АНАЛИЗ ИНВЕСТИЦИЙ В ОСНОВНЫЕ СРЕДСТВА С ИСПОЛЬЗОВАНИЕМ ДИНАМИЧЕСКИХ МОДЕЛЕЙ В ФЕРГАНСКОМ ВИЛОЯТЕ

Аннотация

Эта статья представляет анализ модели Алмона на основе статистических данных Ферганской области. Модель позволяет изучать взаимосвязи между переменными во времени, учитывая эффекты распределенных лагов. Используя доступные данные, исследование анализирует динамику ключевых факторов в Ферганской области и определяет оптимальную структуру лагов. Результаты способствуют лучшему пониманию экономической динамики региона и предоставляют ценные рекомендации для инвесторов и исследователей.

Тип источника: Журналы
Годы охвата с 2024
inLibrary
Google Scholar
Выпуск:
f
17-23
27

Скачивания

Данные скачивания пока недоступны.
Поделиться
Ахунова S., & Аскаров F. (2024). АНАЛИЗ ИНВЕСТИЦИЙ В ОСНОВНЫЕ СРЕДСТВА С ИСПОЛЬЗОВАНИЕМ ДИНАМИЧЕСКИХ МОДЕЛЕЙ В ФЕРГАНСКОМ ВИЛОЯТЕ . Экономическое развитие и анализ, 2(12), 17–23. извлечено от https://inlibrary.uz/index.php/eitt/article/view/64331
Crossref
Сrossref
Scopus
Scopus

Аннотация

Эта статья представляет анализ модели Алмона на основе статистических данных Ферганской области. Модель позволяет изучать взаимосвязи между переменными во времени, учитывая эффекты распределенных лагов. Используя доступные данные, исследование анализирует динамику ключевых факторов в Ферганской области и определяет оптимальную структуру лагов. Результаты способствуют лучшему пониманию экономической динамики региона и предоставляют ценные рекомендации для инвесторов и исследователей.


background image

Iqtisodiy taraqqiyot va tahlil, 2024-yil, dekabr

www.e-itt.uz

17


ANALYZING INVESTMENT IN FIXED ASSETS UTILYSING DYNAMIC MODELS

IN FERGANA REGION

PhD, assoc. prof.

Akhunova Shokhistakhon Numanjanovna

Fergana Polytechnic Institute

ORCID: 0000-0002-2589-777X

sh.axunova@ferpi.uz

Askarov Farhod Rakhmatovich

Fergana Polytechnic Institute

ORCID: 0009-0006-9640-9178

farhod.asqarov@ferpi.uz

Abstract.

This article provides an analysis of the Almon lag model based on statistical data

from the Fergana Region. The model facilitates the study of relationships between variables over
time by accounting for distributed lag effects. Using the available data, the research examines the

dynamics of key factors in the Fergana Region and identifies the optimal lag structure. The results

enhance the understanding of the region's economic dynamics and offer valuable insights for

policymakers and researchers alike.

Keywords:

dynamic model, Almon lag model, ordinary least squares, auto regression model.

FAR

G‘

ONA VILOYATIDA ASOSIY VOSITALARGA INVESTITSIYALARNI DINAMIK

MODELLARDAN FOYDALANIB TAHLIL QILISH

PhD, dots.

Oxunova Shoxistaxon Numanjonovna

Farg‘ona politexnika instituti

Asqarov Farhod Raxmatovich

Farg‘ona politexnika instituti

Annotatsiya.

Ushbu maqola Farg‘ona viloyatining statistik ma’lumotlari asosida Almon lag

modeli tahlilini taqdim etadi. Model vaqtli qatorlar bilan o‘zgaruvchilar o‘rtasidagi

bog‘lanishlarni o‘rganishga imkon beradi, bu esa taqsimlangan lag ta’sirlarini his

obga oladi.

Mavjud ma’lumotlardan foydalangan holda, tadqiqot Farg‘ona viloyatidagi asosiy omillarning

dinamikasini tahlil qiladi va optimal lag strukturasini aniqlaydi. Tadqiqot natijalari viloyatning
iqtisodiy dinamikasini yaxshiroq tushunishga yordam beradi va investorlar hamda tadqiqotchilar

uchun qimmatli fikr-

mulohazalar bilan o‘rtoqlashadi.

Kalit so‘zlar:

dinamik model, Almon lag modeli, oddiy eng kichik kvadratlar, avtomatik

regressiya modeli.

U

O‘K:

338.12.017, 338.001.36, 338.27

XII SON - DEKABR, 2024

17-23


background image

Iqtisodiy taraqqiyot va tahlil, 2024-yil, dekabr

www.e-itt.uz

18

АНАЛИЗ ИНВЕСТИЦИЙ В ОСНОВНЫЕ СРЕДСТВА С ИСПОЛЬЗОВАНИЕМ

ДИНАМИЧЕСКИХ МОДЕЛЕЙ В ФЕРГАНСКОМ ВИЛОЯТЕ

к.э.н., доц.

Ахунова Шохистахон Нуманджановна

Ферганский политехнический институт

Аскаров Фарход Рахматович

Ферганский политехнический институт

Аннотации.

Эта статья представляет анализ модели Алмона на основе

статистических данных Ферганской области. Модель позволяет изучать взаимосвязи

между переменными во времени, учитывая эффекты распределенных лагов. Используя

доступные данные, исследование анализирует динамику ключевых факторов в
Ферганской области и определяет оптимальную структуру лагов. Результаты
способствуют лучшему пониманию экономической динамики региона и предоставляют

ценные рекомендации для инвесторов и исследователей.

Ключевые слова:

динамическая модель,

модель лага Алмона, метод наименьших

квадратов, модель авторегрессии.

Introduction.

Presidential Decree 158, issued on September 11, 2023, outlines Uzbekistan's ambitious

vision for sustainable development, prioritizing key sectors as drivers of progress. The decree

underscores the nation's dedication to boosting investment in the digital economy, research,
education, infrastructure, and green initiatives (Decree, 2023). This article examines the

strategies and initiatives proposed in the decree, highlighting how Uzbekistan plans to leverage

these sectors to stimulate economic growth, promote innovation, empower its workforce,

improve connectivity, and protect the environment. By addressing both social and economic
dimensions, the country aims to achieve growth, prosperity, and enhanced well-being for its

citizens. Additionally, as nations worldwide seek sustainable development, understanding the

link between fixed asset investment and GDP becomes essential. This article explores the

complex relationship between these factors, analyzing how investment in fixed assets impacts
GDP and identifying the mechanisms that drive economic growth.

Literature review.

Let’s begin by defining what investment is. Below are several definitions of investment

provided by renowned economists:

"Investment is an activity that involves sacrificing current consumption to achieve

greater future consumption." - Samuelson and Nordhaus(2009).

"Investment is the sacrifice of current consumption in order to secure future benefits."

- Keynes(1936).

"Investment is the commitment of resources to a project or venture in the expectation

of gaining an additional income or profit."

Mankiw (2021).

"Investment is the process of committing resources in a strategic manner to achieve

long-term goals with an expectation of generating positive returns."

Graham (2005).

Several notable Russian economists, including Kondratiev, Abalkin, and Domar, have

made important contributions to the study of investment. Their works frequently explore

investment theory and its impact on economic development. These definitions offer various

viewpoints on investment, highlighting ideas such as forgoing current consumption, strategic
allocation of resources, generating returns, creating wealth, and pursuing financial gain.

Let’s define the meaning of fixed assets:

fixed assets

under

IAS 16

are physical assets with long-term use in business operations.

They are initially recognized at cost, and over time, they are depreciated (except for land) and


background image

Iqtisodiy taraqqiyot va tahlil, 2024-yil, dekabr

www.e-itt.uz

19

periodically reviewed for impairment. Their measurement can either follow the

cost model

or

the

revaluation model

, offering businesses flexibility in how they report these long-term

assets on their financial statements (MyBib Contributors, 2019).

Research methodology.

1) The method of analysis and synthesis

is applied to evaluate investment outcomes and

their correlation with GDP in the context of developing Uzbekistan's digital economy.

2)

Scientific abstraction,

along with the methods

of induction and deduction

, is employed

in research to compare similarities and evaluate findings from various scientists.

3) The abstract-logical

method is applied to theoretically synthesize the research findings

and derive conclusions.

4) The mathematical, econometric and statistical, analysis

of research results entails

examining the collected data using various methods, including ranking, scaling, classification,
systematization, differentiation, grouping, and graphical representation.

Analysis and discussion of results.

The recent presidential decree of the Republic of Uzbekistan, released on September 11,

2023, sets an ambitious target of doubling the GDP by 2030. The decree outlines various

objectives, including poverty reduction, boosting investments in research, technology,

education, and healthcare, as well as attracting more investors to the economy [1]. However,

the question remains: What is the current situation? By applying dynamic econometric models,

it becomes possible to analyze both current and future outcomes using data gathered over the
past decades.

Dynamic models in econometrics consider the values of variables not just at the current

point in time but also at earlier points. These models capture the time-based changes in

variables and enable the analysis of how past values influence both present and future
outcomes.

Not every model built with time series data is classified as dynamic in econometrics. The

term "dynamic" here refers to how each individual time point, denoted as t, is considered,

rather than focusing on the entire period for which the model is constructed. An econometric
model is considered dynamic if, at any given time t, it incorporates the values of the variables

in the model that are relevant to both the current and past time points. In essence, a dynamic

model captures the evolving nature of the variables at each specific moment in time (

Елисеева

и

др

., 2003).

Using the Ordinary Least Squares (OLS) method is not always efficient and, in some cases,

can be ineffective or even meaningless. Building distributed lag models and autoregressive

models involves certain specific challenges. First, estimating the parameters of autoregressive

models and, in most cases, distributed lag models cannot be done with OLS due to violations of

its assumptions, necessitating the use of specialized statistical methods. Second, researchers
must address challenges like selecting the optimal lag length and determining its structure.

Finally, there is a relationship between distributed lag models and autoregressive models, and

in some instances, it may be necessary to switch from one model type to another(Almon, 1965).

𝒚

𝒕

= 𝒂 + 𝒃

𝟎

⋅ 𝒙

𝒕

+ 𝒃

𝟏

⋅ 𝒙

𝒕−𝟏

+. . . +𝒃

𝒑

⋅ 𝒙

𝒕−𝒑

+ 𝜺

𝒕

.

(1)

Lags that can be represented using polynomials are known as Almon lags, a term derived

from Shirley Almon, who was the first to highlight this form of lag representation.

Formally, the model that represents the relationship between the coefficients

b

j

and the

lag magnitude

j

in polynomial form can be expressed as follows:

For a 1

st

-degree polynomial:

𝑏

𝑗

= 𝑐

0

+ 𝑐

1

𝑗;

For a 2

nd

-degree polynomial:

𝑏

𝑗

= 𝑐

0

+ 𝑐

1

𝑗 + 𝑐

2

𝑗

2

;


For a 3

rd

-degree polynomial:

𝑏

𝑗

= 𝑐

0

+ 𝑐

1

𝑗 + 𝑐

2

𝑗

2

+ 𝑐

3

𝑗

3

and etc.


background image

Iqtisodiy taraqqiyot va tahlil, 2024-yil, dekabr

www.e-itt.uz

20

In its most general form, for a polynomial of degree

k

, we have:

𝑏

𝑗

= 𝑐

0

+ 𝑐

1

𝑗 + 𝑐

2

𝑗

2

+. . . +𝑐

𝑘

𝑗

𝑘

(2)

where

b

j

denotes the coefficient at lag

j,

and

c

0

and

c

1

are the parameters to be estimated.

Each of the coefficients

b

j

in model (1) can be expressed as follows:

𝑏

0

= 𝑐

0

;

𝑏

1

= 𝑐

0

+ 𝑐

1

+ ⋯ + 𝑐

𝑘

;

𝑏

2

= 𝑐

0

+ 2𝑐

1

+ 4𝑐

2

+ ⋯ + 2

𝑘

𝑐

𝑘

;

𝑏

3

= 𝑐

0

+ 3𝑐

1

+ 9𝑐

2

+ ⋯ + 3

𝑘

𝑐

𝑘

;

𝑏

𝑙

= 𝑐

0

+ 𝑙𝑐

1

+ 𝑙

2

𝑐

2

+. . . +𝑙

𝑘

𝑐

𝑘

;

(3)

By substituting the derived relationships for

𝑏

𝑗

into equation (1), we obtain:

𝑦

𝑡

= 𝑎 + 𝑐

0

⋅ 𝑥

𝑡

+ (𝑐

0

+ 𝑐

1

+. . . +𝑐

𝑘

) ⋅ 𝑥

𝑡−1

+ (𝑐

0

+ 2 ⋅ 𝑐

1

+. . . +2

𝑘

⋅ 𝑐

𝑘

) ⋅ 𝑥

𝑡−2

+

+(𝑐

0

+ 3 ⋅ 𝑐

1

+. . . +3

𝑘

⋅ 𝑐

𝑘

) ⋅ 𝑥

𝑡−3

+. . . +(𝑐

0

+ 𝑙 ⋅ 𝑐

1

+. . . +𝑙

𝑘

⋅ 𝑐

𝑘

) ⋅ 𝑥

𝑡−𝑙

+ 𝜀

𝑡

.

Let’s reo

rganize the terms in equation (4):

𝑦

𝑡

= 𝑎 + 𝑐

0

⋅ (𝑥

𝑡

+ 𝑥

𝑡−1

+ 𝑥

𝑡−2

+. . . +𝑥

𝑡−𝑙

) + 𝑐

1

⋅ (𝑥

𝑡−1

+ 2 ⋅ 𝑥

𝑡−2

+ 3 ⋅ 𝑥

𝑡−3

. . . +𝑙 ⋅ 𝑥

𝑡−𝑙

) +

+𝑐

2

⋅ (𝑥

𝑡−1

+ 4 ⋅ 𝑥

𝑡−2

+ 9 ⋅ 𝑥

𝑡−3

. . . +𝑙

2

⋅ 𝑥

𝑡−𝑙

) + 𝑐

3

⋅ (𝑥

𝑡−1

+ 8 ⋅ 𝑥

𝑡−2

+ 27 ⋅ 𝑥

𝑡−3

. . . +𝑙

3

⋅ 𝑥

𝑡−𝑙

) +

. . . +𝑐

𝑘

⋅ (𝑥

𝑡−1

+ 2𝑘 ⋅ 𝑥

𝑡−2

+ 3

𝑘

⋅ 𝑥

𝑡−3

. . . +𝑙

𝑘

⋅ 𝑥

𝑡−𝑙

) + 𝜀

𝑡

.

(5)

In this model, it is assumed that the polynomial degree,

k

, is smaller than the maximum

lag value,

l

.

Let’s repre

sent the terms within the parentheses as new variables, denoted by

c

j

:

𝑧

0

= 𝑥

𝑡

+ 𝑥

𝑡−1

+ 𝑥

𝑡−2

+ ⋯ + 𝑥

𝑡−𝑙

= ∑ 𝑥

𝑡−𝑗

𝑙

𝑗=0

;

𝑧

1

= 𝑥

𝑡−1

+ 2 ⋅ 𝑥

𝑡−2

+ 3 ⋅ 𝑥

𝑡−3

+ ⋯ + 𝑙 ⋅ 𝑥

𝑡−𝑙

= ∑ 𝑗 ⋅ 𝑥

𝑡−𝑗

𝑙

𝑗=0

;

𝑧

2

= 𝑥

𝑡−1

+ 4 ⋅ 𝑥

𝑡−2

+ 9 ⋅ 𝑥

𝑡−3

+ ⋯ + 𝑙

2

⋅ 𝑥

𝑡−𝑙

= ∑ 𝑗

2

⋅ 𝑥

𝑡−𝑗

𝑙

𝑗=0

;

𝑧

𝑘

= 𝑥

𝑡−1

+ 2

𝑘

⋅ 𝑥

𝑡−2

+ 3

𝑘

⋅ 𝑥

𝑡−3

+. . . +𝑙

𝑘

⋅ 𝑥

𝑡−𝑙

= ∑

𝑗

𝑘

⋅ 𝑥

𝑡−𝑗

𝑙

𝑗=0

;

(6)

Let’s express the model (5)

again, incorporating the relationships from (6):

𝑦

𝑡

= 𝑎 + 𝑐

0

⋅ 𝑧

0

+ 𝑐

1

⋅ 𝑧

1

+ 𝑐

2

⋅ 𝑧

2

+. . . +𝑐

𝑘

⋅ 𝑧

𝑘

+ 𝜀

𝑡

.

(7)

Let's analyze the efficiency of invested funds in fixed assets in the Fergana region,

Uzbekistan, using the Almon lag model. To accomplish this, we will utilize the data provided in
Table 1:

From Table 1, which includes GDP of Fergana Region and Investment in fixed assets in

billion soums from 2000 to 2023, we can observe that there are 23 observations in total. These

observations represent the values of the variables over time, allowing for analysis of their
trends and potential relationships (Gujarati and Porter, 2009).


background image

Iqtisodiy taraqqiyot va tahlil, 2024-yil, dekabr

www.e-itt.uz

21

Table 1

GDP of Fergana Region (Gross Regional Product) and Investment in

Fixed Assets (billion soums), 2000-2023.

year

GDP of

Fergana

region

Investment

in fixed

capital

Z0

Z1

Z2

2000 374.2

52.4

2001 495.2

110.1

2002 727.2

156,8

2003 898,9

105,3

2004 1089,4

120,1

544.7

1220.0

3606.6

2005 1419,0

162,3

654.6

1376.9

4255.7

2006 1880,8

178,2

722.7

1545.2

4897.6

2007 2638.5

272.9

838.8

2070.9

6739.5

2008 3224.6

484.5

1218.0

3275.4

11083.2

2009 3752.9

663.4

1761.3

4831.1

16244.7

2010 5417.5

930.9

2529.9

6955.7

23075.9

2011 7228.5

1261.4

3613.1

9649.6

31698.6

2012 9113.0

1505.8

4846.0

12332.6

39832.4

2013 10966.4

2130.0

6491.5

16491.1

53608.7

2014 13549.5

2295.3

8123.4

19844.2

63179.4

2015 16342.4

2542.3

9734.8

22820.9

71360.3

2016 18106.3

2643.6

11117.0

24921.9

76489.5

2017 24218.2

2954.5

12565.7

27128.7

83528.9

2018 31814

5539.1

15974.8

38849.4

128332.8

2019 38116.4

8685.4

22364.9

59911.5

203279.8

2020 43413.1

11040

30862.6

84248.9

279919.4

2021 55831.9

12625.2

40844.2

106530.7 341643.9

2022 65516.9

15419.3

53309.0

130318.2 413181.0

2023 77670.6

19955

67724.9

162368.3 519594.5

Source:

compiled by authors. (stat.uz, n.d.)

Correlation matrix shows the following:

Z

0

Z

1

Z

2

GDP

Z

0

1

Z

1

0.99803272 1

Z

2

0.99653181 0.99968397 1

GDP

0.98587212 0.98778852 0.988293985 1

Parameters of regression equation (7) after applying method of ordinary least squares

(OLS):

𝑦

𝑡

~

= 3622.528 + 1.106𝑧

0

+ (−1.143)𝑧

1

+ 0.458𝑧

2

.

𝑅

2

= 0,9782

(1072.98) (1.08) (1.445) (0.339) - standard errors
Using the found regression coefficients for the variables

𝑧

𝑖

, 𝑖 = 0,1,2

and ratios (3), it is

possible to calculate the regression coefficients of the original model:


background image

Iqtisodiy taraqqiyot va tahlil, 2024-yil, dekabr

www.e-itt.uz

22

𝑏

0

= 1.106

𝑏

1

= 1.106 − 1.143 + 0.458 = 0.421

𝑏

2

= 1.106 + 2 ∗ (−1.143) + 4 ∗ 0.458 = 0.652

𝑏

3

= 1.106 + 3 ∗ (−1.143) + 9 ∗ 0.458 = 1.799

𝑏

4

= 1.106 + 4 ∗ (−1.143) + 16 ∗ 0.458 = 3.862

The distributed lag model has the following form:

𝑦

𝑡

= 3622.528 + 1.106 + 0.421𝑥

𝑡−1

+ 0.652𝑥

𝑡−2

+ 1.799𝑥

𝑡−3

+ 3.862𝑥

𝑡−4

;

𝑅

2

= 0.9782

The analysis of this model indicates that a 1 billion sum increase in investment in fixed

capital during the current period will result in an average GDP growth of 7.84 billion sum after

4 years(1.106+0.421+0.652+1.799+3.862), based on the coefficients.

Let's determine the relative coefficients:

𝛽

0

= 1.106/7.84 = 0.140

𝛽

1

= 0.421/7.84 = 0.053

𝛽

2

= 0.652/7.84 = 0.084

𝛽

3

= 1.799/7.84 = 0.229

𝛽

4

= 3.862/7.84 = 0.494

Over half of the factor's effect on the outcome materializes with a 4-year lag, with 14% of

the impact occurring immediately in the current period. For a more precise analysis, it is crucial

to have a larger dataset. Furthermore, all analyses should be conducted under the assumption

of ceteris paribus (Ahmadjonovich and Rakhmatovich, 2023) meaning that other relevant
factors are held constant. This approach allows for isolating the effect of the specific variable

being examined, leading to a clearer understanding of its impact.

Investment in fixed assets can be directed towards various sectors, such as education

and tourism, each providing unique opportunities for growth and development. In the

education sector, investments could focus on acquiring new educational equipment (Akhunova
et al., 2024), upgrading classrooms, or introducing advanced technologies to enhance the

learning experience. Meanwhile, in the tourism industry(Akhunova and Askarov, 2023)

investments could be channeled into high-tech innovations, such as AI-driven programs

(Muminova et.al., 2024), smart systems for managing tourism services, or cutting-edge
infrastructure to improve visitor experiences and efficiency. These investments not only

contribute to the growth of their respective sectors but also foster broader economic

development. Additionally, attention to environmental sustainability is crucial, ensuring that

these investments promote eco-friendly practices (Muminova et.al., 2024) alongside economic
growth.

Conclusion and suggestions.

Investment in fixed assets in regions undeniably affects GDP. The high correlation

coefficient of 0.98 between fixed asset investment and GDP indicates a strong positive

relationship between these two variables. This suggests that investment in fixed assets plays a

crucial role in driving the growth of the Gross Regional Product (GRP). Our analysis and

research provide evidence supporting this finding.

In conclusion, this article presented an analysis of the Almon lag model using statistical

data from the Fergana Region. If an investor puts 1 billion soums into the Fergana region, they

could expect a return of 7.84 billion soums. Furthermore, the data suggests that 14% of this

return (7.84 billion soums) could be realized by the end of the first year. The study aimed to

explore the relationship between variables over time, factoring in distributed lag effects. While

the Almon lag model provides valuable insights into the region’s economic dynamics, it also has

some limitations. These include challenges in estimation and interpretation, potential

violations of assumptions, limited ability to capture nonlinear relationships, difficulties in

determining optimal lag length, and data requirements. Despite these limitations, the findings


background image

Iqtisodiy taraqqiyot va tahlil, 2024-yil, dekabr

www.e-itt.uz

23

offer a clearer understanding of the economic conditions in the Fergana Region and present
useful insights for policymakers and researchers. Future research could investigate alternative

modeling approaches to further validate and complement the results derived from the Almon

lag model.

References:

Ahmadjonovich, U.A. and Rakhmatovich, A.F., (2023). UTILIZING DYNAMIC MODELS IN

ANALYZING INVESTMENT ACTIVITIES IN REGIONS. The American Journal of Management and

Economics Innovations, 5(12), pp.29-35.

Akhunova, S. and Askarov, F., (2023). Perspectives for the Further Development of Smart

Tourism in Uzbekistan.

Akhunova, S.N., Numanov, J.O., Mukhsinova, S.O. and Askarov, F.R., (2024). THE

QUALITATIVE AND QUANTITATIVE DEVELOPMENT OF EDUCATION IS A CRUCIAL FACTOR IN
IMPROVING THE INNOVATION RANKING OF UZBEKISTAN. International Journal Of Management

And Economics Fundamental, 4(04), pp.07-19.

Almon, S., (1965). The distributed lag between capital appropriations and

expenditures. Econometrica: Journal of the Econometric Society, pp.178-196.

Decree (2023) Presidential Decree of Uzbekistan #158, issued on 11th of September, 2023.

Graham, B. and McGowan, B., (2005). The intelligent investor. New York: Harper Collins.

Gujarati, N.D. and Porter, D.C., (2009). Basic econometrics. International edition McGraw-

Hill/Irwin, a business unit of the McGraw-Hill companies. Inc., New York.

Keynes, J.M., (1936). The General Theory of Employment Terest and Money. Macmillan and

Company.

Mankiw, N.G., (2021). Principles of economics. Cengage Learning.

Muminova, E.A., Davlyatova, G., Nazarova, L., Abdusattorova, M. and Askarov, F.R., (2024).

Harnessing Geoinformatics for Uzbekistan’s Development in the Digital Era. In

E3S Web of

Conferences (Vol. 590, p. 03003). EDP Sciences.

Muminova, E.A., Usmanov, A.A., Akhunova, S.N., Askarov, F.R. and Mamasadikov, A.A., (2024).

The Impact of Economic Growth on Environmental Pollution: The Case of Uzbekistan. In E3S Web

of Conferences (Vol. 574, p. 04003). EDP Sciences.

MyBib Contributors (2019). Harvard Referencing Generator

FREE

(updated for 2019).

[online] MyBib. Available at:

https://www.mybib.com/tools/harvard-referencing-generator

.

Samuelson, P. and Nordhaus, W., (2009). EBOOK: Economics. McGraw Hill.

stat.uz. (n.d.). Statistika qo’mitasi —

ASOSIY SAHIFA. [online] Available at: https://stat.uz.

Елисеева И.И., Курышева С.В.и др. (2003), Эконометрика.Учеб.пос.

-

Москва. «Финансы

и Статистика»..сс 29

0-302.

Библиографические ссылки

Ahmadjonovich, U.A. and Rakhmatovich, A.F., (2023). UTILIZING DYNAMIC MODELS IN ANALYZING INVESTMENT ACTIVITIES IN REGIONS. The American Journal of Management and Economics Innovations, 5(12), pp.29-35.

Akhunova, S. and Askarov, F., (2023). Perspectives for the Further Development of Smart Tourism in Uzbekistan.

Akhunova, S.N., Numanov, J.O., Mukhsinova, S.O. and Askarov, F.R., (2024). THE QUALITATIVE AND QUANTITATIVE DEVELOPMENT OF EDUCATION IS A CRUCIAL FACTOR IN IMPROVING THE INNOVATION RANKING OF UZBEKISTAN. International Journal Of Management And Economics Fundamental, 4(04), pp.07-19.

Almon, S., (1965). The distributed lag between capital appropriations and expenditures. Econometrica: Journal of the Econometric Society, pp.178-196.

Decree (2023) Presidential Decree of Uzbekistan #158, issued on 11th of September, 2023.

Graham, B. and McGowan, B., (2005). The intelligent investor. New York: Harper Collins.

Gujarati, N.D. and Porter, D.C., (2009). Basic econometrics. International edition McGraw-Hill/Irwin, a business unit of the McGraw-Hill companies. Inc., New York.

Keynes, J.M., (1936). The General Theory of Employment Terest and Money. Macmillan and Company.

Mankiw, N.G., (2021). Principles of economics. Cengage Learning.

Muminova, E.A., Davlyatova, G., Nazarova, L., Abdusattorova, M. and Askarov, F.R., (2024). Harnessing Geoinformatics for Uzbekistan’s Development in the Digital Era. In E3S Web of Conferences (Vol. 590, p. 03003). EDP Sciences.

Muminova, E.A., Usmanov, A.A., Akhunova, S.N., Askarov, F.R. and Mamasadikov, A.A., (2024). The Impact of Economic Growth on Environmental Pollution: The Case of Uzbekistan. In E3S Web of Conferences (Vol. 574, p. 04003). EDP Sciences.

MyBib Contributors (2019). Harvard Referencing Generator – FREE – (updated for 2019). [online] MyBib. Available at: https://www.mybib.com/tools/harvard-referencing-generator.

Samuelson, P. and Nordhaus, W., (2009). EBOOK: Economics. McGraw Hill.

stat.uz. (n.d.). Statistika qo’mitasi — ASOSIY SAHIFA. [online] Available at: https://stat.uz.

Елисеева И.И., Курышева С.В.и др. (2003), Эконометрика.Учеб.пос.-Москва. «Финансы и Статистика»..сс 290-302.