Innovations in modern linguistics and language teaching

Annotasiya

Modern linguistic innovations have significantly transformed the landscape of language teaching. The integration of digital technology, artificial intelligence, and data-driven methodologies has enabled educators to enhance language acquisition processes. This article explores these advancements, examining their implications for pedagogy, learner engagement, and linguistic diversity. The study also considers challenges associated with implementing innovative practices in linguistics and proposes pathways for further research.

Manba turi: Konferentsiyalar
Yildan beri qamrab olingan yillar 2025
inLibrary
Google Scholar
doi
Chiqarish:

Кўчирилди

Кўчирилганлиги хақида маълумот йук.
Ulashish
Ubaydullayeva, M. (2025). Innovations in modern linguistics and language teaching . Zamonaviy Tilshunoslik Va ta’limda Chet Tillarini o’qitishda Innovaciyallar, 1(1), 124–126. https://doi.org/10.47689/ZTTCTOI-vol1-iss1-pp124-126
Malika Ubaydullayeva, Qoraqalpoq davlat universiteti
Magistr talabasi
Crossref
Сrossref
Scopus
Scopus

Annotasiya

Modern linguistic innovations have significantly transformed the landscape of language teaching. The integration of digital technology, artificial intelligence, and data-driven methodologies has enabled educators to enhance language acquisition processes. This article explores these advancements, examining their implications for pedagogy, learner engagement, and linguistic diversity. The study also considers challenges associated with implementing innovative practices in linguistics and proposes pathways for further research.


background image

124

6.

Ko‘p tilli qo‘llab-quvvatlash:

Ushbu tizimlar bir vaqtning o‘zida bir nechta tilni o‘rganish

imkoniyatini taqdim etadi, bu esa foydalanuvchilarga bir nechta tilda muloqot qilishni
osonlashtiradi.

7.

Maxsus talablar uchun moslashish:

Sun’iy intellekt nogiron foydalanuvchilar uchun

maxsus xususiyatlarni qo‘shish imkonini beradi. Masalan, ko‘zi ojizlar uchun ovozli tahlil yoki
nogironlar uchun maxsus interfeyslar mavjud bo‘lishi mumkin.

Kelajak istiqbollari

. Sun’iy intellekt asosida til o‘rgatish tizimlarining kelajagi juda

istiqbolli. Kelajakda ushbu tizimlarning yanada moslashuvchan va interaktiv bo‘lishi kutilmoqda.
Xususan, virtual haqiqat (VR) va kengaytirilgan haqiqat (AR) texnologiyalarining qo‘shilishi bilan
til o‘rganish yanada realistik va samarali bo‘lishi mumkin. Shuningdek, hissiy intellektni
rivojlantirish orqali sun’iy intellekt foydalanuvchi kayfiyatiga moslashib, yanada samarali ta’lim
taklif etishi kutilmoqda.

Foydalanilgan adabiyotlar:

1.

Turing, A. M. (1950). "Computing Machinery and Intelligence." Mind, 59(236), 433-460.

2.

Weizenbaum, J. (1966). "ELIZA - A Computer Program for the Study of Natural Language

Communication Between Man and Machine." Communications of the ACM, 9(1), 36-45.
3.

Russell, S., & Norvig, P. (2021). "Artificial Intelligence: A Modern Approach." Pearson.

4.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). "Deep Learning." MIT Press.

5.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). "Deep Learning." Nature, 521(7553), 436-444.

6.

Brown, T. et al. (2020). "Language Models are Few-Shot Learners." NeurIPS.

7.

Vaswani, A. et al. (2017). "Attention is All You Need." Advances in Neural Information

Processing Systems.
8.

Krashen, S. (1982). "Principles and Practice in Second Language Acquisition." Pergamon

Press.
9.

O’Reilly, R. C. & Munakata, Y. (2000). "Computational Explorations in Cognitive

Neuroscience." MIT Press.
10.

Bishop, C. M. (2006). "Pattern Recognition and Machine Learning." Springer.

INNOVATIONS IN MODERN LINGUISTICS AND LANGUAGE TEACHING

Ubaydullaeva Malika Barlikbaevna,

Master's student of KSU

Abstract:

Modern linguistic innovations have significantly transformed the landscape of language

teaching. The integration of digital technology, artificial intelligence, and data-driven
methodologies has enabled educators to enhance language acquisition processes. This article
explores these advancements, examining their implications for pedagogy, learner engagement,
and linguistic diversity. The study also considers challenges associated with implementing
innovative practices in linguistics and proposes pathways for further research.

Keywords:

Linguistics, language teaching, innovation, digital technology, pedagogy, artificial

intelligence.

The field of linguistics has undergone profound transformations in the 21st century, largely

due to technological advancements and interdisciplinary approaches. These innovations have
reshaped how languages are taught and learned, offering more personalized, efficient, and


background image

125

engaging methods for diverse learners. The emergence of artificial intelligence (AI) tools, such as
language models and adaptive learning platforms, has played a pivotal role in modernizing
traditional pedagogical frameworks (Reinders & White, 2016).

This article investigates the major innovations in linguistics and their applications in

language teaching. The focus is on how these advancements address contemporary challenges such
as maintaining learner motivation, fostering intercultural competence, and preserving linguistic
diversity.

Artificial Intelligence and Natural Language Processing (NLP):

The integration of AI

and NLP has revolutionized language teaching. AI-driven platforms, such as Duolingo and Rosetta
Stone, employ algorithms that adapt to individual learner needs, providing customized feedback
and lesson plans (Xie et al., 2019). Additionally, NLP technologies have enabled the development
of sophisticated language translation tools and speech recognition systems, facilitating bilingual
and multilingual education (Yang, 2021).

The proliferation of digital resources, including MOOCs (Massive Open Online Courses)

and mobile applications, has democratized access to language learning. These platforms offer
interactive content, real-time assessments, and gamified activities to enhance user engagement
(Godwin-Jones, 2018). Moreover, virtual reality (VR) and augmented reality (AR) tools have
emerged as immersive solutions, enabling learners to practice languages in simulated
environments (Lan, 2020).

Big data analytics has provided educators with insights into learner behaviors and

preferences. By analyzing data from online platforms, instructors can identify trends, predict
challenges, and optimize teaching strategies (Chen et al., 2021). For example, predictive models
can suggest interventions for struggling learners, improving overall language proficiency
outcomes.

TBLT has gained prominence as an innovative approach emphasizing real-world

communication tasks. This method encourages learners to use language authentically, promoting
practical proficiency (Ellis, 2018).

Innovations in linguistic research have highlighted the importance of intercultural

competence in language teaching. Integrating cultural elements into lessons fosters an
understanding of sociolinguistic nuances, preparing learners for global communication (Byram,
2021).

Technological tools now support collaborative learning, allowing students to engage in

group activities across geographical boundaries. For instance, online discussion forums and video
conferencing platforms facilitate real-time language practice (Ware & O’Dowd, 2008).

Despite these advancements, challenges remain. Issues such as the digital divide, data

privacy, and resistance to technological adoption hinder the full realization of innovative practices.
Future research should address these barriers while exploring emerging technologies like quantum
computing and brain-computer interfaces in linguistics (Chowdhury, 2022).

Innovations in modern linguistics and language teaching have reshaped traditional

paradigms, offering new opportunities for learners and educators alike. By leveraging AI, digita l
resources, and data-driven methodologies, linguistic education can become more accessible,
engaging, and effective. However, addressing existing challenges is crucial to maximizing the
potential of these advancements.


background image

126

References

1. Byram, M. (2021).

Teaching and assessing intercultural communicative competence

.

Multilingual Matters.
2. Chen, X., Zou, D., & Xie, H. (2021). Big data-driven language learning analytics: Theories,
methodologies, and challenges.

Journal of Educational Technology Development and Exchange

,

14(1), 45-61.
3. Chowdhury, G. G. (2022). Emerging technologies and future trends in linguistics.

Journal of

Language and Technology

, 39(2), 12-28.

4. Ellis, R. (2018).

Task-based language teaching: Theory and practice

. Cambridge University

Press.
5. Godwin-Jones, R. (2018). Using mobile devices for language learning: Potential and
pitfalls.

Language Learning & Technology

, 22(3), 4-19.

6. Lan, Y. J. (2020). Immersion, interaction, and experience-oriented learning: Bringing virtual
reality into language education.

Educational Technology Research and Development

, 68(4), 1659-

1683.
7. Reinders, H., & White, C. (2016). Twenty-first-century language teaching and learning: The
role of technology.

Language Teaching

, 49(4), 461-476.

8. Ware, P. D., & O’Dowd, R. (2008). Peer collaboration and cultural learning in online
intercultural exchanges.

Language Learning & Technology

, 12(1), 43-63.

9. Xie, H., Chu, H. C., Hwang, G. J., & Wang, C. C. (2019). Trends and development in
technology-enhanced language learning: A review of meta-analytic research.

Educational

Technology & Society

, 22(2), 43-56.

10. Yang, Y. (2021). The role of NLP in advancing multilingual education.

Applied Linguistics

Review

, 12(3), 389-412.

РОЛЬ СОПОСТАВИТЕЛЬНОЙ ГРАММАТИКИ В РАЗВИТИИ РЕЧИ СТУДЕНТОВ

НАЦИОНАЛЬНЫХ ГРУПП

Хакимова Гузалина,

Студентка университета бизнеса и науки

Научный консультант: Тургунова Сайера Ахмаджановна

Аннотация:

В данной статье рассматривается роль сравнительной грамматики в

развитии речевой компетенции студентов узбекских вузов. Анализируется влияние
различий в грамматическом строе русского и узбекского языков на формирование языковой
интуиции студентов. Подчеркивается значимость сопоставительного подхода в
обучении, который позволяет минимизировать интерференционные ошибки и
способствует осознанному усвоению грамматических конструкций.

Ключевые термины:

Сравнительная грамматика, Речевая компетенция, Интерференция,

Грамматические категории, Метод контрастивного анализа, Падежная система,
Глагольные формы, Лингвистическая интуиция

Современные процессы глобализации и академической мобильности ставят перед

высшими учебными заведениями задачу формирования у студентов не только
профессиональных, но и развитых коммуникативных навыков. Вузовское образование

Bibliografik manbalar

Byram, M. (2021). Teaching and assessing intercultural communicative competence. Multilingual Matters.

Chen, X., Zou, D., & Xie, H. (2021). Big data-driven language learning analytics: Theories, methodologies, and challenges. Journal of Educational Technology Development and Exchange, 14(1), 45-61.

Chowdhury, G. G. (2022). Emerging technologies and future trends in linguistics. Journal of Language and Technology, 39(2), 12-28.

Ellis, R. (2018). Task-based language teaching: Theory and practice. Cambridge University Press.

Godwin-Jones, R. (2018). Using mobile devices for language learning: Potential and pitfalls. Language Learning & Technology, 22(3), 4-19.

Lan, Y. J. (2020). Immersion, interaction, and experience-oriented learning: Bringing virtual reality into language education. Educational Technology Research and Development, 68(4), 1659-1683.

Rcindcrs, H., & White, C. (2016). Twenty-first-century language teaching and learning: The role of technology. Language Teaching, 49(4), 461-476.

Ware, P. D., & O’Dowd, R. (2008). Peer collaboration and cultural learning in online intercultural exchanges. Language Learning & Technology, 12(1), 43-63.

Xie, H., Chu, H. C., Hwang, G. J., & Wang, С. C. (2019). Trends and development in technology-enhanced language learning: A review of meta-analytic research. Educational Technology & Society, 22(2), 43-56.

Yang, Y. (2021). The role of NLP in advancing multilingual education. Applied Linguistics Review, 12(3), 389-412.