ASSESSMENT OF SEISMIC GROUND CONDITIONS OF THE CITY OF OLMALIQ

Аннотация

The article discusses the results of field research conducted on the territory of Olmaliq for engineering and seismological justification of the master plan for the development of the city. Geophysical and engineering-geological surveys were carried out to assess the influence of soil conditions on seismic intensity parameters. Calculated values of peak ground accelerations on a free surface were obtained using the STRATA program. Based on a generalization of field and laboratory engineering-geological data, sections and a map of the engineering-geological zoning of the city of Olmaliq were compiled.

 

 

Тип источника: Журналы
Годы охвата с 2023
inLibrary
Google Scholar
Выпуск:
Отрасль знаний
CC BY f
44-53
45

Скачивания

Данные скачивания пока недоступны.
Поделиться
Хусомиддинов A., Актамов B., Ёдгоров S., Ядигаров E., Авазов S., Бозоров J. ., Тешаева R., Жумаев D., Мансуров A., & Хайриддинов B. (2025). ASSESSMENT OF SEISMIC GROUND CONDITIONS OF THE CITY OF OLMALIQ. Международный журнал медицинских наук, 1(1), 44–53. извлечено от https://inlibrary.uz/index.php/ijms/article/view/71327
Crossref
Сrossref
Scopus
Scopus

Аннотация

The article discusses the results of field research conducted on the territory of Olmaliq for engineering and seismological justification of the master plan for the development of the city. Geophysical and engineering-geological surveys were carried out to assess the influence of soil conditions on seismic intensity parameters. Calculated values of peak ground accelerations on a free surface were obtained using the STRATA program. Based on a generalization of field and laboratory engineering-geological data, sections and a map of the engineering-geological zoning of the city of Olmaliq were compiled.

 

 


background image

w

w

w

.a

ca

de

m

icp

ub

lis

he

rs

.o

rg

Vo

lu

m

e

5,

Fe

br

ua

ry

,2

02

5

,

M

ED

IC

AL

SC

IE

N

CE

S.

IM

PA

CT

FA

CT

OR

:7

,8

9

ASSESSMENT OF SEISMIC GROUND CONDITIONS OF THE CITY OF

OLMALIQ

Xusomiddinov A.S., Aktamov B.U., Yodgorov Sh.I., Yadigarov E.M., Avazov Sh.B.,

Bozorov J.Sh., Teshaeva R.B., Jumaev D.D., Mansurov A.F., Xayriddinov B.B.

Institute of Seismology named after G.A.Mavlonov, Academy of Sciences of the Republic

of Uzbekistan , Tashkent, Uzbekistan

E-mail: b.u.аktаmоv@gmаil.соm

Abstract:

The article discusses the results of field research conducted on the territory of

Olmaliq for engineering and seismological justification of the master plan for the

development of the city. Geophysical and engineering-geological surveys were carried out to

assess the influence of soil conditions on seismic intensity parameters. Calculated values of

peak ground accelerations on a free surface were obtained using the STRATA program.

Based on a generalization of field and laboratory engineering-geological data, sections and a

map of the engineering-geological zoning of the city of Olmaliq were compiled.

Keywords:

engineering-geological conditions, Strata program, KMPV, MASW, soil

conditions models, soil reaction spectrum.

Аннотация

. В статье рассматриваются результаты полевых исследований,

проводимых

на

территории

Алмалыка,

для

инженерно-сейсмологических

обоснований генерального плана развития города. Геофизические и инженерно-

геологические изыскание проводились для оценены влияния грунтовых условий на

параметры сейсмической интенсивности. Получены расчетные значения пиковых

ускорений на свободном поверхности с использованием программы «STRATA». На

основании обобщения полевых и лабораторных инженерно-геологических данных

составлены разрезы и карта инженерно-геологического районирования города

Алмалыка.

Ключевые слова:

инженерно-геологические условие, программа Strata, КМПВ,

MASW, модели грунтовых условий, спектр реакции грунтов.

Introduction.

In the city of Olmaliq, within the framework of the Decree of the President of

the Republic of Uzbekistan dated May 30, 2022 UP -144 "On measures to further improve

the seismic safety system of the Republic of Uzbekistan" and the Resolution of the President

of the Republic of Uzbekistan dated May 16, 2023 PP -158 "On additional measures to

further improve the seismic safety system of the population and territory of the Republic of

Uzbekistan", many seismic observations were carried out. For this purpose, engineering-

geological and seismological surveys are carried out to determine the engineering-geological

conditions of the city's territory. The territory of Olmaliq has some specific features. Loess

soils, sandy loams, sandstones, pebbles are widespread, in which seismic waves propagate

differently, have different speeds of passage, different frequencies, accelerations, etc.

Therefore, it is very important to intensify scientific research in the field of the influence of

soil conditions on the seismicity of construction sites.


background image

w

w

w

.a

ca

de

m

icp

ub

lis

he

rs

.o

rg

Vo

lu

m

e

5,

Fe

br

ua

ry

,2

02

5

,

M

ED

IC

AL

SC

IE

N

CE

S.

IM

PA

CT

FA

CT

OR

:7

,8

9

The main concept defining the features of engineering and seismological surveys is the

model of seismic ground conditions. This concept includes all local features of the

geological environment that determine the specifics of seismic impacts, their amplitudes and

spectral composition [1-7].

Research methodology

.

A method for modeling seismic soil conditions for assessing the

seismicity of construction sites is proposed, in which real engineering-geological and

geophysical indicators of soils are studied, and the influence of soil conditions on the

parameters of seismic vibrations under real impacts of strong earthquakes is determined.

[5;7-15].

To solve the problems of assessing the seismicity of the territory, the STRATA program was

used, taking into account engineering and geological conditions. Actual accelerograms of

two earthquakes were taken, which by their mechanism (normal and reverse) and by the

nature of the propagation of seismic waves correspond to the seismological conditions of the

territory of the Republic of Uzbekistan.

Next, materials were collected characterizing the engineering-geological and seismic

properties of soils (based on archival materials and the results of complex geophysical

studies conducted using seismic exploration methods KMPV (Correlation method of

refracted waves), MASW (Multichannel Analysis of Surface Waves), and the physical and

mechanical properties of the soil layer for 30 meters were also studied), which are

widespread in the territory of the city of Olmaliq. Calculations of the seismic intensity

increment were made based on the totality of seismic soil rigidities, the position of the

groundwater level and the resonant properties of the soils.

The algorithm of actions for solving problems related to the development of seismic soil

models is divided into 3 stages. (Fig. 1)

Stage 1. Collection and systematization of materials.

2nd stage. Data analysis and processing of materials using various programs.

Stage 3. Generalization of results.


background image

w

w

w

.a

ca

de

m

icp

ub

lis

he

rs

.o

rg

Vo

lu

m

e

5,

Fe

br

ua

ry

,2

02

5

,

M

ED

IC

AL

SC

IE

N

CE

S.

IM

PA

CT

FA

CT

OR

:7

,8

9

Fig.1 - Algorithm of actions for developing seismic soil models

Analysis.

A loose layer of loess and loess-like deposits is present over most of the study

area. However, its thickness varies significantly. It ranges from 20 m and more within the

high terraces and decreases to 0.5 m on the I and II floodplain terraces of the Ohangaron

River [13;16-18].

In general, the study area shows certainty in the location of areas with different thicknesses

of loess rocks: the areas have an elongated shape and are located approximately parallel to

the modern bed of the Ohangaron River. Moreover, if in areas adjacent to the river the

thickness of loose rocks is small (0-0.5 m), then as you move away from it it increases,

reaching 20 m or more. Loess rocks reach their greatest thickness of up to 20 m or more.

These deposits compose the IV terrace of the Ohangaron River.

According to their genesis, these are proluvial-deluvial loess deposits of Tashkent age.

These areas are located in the southern, southwestern and southeastern parts of the territory

under consideration. The area of loess rocks with a thickness of 10-20 m occupies a limited

area in the southeast of the territory and represents the preserved surface of the IV floodplain

terrace of the Ohangaron River [19].

To the north there is a strip of loess deposits with a thickness of 5-10 m, it is located in the

central and eastern parts of the study area and occupies a significant part of the modern

development of the city. The western part of the modern development of the city is located

on loess with a thickness of 2-5 m. These deposits are also noted in the valleys of the side

tributaries, as well as in the north-eastern part of the territory, where they are located in a

relatively narrow strip with a width from several tens of meters to 700-800 m. Loess

deposits with a thickness of 0.5-2 m mainly occupy the western part of the area under

consideration [4; 12; 20]. This section also extends in a narrow strip in the direction of the

Ohangaron River bed, crossing the city from west to east (Fig. 2 ).


background image

w

w

w

.a

ca

de

m

icp

ub

lis

he

rs

.o

rg

Vo

lu

m

e

5,

Fe

br

ua

ry

,2

02

5

,

M

ED

IC

AL

SC

IE

N

CE

S.

IM

PA

CT

FA

CT

OR

:7

,8

9

Fig.2 Engineering-geological section of the city of Olmaliq

Result.

Seismic exploration using the KMPV (Correlation method of refracted waves) and

MASW (Multichannel Analysis of Surface Waves) methods was performed along five

sections. It is aimed at studying the velocity characteristics of lithological soil types that

form the foundation of the Olmaliq city territory. As a result of processing the seismic

exploration data, the Vs (z) dependencies and depth-velocity models were obtained along

profile 1 (Fig. 3) and profile 2 (Fig. 4). The Vs values are presented in Table 1.

Fig. 3. Depth-velocity model of transverse waves according to MASW. Profile 1

shear wave velocity model ин MASW. Profile 1. ( tab. 1 )


background image

w

w

w

.a

ca

de

m

icp

ub

lis

he

rs

.o

rg

Vo

lu

m

e

5,

Fe

br

ua

ry

,2

02

5

,

M

ED

IC

AL

SC

IE

N

CE

S.

IM

PA

CT

FA

CT

OR

:7

,8

9

Fig. 4. Depth-velocity model of transverse waves according to MASW . Profile 2

Velocity model of transverse waves according to MASW. Profile 2. ( tab. 1 )

Table 1.

Results of recording the values of transverse wave velocity by depth

Profile 1

Profile 2

Depth, m

Vs , m/s

Depth, m

Vs , m/s

-0 .9

253.33

-0, 92

293.43

- 2.1

300.10

- 2 ,2 4

463.04

- 3.7

421.69

- 3.60

750.13

- 4.9

544.89

- 5.26

806.36

- 8.1

469.26

-9.20

431.67

- 10.5

397.01

- 13.00

456.78

- 16.7

654.40

- 16.10

925.24

- 17.9

1067.18

- 17.60

1358.48

- 20.6

1439.73

- 22.50

1397.64

-3 0.9

1592.93

-32.3

1156.93

Based on the obtained depth-velocity models, the parameter Vs30 ( Table 2) was calculated,

equal to the average value of the propagation velocity of transverse waves in a 30-meter

thickness.

Table 2 .

Vs30 for each observation point

No.

Profile 1

Profile 2


background image

w

w

w

.a

ca

de

m

icp

ub

lis

he

rs

.o

rg

Vo

lu

m

e

5,

Fe

br

ua

ry

,2

02

5

,

M

ED

IC

AL

SC

IE

N

CE

S.

IM

PA

CT

FA

CT

OR

:7

,8

9

Vs30, m/s

657.831

683.0419

Below are the samples of the H/V spectrum of registration points 1-11. The following results

were obtained from processing the summary data on the seismic intensity increment using

various methods: ( Table 3)

Table 3 .

No.

Vs30, m/s

ρ30,

g/sm3

HVSR

dI

HVSR dI Final

calculation

1

610.1

1.9

4.7

-0.02

0.44

7.79

2

652.5

1.9

2.82

-0.07

0.45

7.74

3

649.8

1.9

3.5

-0.07

0.41

7.74

4

609.5

1.9

4.1

-0.01

0.30

7.80

5

610.1

1.9

4.4

-0.02

0.45

7.79

6

612.6

1.9

4

-0.02

0.51

7.79

7

656.3

1.9

2.9

-0.07

0.46

7.74

8

655.5

1.9

4.8

-0.08

0.33

7.73

9

609,0

1.9

5.1

-0.02

0.54

7.79

10

645.1

1.9

4.05

-0.06

0.44

7.75

11

502.3

1.8

3.6

0.15

0.29

7.96

13

485.2

1.9

3.6

0.17

0.48

7.98

14

477.9

1.9

3.62

0.18

0.47

7.99

15

416,0

1.8

2.85

0.32

0.51

8.13

16

345.5

1.7

6.3

0.48

0.46

8.29

17

461.6

1.8

3.62

0.21

0.33

8.02

18

662.3

1.9

5.8

-0.08

0.33

7.73

19

466.2

1.9

4.3

0.20

0.52

8.01

20

376.5

1.7

3.7

0.40

0.56

8.21

21

589.4

1.9

4.7

0.02

0.62

7.83

22

374.9

1.8

3.6

0.40

0.56

8.21

23

532.1

1.9

3.9

0.09

0.38

7.90

24

601,5

1.9

3.8

-0.01

0.44

7.80

25

593.2

1.9

3.9

0.01

0.45

7.82

26

419.7

1.8

3.4

0.29

0.41

8,10

27

469.7

1.9

4.2

0.19

0.30

8.00

28

589.8

2.0

4.4

0,00

0.45

7.81

29

601,0

2.0

-0.02

0.51

7.79

30

498.7

1.9

3.3

0,00

0.46

7.81

31

561.1

1.8

4.6

0.17

0.33

7.98

32

679.3

1.9

4.5

0.06

0.54

7.87

33

550.3

2.0

4.6

-0.14

0.44

7.67

34

622.2

1.8

2.4

0.09

0.29

7.90


background image

w

w

w

.a

ca

de

m

icp

ub

lis

he

rs

.o

rg

Vo

lu

m

e

5,

Fe

br

ua

ry

,2

02

5

,

M

ED

IC

AL

SC

IE

N

CE

S.

IM

PA

CT

FA

CT

OR

:7

,8

9

35

611.3

1.9

2.8

-0.02

0.48

7.79

36

658.4

1.9

4

-0.01

0.47

7.80

37

634.8

1.9

5.1

-0.08

0.51

7.73

From the peak acceleration profiles, the peak acceleration value on the day surface is from

0.25g to 0.36g, respectively, for the presented points. The isolines of various peak

accelerations were displayed using the triangle method [21-22] . Based on the equivalent

linear approach, seismic soil models were developed in the STRATA program at 37

observation points (Fig. 5-6). Having modeled three earthquakes for all 37 points, a seismic

zoning map of the Olmaliq city territory was constructed using the calculation method based

on the peak acceleration values with an initial seismicity of 0.209g ( Table 4 ).

Table 4.

Model of seismic ground conditions for 1 point of the city of Olmaliq

Soil type Depth Soil

power

Shear

wave

speed,

m/s

Soil

density

vs30

m/s

PGA,

(g)

Initial

seismicity

( g)

Seismicit

y of the

site

(Score)

sandy

loam

0.00

0.60

175.12

1.57

466.2

0.328

0.21​

8

sandy

loam

0.60

0.78

193.54

1.59

sand

1.38

1.25

230.62

1.61

sand

2.62

1.18

332.05

1.68

sand

3.80

2.59

492.76

1.84

clay

rocks

6.40

2.59

443.17

1.79

clay

rocks

8.99

3.73

268.52

1.64

clay

rocks

12.72 2.23

380.56

1.74

gravel-

pebbles

14.95 6.11

738.30

1.94

gravel-

pebbles

21.06 48.94

1014.6

0

2.02

bedrock

70.00 ∞

1200

2.2


background image

w

w

w

.a

ca

de

m

icp

ub

lis

he

rs

.o

rg

Vo

lu

m

e

5,

Fe

br

ua

ry

,2

02

5

,

M

ED

IC

AL

SC

IE

N

CE

S.

IM

PA

CT

FA

CT

OR

:7

,8

9

Fig. 5. Peak acceleration graph for point 1 of the city of Olmaliq

Fig. 6. Graph of the soil reaction spectrum for 1 point of Olmaliq city

Conclusions.

Based on the conducted research, the following conclusions can be made

about the features of the engineering and seismological conditions of the territory of the city

of Olmaliq: the territory of the city of Olmaliq and the adjacent area are divided into two

zones:

- with an increment of seismic intensity of 0 points relative to the reference/benchmark

seismic station (7 points for a 95% probability of not exceeding within 50 years);

- with an increment of seismic intensity of +1 (8 points for a 95% probability of not

exceeding within 50 years);

In the study area, the following limit values were identified for the maximum acceleration of

soil oscillations: from 0.25 g and 0.36 g .


background image

w

w

w

.a

ca

de

m

icp

ub

lis

he

rs

.o

rg

Vo

lu

m

e

5,

Fe

br

ua

ry

,2

02

5

,

M

ED

IC

AL

SC

IE

N

CE

S.

IM

PA

CT

FA

CT

OR

:7

,8

9

In the compiled map of seismic microzoning of the territory of the city of Olmaliq on a scale

of 1:25 000, only zone 8 is highlighted.

This article is a practical project presented by the Innovation Development Agency #ALM-

202311142839 “Creation of a digital simulation model of the city of Tashkent allowing to

assess the level of economic damage when exposed to strong earthquakes”, #AL5822012294

“Development of technology for forecasting the risk of strong earthquakes”, #Al-

5822012298 “QMQ-normative document 2.01.03.96 “construction in seismic areas”

creation of an electronic database on seismic indicators of soils to change the schedule 1.1 of

the seismological part”.

Literature

1.

Бутовская Е.М., Конков А.Т. (1961). Сейсмичность Ферганской долины и

Ташкента. В книге: "Землетрясение в СССР". Москва: Изд-во АН СССР.

2.

Bandarik G.K., Komarov I.S. (1967). Pолевы методы инженерно-геологических

исследований. Москва: Недро.

3.

Аржанников М.В. (1978). Инженерная геология и грунтоведение. Москва:

Высшая школа.

4.

Полетаев В.М. (1985). Геологические основы инженерных изысканий. Москва:

Стройиздат.

5.

Шмидт

В.А.,

Левицкий

Е.А.

(1993).

Основы

сейсмического

микрорайонирования. Москва: Наука.

6.

Осипов В.И. (1995). Физико-химические свойства грунтов. Москва: МГУ.

7.

Константинов В.М., Иванов Н.Н. (2000). Современные методы инженерной

геологии. Санкт-Петербург: Наука.

8.

Артиков Т.У., Ибрагимов Р.С., Зияудинов Ф.Ф. (2012). Сейсмическая

опасность территории Узбекистана. Ташкент: Фан.

9.

ГОСТ 25100-95. Грунты. Классификация.

10.

ШНК 1.02.07-15. Инженерные изыскания для строительства. Основные

положения.

11.

Нурмухамедов К.Ш. (2005). Региональная шкала приращения сейсмической

балльности территорий для грунтовых условий Чирчик-Ахангаранской бассейна.

Проблемы сейсмологии в Узбекистане, №2, 244-254.

12.

Алешин

А.С.

(2011).

Макросейсмические

основы

сейсмического

микрорайонирования. Вопросы инженерной сейсмологии, Выпуск 38 (4), 15-28.

13.

Исмаилов В.А. (2016). Анализ результатов лабораторных и полевых

исследований сейсмических свойств лессовых пород. Вестник ТашГТУ, №2, 203-209.

14.

Касымов С.М. 1965. Зависимость приращения сейсмической интенсивности от

инженерно-геологических условий средней части бассейна р. Зарафшан, Т., «ФАН»

УзССР

15.

Коломенский Н.В. 1968. Общая методика инженерно-геологических

исследований, М., Изд-во «Недра»

16.

McNamara D.E. and Buland R.P. Ambient Noise Levels in the Continental United

States, Bulletin of the Seismological Society of America, Vol. 94, No. 4, pp. 1517–1527,

August 2004.

17.

Изменение №1 к КМК 2.02.01-98 «Основания зданий и сооружений»


background image

w

w

w

.a

ca

de

m

icp

ub

lis

he

rs

.o

rg

Vo

lu

m

e

5,

Fe

br

ua

ry

,2

02

5

,

M

ED

IC

AL

SC

IE

N

CE

S.

IM

PA

CT

FA

CT

OR

:7

,8

9

18.

КМК 2.01.01-94 «Климатические и физико-геологические данные для

проектирования»

19.

OBSERVATIONS AND MODELING OF SEISMIC BACKGROUND NOISE Jon

Peterson Albuquerque, New Mexico 1993 Report 93-322.

20.

Худайберганов А.М. 1970. Инженерно-геологические процессы и явления на

территории г. Ташкента. Изд-во «Фан» УзССР.

21.

Попов И.В., Кац Р.С. 1950. Методика составления инженерно-геологических

карт. М., Госгеолтехиздат.

22.

Исмаилов В.А. 2015. Инженерно-геологические условия подземного

пространства г. Ташкента. –Т ТашГТУ, 158 с.

Библиографические ссылки

Бутовская Е.М., Конков А.Т. (1961). Сейсмичность Ферганской долины и Ташкента. В книге: "Землетрясение в СССР". Москва: Изд-во АН СССР.

Bandarik G.K., Komarov I.S. (1967). Pолевы методы инженерно-геологических исследований. Москва: Недро.

Аржанников М.В. (1978). Инженерная геология и грунтоведение. Москва: Высшая школа.

Полетаев В.М. (1985). Геологические основы инженерных изысканий. Москва: Стройиздат.

Шмидт В.А., Левицкий Е.А. (1993). Основы сейсмического микрорайонирования. Москва: Наука.

Осипов В.И. (1995). Физико-химические свойства грунтов. Москва: МГУ.

Константинов В.М., Иванов Н.Н. (2000). Современные методы инженерной геологии. Санкт-Петербург: Наука.

Артиков Т.У., Ибрагимов Р.С., Зияудинов Ф.Ф. (2012). Сейсмическая опасность территории Узбекистана. Ташкент: Фан.

ГОСТ 25100-95. Грунты. Классификация.

ШНК 1.02.07-15. Инженерные изыскания для строительства. Основные положения.

Нурмухамедов К.Ш. (2005). Региональная шкала приращения сейсмической балльности территорий для грунтовых условий Чирчик-Ахангаранской бассейна. Проблемы сейсмологии в Узбекистане, №2, 244-254.

Алешин А.С. (2011). Макросейсмические основы сейсмического микрорайонирования. Вопросы инженерной сейсмологии, Выпуск 38 (4), 15-28.

Исмаилов В.А. (2016). Анализ результатов лабораторных и полевых исследований сейсмических свойств лессовых пород. Вестник ТашГТУ, №2, 203-209.

Касымов С.М. 1965. Зависимость приращения сейсмической интенсивности от инженерно-геологических условий средней части бассейна р. Зарафшан, Т., «ФАН» УзССР

Коломенский Н.В. 1968. Общая методика инженерно-геологических исследований, М., Изд-во «Недра»

McNamara D.E. and Buland R.P. Ambient Noise Levels in the Continental United States, Bulletin of the Seismological Society of America, Vol. 94, No. 4, pp. 1517–1527, August 2004.

Изменение №1 к КМК 2.02.01-98 «Основания зданий и сооружений»

КМК 2.01.01-94 «Климатические и физико-геологические данные для проектирования»

OBSERVATIONS AND MODELING OF SEISMIC BACKGROUND NOISE Jon Peterson Albuquerque, New Mexico 1993 Report 93-322.

Худайберганов А.М. 1970. Инженерно-геологические процессы и явления на территории г. Ташкента. Изд-во «Фан» УзССР.

Попов И.В., Кац Р.С. 1950. Методика составления инженерно-геологических карт. М., Госгеолтехиздат.

Исмаилов В.А. 2015. Инженерно-геологические условия подземного пространства г. Ташкента. –Т ТашГТУ, 158 с.