. 11 (2008) 1335–1342.

W.G. Glockle, T.F. Nonnenmacher. A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995) 46–53.

R. Hilfer. Applications of Fractional Calculus in Physics, World Scientific, Singapore, (2000).

F. Mainardi. Fractional calculus: some basic problems in continuum and statistical mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien.(1997), pp. 291–348.

J.W. Kirchner, X. Feng, C. Neal. Fractal streamchemistry and its implications for contaminant transport in catchments, Nature 403 (2000) 524–526.

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam. (2006).

K.S. Miller, B. Ross. An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, (1993).

S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Longhorne, PA, (1993).

I. Podlubny. Fractional Differential Equations, Academic Press, New York, (1999).

V. Lakshmikantham and A. S. Vatsala. Basic theory of fractional di®erential equations. Nonlinear Anal. 69(2008), No. 8, 2677-2682.

V. Lakshmikantham and A. S. Vatsala. Theory of fractional di®erential inequalities and applications. Commun. Appl. Anal. 11(2007), No. 3-4, 395-402.

A. Belarbi, M. Benchohra, A. Ouahab. Uniqueness results for fractional functional differential equations with infinite delay in Frechet spaces. Appl. Anal. 85(2006),No. 12, 1459-1470.

M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab. Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal.Appl. 338(2008), No. 2, 1340- 1350.

I. Podlubny. Geometric and physical interpretation of fractional integration and fractional differentiation. Dedicated to the 60th anniversary of Prof. Francesco Mainardi. Fract. Calc. Appl. Anal. 5(2002), No. 4, 367-386.

A. A. Kilbas., O. A. Repin. “An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative,” Fractional Calculus & Applied Analysis. (2010) vol. 13, no. 1, pp. 69–84.

V. A. Nakhusheva. “Boundary problems for mixed type heat equation,” Doklady AMAN (2010) vol. 12, no. 2, pp. 39–44. In russian.

E. Y. Arlanova. “A problem with a shift for the mixed type equation with the generalized operators of fractional integration and differentiation in a boundary condition,” Vestnik Samarsk Gosudarstvennogo Universiteta. (2008) vol. 6, no. 65, pp. 396–406.

A. A. Kilbas., O. A. Repin “An analogue of the Bitsadze-Samarski˘ı prob-lem for an equation of mixed type with a fractional derivative,” Differentsial’nye Uravneniya. (2003) vol. 39, no. 5, pp. 638–719, Translation in Journal of Difference Equations and Applications. (2003). vol. 39, no. 5, pp. 674–680.

B.J. Kadirkulov. Boundary problems for mixed parabolic-hyperbolic equations with two lines of changing type and fractional derivative. EJDE, Vol. 2014 (2014), No. 57, pp. 1–7. ISSN: 1072- 6691.

E.T.Karimov., J.Akhatov. A boundary problem with integral gluing condition for a parabolic-hyperbolic equation involving the Caputo fractional derivative. EJDE.14(2014)

O.Kh. Abdullaev. About a method of research of the non-local problem for the loaded mixed type equation in double-connected domain Bulletin KRASEC. Phys. & Math. Sci, 2014, vol. 9, no. 2, pp. 11-16. ISSN 2313-0156

M.M. Smirnov. Mixed type equations, M.Nauka.(2000).

A.V.Pskhu. Uravneniye v chasnykh proizvodnykh drobnogo poryadka. (Russian) [Partial differential equation of fractional order] “Nauka”, Moscow, (2005).200pp.

A.V.Pskhu. Solution of boundary value problems fractional diffusion equation by the Green function method. Differential equation, 39(10) (2003), pp 1509-1513

inLibrary — это научная электронная библиотека inConference - научно-практические конференции inScience - Журнал Общество и инновации UACD - Антикоррупционный дайджест Узбекистана UZDA - Ассоциации стоматологов Узбекистана АСТ - Архитектура, строительство, транспорт Open Journal System - Престиж вашего журнала в международных базах данных inDesigner - Разработка сайта - создание сайтов под ключ в веб студии Iqtisodiy taraqqiyot va tahlil - ilmiy elektron jurnali yuridik va jismoniy shaxslarning in-Academy - Innovative Academy RSC MENC LEGIS - Адвокатское бюро SPORT-SCIENCE - Актуальные проблемы спортивной науки GLOTEC - Внедрение цифровых технологий в организации MuviPoisk - Смотрите фильмы онлайн, большая коллекция, новинки кинопроката Megatorg - Доска объявлений Megatorg.net: сайт бесплатных частных объявлений Skinormil - Космецевтика активного действия Pils - Мультибрендовый онлайн шоп METAMED - Фармацевтическая компания с полным спектром услуг Dexaflu - от симптомов гриппа и простуды SMARTY - Увеличение продаж вашей компании ELECARS - Электромобили в Ташкенте, Узбекистане CHINA MOTORS - Купи автомобиль своей мечты! PROKAT24 - Прокат и аренда строительных инструментов