Volume 02 Issue 07-2022
15
American Journal Of Applied Science And Technology
(ISSN
–
2771-2745)
VOLUME
02
I
SSUE
07
Pages:
15-22
SJIF
I
MPACT
FACTOR
(2021:
5.
705
)
(2022:
5.
705
)
OCLC
–
1121105677
METADATA
IF
–
5.582
Publisher:
Oscar Publishing Services
Servi
ABSTRACT
This article discusses the design of printed circuit board drawings. PCB drawings are made using a coordinate grid,
which has its own dimensions. These dimensions further determine the dimensions of the structures.
KEYWORDS
Standard, printed circuit board, layer drawing, coordinate system, coordinate grid, printed elements, conductors,
pitch.
INTRODUCTION
The printed circuit board is a specific part and is made
in accordance with the requirements of GOST 2 417-91
and OST 4.0.10.019-81. The drawing of single-sided and
double-sided printed circuit boards is called "Printed
circuit board", it is assigned a class in accordance with
the classifier. A drawing of a multilayer printed circuit
board is called a "Multilayer printed circuit board", an
assembly drawing [1-7]. A drawing of a layer of a
multilayer printed circuit board with a conductive
pattern located on one or both sides is called a “Layer
of a multilayer printed circuit board”. Sometimes they
make an additional projection of the printed circuit
board without conductors, on which they put down
Research Article
THE DESIGN OF PRINTED BOARD DRAWINGS
Submission Date:
July 15, 2022,
Accepted Date:
July 25, 2022,
Published Date:
July 30, 2022
Crossref doi:
https://doi.org/10.37547/ajast/Volume02Issue07-04
Umida Abdukarimovna Madmarova
Senior teacher of the department of metrology, standardization and product quality management of Fergana
Polytechnic Institute, Uzbekistan
Zulfiya Ismatullayevna Abdumalikova
Senior teacher of the department of metrology, standardization and product quality management of Fergana
Polytechnic Institute, Uzbekistan
Journal
Website:
https://theusajournals.
com/index.php/ajast
Copyright:
Original
content from this work
may be used under the
terms of the creative
commons
attributes
4.0 licence.
Volume 02 Issue 07-2022
16
American Journal Of Applied Science And Technology
(ISSN
–
2771-2745)
VOLUME
02
I
SSUE
07
Pages:
15-22
SJIF
I
MPACT
FACTOR
(2021:
5.
705
)
(2022:
5.
705
)
OCLC
–
1121105677
METADATA
IF
–
5.582
Publisher:
Oscar Publishing Services
Servi
dimensions for machining the printed circuit board,
marking, etc. [8-13].
MATERIALS AND METHODS
PCB drawings are made in scales 1:1, 2:1, 4:1; 5:1,10:1.
However, if the grid spacing is 1.25 mm, then a scale of
at least 4:1 is used. The drawing shows the main
projections. With printed conductors and holes, it is
allowed to provide additional views with a partial
image of the pattern. The drawing of a layer of a
multilayer printed circuit board should be shown on a
separate sheet. On the layer drawing dimensions are
recommended [14-20].
On the drawing of the printed circuit board, a
coordinate grid is applied with thin solid lines 0.2 ... 0.5
mm thick. The lines of the coordinate grid relative to
zero are numbered in one or more steps (but not more
than five) with numbers. It is allowed to put line
numbers on four sides of the board drawing in
accordance with GOST 2.303 - 68.
On the printed circuit board drawing, the dimensions
must be indicated in one of the following ways (in
accordance with the requirements of GOST 2.303-68):
Drawing a coordinate grid in a rectangular
coordinate system (grid lines are numbered);
Drawing a coordinate grid in the polar coordinate
system;
Combined method using dimension and extension
lines and a coordinate grid in a rectangular or polar
coordinate system.
GOST 10317-79 *: main pitch 2.50 mm, additional - 1.25
or 0.5 mm.
For zero in a rectangular coordinate system on the
main view of the printed circuit board should be taken:
The center of the leftmost bottom hole located on
the board field (including the technological one);
Lower left corner of the printed circuit board;
The lower left point formed by the construction
lines,
In the drawing of round printed circuit boards, it is
allowed to take the center of the printed circuit board
as zero in a rectangular coordinate system. If the
dimensions and configuration of the printed circuit
board drawing are specified in the technical
requirements of the drawing, then it is allowed to
depict the elements of printed circuit boards
conditionally [19-23].
With an automated and semi-automated method of
performing documentation, deviations from the scale
along one or both axes are allowed. The degree of
deviation from the scale is determined by the design of
the playback devices.
Volume 02 Issue 07-2022
17
American Journal Of Applied Science And Technology
(ISSN
–
2771-2745)
VOLUME
02
I
SSUE
07
Pages:
15-22
SJIF
I
MPACT
FACTOR
(2021:
5.
705
)
(2022:
5.
705
)
OCLC
–
1121105677
METADATA
IF
–
5.582
Publisher:
Oscar Publishing Services
Servi
Fig.1. An example of sizing a pad.
If necessary, indicate the boundaries of the sections of
the board that are not allowed to be occupied by
conductors, a dash-dotted thickened line should be
used in the drawing [24-31].
The conductors in the drawing should be depicted as a
single line, which is the axis of symmetry of the
conductor, while the numerical value of the width of
the conductor should be indicated on the drawing.
Conductors with a width of more than 2.5 mm can be
represented by two lines, while if they coincide with
the lines of the coordinate grid, the numerical value of
the width is not indicated.
To set the dimensions of the contact pad for multi-pin
elements, the contact group is isolated on the board or
placed on the drawing field (Fig. 1 a, b). Holes, the
distances between which are multiples of the
coordinate grid step, are located at its nodes, the rest
according to the installation dimensions [32-39]. A
callout is used to make the drawing easier to read.
Printed elements (conductors, screens, contact pads,
etc.) are supposed to be hatched (Fig. 1 a, b). With a
conductor width in the drawing of less than 2 mm (and
sometimes more, if the actual width is indicated in the
technical requirements), they are depicted as a solid
contour line. If the conductor has a variable width
along its length, then it is indicated on each section. If
a conductor with a variable width passes from one
layer to another, then its dimensions are indicated on
the image of these layers as well.
There are many PCB design software solutions
available. The software you use should be able to draw
both schematics and printed circuit boards. Below I’ve
compiled a list of three free cross-platform programs
available for Linux, Windows and Mac OS. I have copied
their own description of themselves from each of their
websites. Just to give you an idea of what they are
about (or at least how they like to present themselves).
“KiCad is an open source software suite for electronic
design automation (EDA) made for designing
schematics of electronic circuits and printed circuit
boards (PCB). KiCad is developed by the KiCad
Developers Team, and features an integrated
environment with schematic capture, bill of materials
list, PCB layout and much more.
Compared to the other free software alternatives,
KiCad solves all stages with the same interface:
Schematic
Capture,
PCB
layout,
Gerber
generation/visualization and library editing [38-41].
KiCad is cross-platform, written with WxWidgets and
runs on FreeBSD, Linux, Microsoft Windows and Mac
OS X. A lot of component libraries are available. Also
Volume 02 Issue 07-2022
18
American Journal Of Applied Science And Technology
(ISSN
–
2771-2745)
VOLUME
02
I
SSUE
07
Pages:
15-22
SJIF
I
MPACT
FACTOR
(2021:
5.
705
)
(2022:
5.
705
)
OCLC
–
1121105677
METADATA
IF
–
5.582
Publisher:
Oscar Publishing Services
Servi
migrating tools for components are available (from
other EDA software tools). The construction of
measuring instruments depends on the measuring
principles used and the signal transfer. One
classification is mechanical, hydraulic, pneumatic,
electrical and electronic, where the last is being
increasingly used.
In some instruments the three major parts are
connected within the same unit, while in other
instruments the parts are separate and connected via
cables for electric signals or another principle for
transfer of the measured values. Measuring equipment
can either give continuous signals (analogues), or
on/off signals (digital). An example of the first case is
an oxygen meter that shows the concentration of
oxygen. Flow indicators that register if there is water
flow or not (on/off) are an example of the latter case
[42-49].
The sensor in the unit is used to record the physical
conditions in the medium, such as the probe in an
oxygen meter. The transmitter can either be electrical
or mechanical and translates the signal coming from
the sensor to a scaled signal that as is further
transported to the display or indicator where the
results are shown in an understandable way. In the
display the physical conditions of the medium are
shown. Signals may also go directly to a recording unit
such as a computer for storing the results, or can be
used to control a regulator.
Equipment for measuring and recording of various
parameters is more and more commonly used in
aquaculture, especially in intensive aquaculture. Such
equipment controls and adjusts the environ-mental
conditions to obtain optimal production results. Until
now several of the measurements have been taken
manually, which is normally more time consuming and
labor intensive, and therefore results in fewer
measurements. During the past few years, there has
been rapid development in the automation of
instruments and monitoring systems that can also be
used in the aquaculture industry, mainly based on
developments in electronics and computer science [50-
55]. Therefore many of the trivial manual
measurements are now carried out by specially
designed instruments, releasing manpower for more
important intellectual tasks and to improve the
production results, especially in intensive aquaculture.
One reason for using instruments is to automate the
management of fish farming as much as possible. For
example, video cameras and image analysis can be
used to monitor fish and give alarm signals if odd
behavior is observed. The biological processes
underlying fish production are, however, both complex
and difficult, unlike the production of nails. Even with
today’s knowledge, it is only a dream to believe that it
is possible to fully replace the fish farmer with
instruments and robots.
When buying and installing instruments, the
requirements for maintenance and calibration,
adjusted for special circumstances must be taken into
account. The values read from the measuring
equipment must be reliable; otherwise the result can
be more damaging than if no measuring equipment
were used at all. This implies that maintenance and
Volume 02 Issue 07-2022
19
American Journal Of Applied Science And Technology
(ISSN
–
2771-2745)
VOLUME
02
I
SSUE
07
Pages:
15-22
SJIF
I
MPACT
FACTOR
(2021:
5.
705
)
(2022:
5.
705
)
OCLC
–
1121105677
METADATA
IF
–
5.582
Publisher:
Oscar Publishing Services
Servi
running costs must be included in the price of an
instrument, not just the purchase cost. Extra effort
must be given to maintenance of instruments used to
monitor water quality. This also includes frequent
calibration
according
to
the
manufacturer’s
instructions so that the values shown are reliable.
Depending on the type of instrument, the sensors may
have a limited duration, so must be exchanged at fixed
intervals.
CONCLUSION
Measurement of biological performance has also
increased during the past few years as a result of the
increased focus on profitability in intensive fish
farming. By automatically measuring development in
terms of weight and total fish biomass, it is possible to
control the development and intervene if something
does not correspond to the production plans.
Due to the large expense involved and the amount of
technical equipment that can fail, it is increasingly
common to have a total monitoring system on the
farm, which also includes a significant use of computer
tools. On land-based farms using pumps for the water
supply or in farms with re-use of water such systems
are essential.
REFERENCES
1.
Йулдашев, Х. Т., Иброхимов, Ж. М., &
Ахмедов, Ш. С. (2020). Исследование
кинетики формирования изображения на
пленках висмута при действии газового
разряда. BBK 57, 302.
2.
Yuldashev, K. T., Ergashev, Q. M., Ibrokhimov,
J. M., & Madmarova, U. A. (2019). EJ Alikhanov
The study of Stability Combustion of the Gas
Discharge in Sub-micron Gas-filled Cell with
Semiconductor
Electrode.
International
Journal of Advanced Research in Science,
Engineering and Technology, 6(11), 11907-11911.
3.
Эргашев, К. М., & Иброхимов, Ж. М.
Особенности газового разряда при малых
межэлектродных
расстояниях
в
ионизационной системе. Евразийский союз
ученых (ЕСУ), 59.
4.
Yuldashev, X. T. (2019). Analysis of electrical
parameters of the ionization system at high
frequency currents. Scientific-technical journal,
23(4), 172-176.
5.
Yuldashev, K. T. (2020). Research photoelectric
and photographic characteristics of the
converter of the image of the ionization type.
Scientific Bulletin
of Namangan State
University, 2(10), 16-22.
6.
Mihoilovich, E. K., & Xabibulloogli, E. A. (2021).
Selection of methods of acceptance inspection
in production. Academicia: An International
Multidisciplinary Research Journal, 11(10), 1350-
1355.
7.
Эргашов,
К.
М.
(2021).
Улучшение
измерительных параметров двухволнового
оптоэлектронного устройства. Universum:
технические науки, (11-2 (92)), 49-52.
8.
Kuldashov, O. H., Umaraliev, N., & Ergashev, K.
M. (2021). Stabilization of the parameters of a
two-wave optoelectronic device. Scientific-
technical journal, 4(2), 51-61.
9.
Алихонов Э.Ж. Определение линейной
плотности хлопковых лент // НТЖ, ФерПИ. –
2022., Т.26, №3. – с. 222-224.
10.
Эргашев, К. М., & Мадмарова, У. (2018).
Компьютерная
модель
микро-ГЭС
с
использованием потенциальной энергии
геотермальных
вод.
In
Современные
технологии в нефтегазовом деле-2018 (pp.
376-379).
11.
Soipovich, R. U., & Mikhoilovich, E. K. (2022).
Physical and Mathematical Research of the Set
Hydropower Tasks Under the Ferpi Microapp
Project. Eurasian Journal of Physics, Chemistry
and Mathematics, 7, 132-137.
12.
Rustamov, U. S., Isroilova, S. X., &
Abdumalikova, Z. I. (2022). Mikro-GES va
fotoelektrik
quyosh
elektr
stansiyasiga
asoslangan
kombinirlashgan
(aralash)
avtonom energiya manbalarining kompyuter
modeli. Oriental renaissance: Innovative,
Volume 02 Issue 07-2022
20
American Journal Of Applied Science And Technology
(ISSN
–
2771-2745)
VOLUME
02
I
SSUE
07
Pages:
15-22
SJIF
I
MPACT
FACTOR
(2021:
5.
705
)
(2022:
5.
705
)
OCLC
–
1121105677
METADATA
IF
–
5.582
Publisher:
Oscar Publishing Services
Servi
educational, natural and social sciences, 2(3),
710-719.
13.
Abdumalikova, Z. I. (2021). Metrological
provision in the production and its branches.
Asian Journal of Multidimensional Research,
10(10), 1492-1496.
14.
Khurshidjon, Y., Abdumalikovna, A. Z.,
Muminovna, U. G., & Mirzasharifovna, Q. G.
(2020). The study of photoelectric and
photographic characteristics of semiconductor
photographic
system
ionisation
type.
Academicia: An International Multidisciplinary
Research Journal, 10(5), 72-82.
15.
Алихонов Э.Ж. Оптоэлектронное устройство
для автоматического контроля линейной
плотности хлопковые ленты // НТЖ, ФерПИ.
спец.выпуск. 2021 г., №2. – с. 151-154.
16.
Abdumalikova, Z. A., Matbabaeva, S. M., &
Yuldashev, N. K. (2007). Excitation of surface-
radiation exciton-polariton modes at strong
attenuations of excitons. Uzbekiston Fizika
Zhurnali, 9(1), 30-33.
17.
Xabibulloogli, E. A., & Abdukarimovna, M. U.
(2021). Assesment of metrological reliability of
measurements using the method of producing
functions.
Academicia:
An
International
Multidisciplinary Research Journal, 11(8), 520-
528.
18.
Ibrokhimov, J. M., & Madmarova, U. A. (2020).
Process automatic control system on the basis
intellectualop to electronic the sensor control.
Academicia: An International Multidisciplinary
Research Journal, 10(11), 1318-1322.
19.
Ismatullaevna, A. Z., & Abdukarimovna, M. U.
(2022). Multi-Channel Device for Control of
Defects of Fabric Surface. Eurasian Journal of
Engineering and Technology, 7, 141-147.
20.
Ergashov, K. M., & Madmarova, U. A. (2020).
Technics of the infra-red drying of farm
products.
Academicia:
An
International
Multidisciplinary Research Journal, 10(11), 1351-
1355.
21.
Mamasadikov Y., Alixonov E.J. Optoelectronic
device for regulation of linear density of cotton
tape in the process of deep processing of raw
materials in cotton-textile clusters //Paxta
to‘qimachilik klasterlarida xom-ashyoni chuqur
qayta ishlash asosida mahsulot ishlab chiqarish
samaradorligini
oshirishning
iqtisodiy,
innovastion-texnologik
muammolari
va
xalqaro tajriba mavzusida Xalqaro ilmiy-amaliy
anjuman materiallari, NamMTI. – 2022 yil 27-28
may. – 279-285 b.
22.
Боймирзаев, А. Р. (2019). Особенности
свечения разряда в полупроводниковом
газоразрядном
преобразователе
ИК-
изображения. Евразийский союз ученых, (10-
5), 19-20.
23.
Rustamov, U. S., Alixonov, E. J., Erkaboyev, A.
X., Isroilova, S. X., & Boymirzayev, A. R. (2021).
Farg‘ona viloyati aholisini elektr energiyasi
tanqisligini bartaraf etishda Mikro-GESlardan
foydalanish. Oriental renaissance: Innovative,
educational, natural and social sciences, 1(10),
603-610.
24.
Тожибоев, А. К., & Боймирзаев, А. Р. (2020).
Исследование
использования
энергосберегающих
инверторов
в
комбинированных
источниках
энергии.
Экономика и социум, (12), 230-235.
25.
Boymirzaev, A. R. (2021). Optoelectronic two-
wave gas analyzer. Innovative Technologica:
Methodical Research Journal, 2(12), 127-132.
26.
Боймирзаев, А. Р., & Мамасодикова, У. Ю.
(2022). Оптоэлектронное Устройство Для
Бесконтактного
Контроля
Температуры
Нагретых Объектов. Central asian journal of
theoretical & Applied sciences, 3(7), 34-41.
27.
Мамасадиков, Ю., & Алихонов, Э. Ж. (2020).
Фотоэлектрические
методы
для
автоматического
контроля
линейной
плотности хлопковые ленты. НТЖ ФерПИ, 80-
85.
28.
Yusupjon, M., & Jamoldinovich, A. E.
Photoelectric methods for automatic linear
density control cotton tapes. International
Journal For Innovative Engineering and
Management Research, 9(12), 82-87.
Volume 02 Issue 07-2022
21
American Journal Of Applied Science And Technology
(ISSN
–
2771-2745)
VOLUME
02
I
SSUE
07
Pages:
15-22
SJIF
I
MPACT
FACTOR
(2021:
5.
705
)
(2022:
5.
705
)
OCLC
–
1121105677
METADATA
IF
–
5.582
Publisher:
Oscar Publishing Services
Servi
29.
Алихонов, Э. Ж. (2021). Определение
линейной плотности хлопковые ленты
фотоэлектрическим методом. Universum:
технические науки, (11-2 (92)), 35-38.
30.
Мамасадиков, Ю. (2021). Aлихонов ЭЖ
Оптоэлектронное устройство для контроля
линейной плотности хлопковых лент с
функциональной
разветкой.
Universum:
технические науки: электрон. научн. журн,
10, 91.
31.
Йулдашев, X. Т., Эргашев, К. М., Алихонов, Э.
Ж., Иброхимов, Ж. М., & Рустамов, У. С.
(2021). Исследование процессов токового
усиления
в
системе
полупроводник-
газоразрядный
промежуток.
Oriental
renaissance: Innovative, educational, natural
and social sciences, 1(10), 114-123.
32.
Rustamov U.S., Alixonov E.J. Past bosimli
Mikro-GESni ishlab chiqish //O‘zbekneftgaz AJ
homiyligida o‘tkazilgan «Neft va gaz sohasida
ta’lim-ishlab chiqarish klasterini rivojlantirishda
innovatsion
yondashuvlar»
mavzusidagi
xalqaro konferensiya materiallari. Toshkent. –
2022 yil 30 aprel. – 155-157 b.
33.
Эргашев,
С.
Ф.,
Рустамов,
У.
С.,
Абдурахмонов, С. М., & Кулдашов, О. Х.
(2020).
Автоматизированная
система
управления водными ресурсами на основе
элементов компьютерной автоматики.
34.
Рустамов, У. С. (2019). Микро-ГЭС для
индивидуальных потребителей. Евразийский
Союз Ученых, (11-4 (68)), 28-31.
35.
Рустамов,
У.
С.
(2021).
Определение
мощности Микро-ГЭС в электроснабжении
населения с помощью микропроцессорного
устройства для определения энергозатрат
воды
и
расхода
воды.
Universum:
технические науки, (12-6 (93)), 32-36.
36.
Maxammadovich, I. J. (2022). Use of solar
modules for energy supply residential
buildings. Gospodarka i Innowacje., 23, 479-
482.
37.
Maxammadovich, I. J. (2022). Design Features
of Photoelectric Asymmetric Concentrators.
Central asian journal of theoretical & Applied
sciences, 3(5), 384-388.
38.
Иброхимов,
Ж.
М.
(2018).
Асу
технологического процесса на основе
интеллектуального
оптоэлектронного
сенсора. In Современные технологии в
нефтегазовом деле-2018 (pp. 280-283).
39.
Nishonov, I. U., Ibrokhimov, J. M., &
Madmarova,
U.
A.
(2020).
Process
modernization on the basis microprocessor
technics.
Academicia:
An
International
Multidisciplinary Research Journal, 10(11), 1323-
1327.
40.
Ibrokhimov, J. M., & Madmarova, U. A. (2020).
Process automatic control system on the basis
intellectualop to electronic the sensor control.
Academicia: An International Multidisciplinary
Research Journal, 10(11), 1318-1322.
41.
Mamasadikov, Y. (2022). Principal schema of
optoelectronic device for monitoring the
concentration hydrocarbons in air with
exponential scan. Scientific-technical journal,
5(1), 21-24.
42.
Obidov, J. G., & Alixonov, E. J. (2021).
Organization of the education process based
on a credit system, advantages and prospects.
Academicia: An International Multidisciplinary
Research Journal, 11(4), 1149-1155.
43.
Obidov, J. G. O. (2020). About safety technique
and issues of supplying electricity of the textile
industry.
Academicia:
An
International
Multidisciplinary Research Journal, 10(9), 123-
127.
44.
Obidov, J. G., & Ibrohimov, J. M. (2021).
Application and research of energy-saving
lighting devices in engineering networks.
Academicia: An International Multidisciplinary
Research Journal, 11(4), 1370-1375.
45.
Jamshidbek G‘ayratjon o‘g, O. (2022). Bo‘lg‘usi
muhandislarni malakali yetuk kadrlar qilib
tayyorlashda
texnologik
determinizm
konsepsiyasi
asoslariga
doir
bilimlarni
takomillashtirishning o‘rni. Innovation in the
modern education system, 2(19), 287-290.
Volume 02 Issue 07-2022
22
American Journal Of Applied Science And Technology
(ISSN
–
2771-2745)
VOLUME
02
I
SSUE
07
Pages:
15-22
SJIF
I
MPACT
FACTOR
(2021:
5.
705
)
(2022:
5.
705
)
OCLC
–
1121105677
METADATA
IF
–
5.582
Publisher:
Oscar Publishing Services
Servi
46.
Мамасадиков
Ю.,
Алихонов
Э.Ж.
Оптоэлектронное устройство для контроля
линейной плотности хлопковых лент //НТЖ,
ФерПИ. – 2022., спец.выпуск №2. – с. 76-80.
47.
Erkaboyev, A. X. O. G. L., & Isroilova, N. F. Q.
(2022). Oziq-ovqat mahsulotlarini
ishlab
chiqarishda
iste’molchilar
xavfsizligini
ta’minlash. Oriental renaissance: Innovative,
educational, natural and social sciences, 2(3),
1066-1072.
48.
Шаймардонович, Ж.
Ҳ
. (2020). Си
ғ
им
электродли дон ва дон ма
ҳ
сулотларини
намлигини ўлчаш ўзгарткичининг умумий
ўлчаш хатолигини
ҳ
исоблаш усули. Science
and Education, 1(6), 74-79.
49.
Masharipov, S. H., Mamatkulov, M. N., &
Erkaboyev, A. X. (2020). Metrological Accuracy
and Estimation of Extended Uncertainty of
Pressure Gauge in Real Conditions of
Explaution International journal of advanced
research
in
science.
Engineering
and
technology (IJARSET), 7(5), 13801-5.
50.
Мамасадиков, Ю., & Мамасадикова, З. Ю.
(2021). Разработка принципиальной схемы
оптоэлектронного устройства для контроля
концентрации углеводородов в воздухе.
Universum: технические науки, (11-2 (92)), 42-
45.
51.
Xakimov, D. V., Isroilova, S. X., Alikhanov, E. J.,
Zayliddinov, T. A., & Ergasheva, G. E. (2020).
Product Quality Control at Engineering
Enterprises. International Journal of Advanced
Research
in
Science,
Engineering
and
Technology, 7(2), 12843-12848.
52.
Rustamov U.S., Alixonov E.J., Isroilova S.X.
Farg‘ona viloyatidagi olis aholi punktlarini
energiya bilan ta’minlash muammolari //Neft va
gaz sohasida ta’lim-ishlab chiqarish klasterini
rivojlantirishda
innovatsion
yondashuvlar
mavzusidagi xalqaro konferensiya materiallari.
Toshkent. – 2022 yil 30 aprel. – 157-158 b.
53.
Turgunov, B. M., & Muminov, N. S. (2019).
Principles of assessment and management of
quality systems in industrial enterprises.
Точная наука, (44), 5-14.
54.
Isroilova, S. X. (2021). Proper organization of
the quality management system is the basis of
competitiveness. Innovative Technologica:
Methodical Research Journal, 2(12), 89-99.
55.
Isroilova, S. X. (2022). The organization
develops a standard in quality management.
International Journal of Advance Scientific
Research, 2(06), 62-72.
