TRANSFORMING SOFTWARE DEVELOPMENT WITH AI-POWERED CODE GENERATION TOOLS

inLibrary
Google Scholar
Выпуск:
f
230-232
0

Скачивания

Данные скачивания пока недоступны.
Поделиться
J.J. MUNIROV. (2025). TRANSFORMING SOFTWARE DEVELOPMENT WITH AI-POWERED CODE GENERATION TOOLS. ИКРО журнал, 15(01), 230–232. извлечено от https://inlibrary.uz/index.php/iqro/article/view/80455
0
Цитаты
Crossref
Сrossref
Scopus
Scopus

Аннотация

This article explores how AI-powered code generation tools are revolutionizing the software development lifecycle. By automating repetitive coding tasks, enhancing accuracy, and accelerating development speed, these tools are redefining how developers write and manage code. The article discusses the underlying technologies, benefits, and challenges of AI-assisted programming and its growing impact on the future of software engineering.


background image

JOURNAL OF IQRO – ЖУРНАЛ ИҚРО – IQRO JURNALI – volume 15, issue 01, 2025

ISSN: 2181-4341, IMPACT FACTOR ( RESEARCH BIB ) – 7,245, SJIF – 5,431

www.wordlyknowledge.uz

ILMIY METODIK JURNAL

J.J. MUNIROV

"ASIA INTERNATIONAL UNIVERSITY"

Intern teacher of "General technical sciences" department

TRANSFORMING SOFTWARE DEVELOPMENT WITH AI-POWERED CODE

GENERATION TOOLS

Annotation:

This article explores how AI-powered code generation tools are revolutionizing the

software development lifecycle. By automating repetitive coding tasks, enhancing accuracy, and

accelerating development speed, these tools are redefining how developers write and manage

code. The article discusses the underlying technologies, benefits, and challenges of AI-assisted

programming and its growing impact on the future of software engineering.

Keywords:

AI code generation, Software development, Machine learning, Code automation,

Developer productivity, Natural language processing, Programming efficiency, AI in

development

Introduction

The field of software development is experiencing a paradigm shift with the emergence of

artificial intelligence (AI). As demand for faster, more efficient programming grows, AI-

powered code generation tools have become vital assets in modern development environments.

These tools can translate human language into functional code, assist with debugging, and even

suggest optimal algorithms — all in real-time. From platforms like GitHub Copilot to tools such

as Amazon CodeWhisperer, developers now have AI assistants that boost productivity and

reduce human error. However, the integration of these tools into real-world projects brings forth

challenges related to reliability, security, and developer dependency.

This article delves into the transformative role of AI in software development, highlighting its

benefits, challenges, and the innovations shaping the future of coding.

AI-powered tools are designed to assist or automate parts of the software development process

using large-scale models trained on programming languages, code repositories, and natural

language.

Key functionalities include:

Auto-completion

: Predicting and completing lines of code in real-time.

Code synthesis

: Generating complete functions or classes from prompts.

Error detection and fixing

: Identifying bugs and offering corrections.

Code translation

: Converting code from one language to another (e.g., Java to Python).

Documentation

: Automatically generating descriptions for code snippets.

These capabilities enable developers to focus on higher-level logic and problem-solving, while

repetitive or boilerplate tasks are handled by the AI.

Technological Backbone of AI Code Generation

1.

Natural Language Processing (NLP)

NLP enables the AI to understand developer prompts written in plain English (or other languages)

and convert them into syntactically correct code.


background image

JOURNAL OF IQRO – ЖУРНАЛ ИҚРО – IQRO JURNALI – volume 15, issue 01, 2025

ISSN: 2181-4341, IMPACT FACTOR ( RESEARCH BIB ) – 7,245, SJIF – 5,431

www.wordlyknowledge.uz

ILMIY METODIK JURNAL

2.

Large Language Models (LLMs)

Models like OpenAI’s Codex are trained on billions of lines of open-source code. These LLMs

provide contextual predictions and complete functions with high accuracy.

3.

Reinforcement Learning from Human Feedback (RLHF)

Used to refine model performance based on developer interactions and feedback, ensuring

continuous improvement in generated code.

4.

Integrated Development Environment (IDE) Plugins

Many AI tools are integrated directly into IDEs (e.g., VS Code), allowing real-time suggestions

and edits within the coding workspace.

Challenges in Implementing AI Coding Tools

Like any emerging technology, using artificial intelligence for code generation also comes with

several challenges. Firstly, in some cases, AI may produce incorrect or even harmful code, as it

does not always fully understand the user's intent. Additionally, there may be copyright issues

related to the code generated by these tools. Many users tend to rely too heavily on AI, which

can limit their own analytical thinking and problem-solving abilities. Moreover, if the model is

poorly trained or based on flawed data, it may result in inaccurate code or irrelevant solutions.

Solutions to Overcome Challenges

1.

Human-in-the-Loop Systems

Ensuring AI-generated code is always reviewed by human developers before implementation.

2.

Secure Code Training

Training AI models on vetted and secure repositories to reduce vulnerability in generated outputs.

3.

Transparent Licensing Policies

Adopting clear guidelines on how AI-generated code should be used, especially in commercial

applications.

4.

Developer Education

Encouraging continuous learning and manual coding practice alongside AI usage to maintain

critical skills.

Future Trends in AI-Powered Development

1.

Self-Healing Code

AI systems that can autonomously detect, fix, and deploy patches in running software.

2.

Voice-to-Code Interfaces

Developers may soon describe features verbally and have AI write complete code modules.

3.

AI Pair Programmers

More advanced systems will act as real-time collaborators, debating and improving logic

alongside developers.

4.

Cross-Platform AI Generation

AI that can build entire apps (web, mobile, desktop) from a single prompt using frameworks and

UI libraries.

Resources:

1. Муниров, Д. Д. О. (2024). КАК ОБЛАЧНЫЕ ТЕХНОЛОГИИ СПОСОБСТВУЮТ

ЦИФРОВОЙ ТРАНСФОРМАЦИИ. MASTERS, 2(8), 44-51.

2. Муниров,

Д.

Д.

О.

(2024).

РОЛЬ

СЕТЕЙ

В

СОВРЕМЕННОЙ

ИТ-

ИНФРАСТРУКТУРЕ. WORLD OF SCIENCE, 7(8), 27-34.


background image

JOURNAL OF IQRO – ЖУРНАЛ ИҚРО – IQRO JURNALI – volume 15, issue 01, 2025

ISSN: 2181-4341, IMPACT FACTOR ( RESEARCH BIB ) – 7,245, SJIF – 5,431

www.wordlyknowledge.uz

ILMIY METODIK JURNAL

3. Муниров, Д. Д. О. (2024). ВАЖНОСТЬ КИБЕРБЕЗОПАСНОСТИ В ЦИФРОВУЮ

ЭПОХУ. PSIXOLOGIYA VA SOTSIOLOGIYA ILMIY JURNALI, 2(7), 35-42.

4. MUNIROV, J. (2024). THE FUTURE OF CLOUD TECHNOLOGY: DRIVING

INNOVATION AND EFFICIENCY IN THE DIGITAL ERA. Medicine, pedagogy and

technology: theory and practice, 2(9), 193-201.

5. Ogli, O. K. H. (2024). PROGRAMMING AND DIGITAL ART: CREATING THROUGH

ALGORITHMS. BIOLOGIYA VA KIMYO FANLARI ILMIY JURNALI, 1(10), 39-44.

6. Ogli, O. K. H. (2024). PYTHON AND THE EVOLUTION OF PROGRAMMING

PARADIGMS: A DEEP DIVE INTO VERSATILITY. WORLD OF SCIENCE, 7(12), 49-55.

7. Ogli, O. K. H. (2024). THE ROLE OF BLOCKCHAIN TECHNOLOGY IN ENHANCING

CYBERSECURITY IN EDUCATION. MASTERS, 2(12), 57-62.

8. Ogli, O. K. H. (2024). LEVERAGING PYDANTIC FOR DATA VALIDATION AND

SETTINGS MANAGEMENT IN PYTHON APPLICATIONS. MASTERS, 2(12), 63-69.

9. Ogli, O. K. H. (2024). PYTHON’S ROLE IN REVOLUTIONIZING AUTOMATION AND

WORKFLOW OPTIMIZATION. BIOLOGIYA VA KIMYO FANLARI ILMIY JURNALI,

1(10), 33-38.

10. Bakhridtdinovich, H. B. (2024). FUTURE TECHNOLOGIES. BIOLOGIYA VA KIMYO

FANLARI ILMIY JURNALI, 1(10), 20-25.

11. Jalolov, T. S. (2024). INTELLEKTUAL DRON TIZIMLARIDA O ‘ZO ‘ZINI

BOSHQARISH TEXNOLOGIYALARI. Ensuring the integration of science and education on

the basis of innovative technologies., 1(3), 50-55.

12. Jalolov, T. S. (2024). KASALLIKLARNI ERTA ANIQLASHDA SUN'IY

INTELLEKTNING QO ‘LLANILISHI: IMKONIYATLAR VA CHEKLOVLAR. Ensuring the

integration of science and education on the basis of innovative technologies., 1(3), 38-43.

13. Jalolov,

T.

S.

(2024).

SUN'IY

INTELLEKTGA

ASOSLANGAN

SHAXSIYLASHTIRILGAN O ‘QUV DASTURLARINI YARATISH. Ensuring the integration

of science and education on the basis of innovative technologies., 1(3), 1-6.

14. Jalolov, T. S. (2024). IQTISODIY MODELLASHTIRISHDA SUN'IY INTELLEKT

TEXNOLOGIYALARIDAN FOYDALANISH. Ensuring the integration of science and

education on the basis of innovative technologies., 1(3), 44-49.

15. Jalolov, T. S. (2024). ПРИЛОЖЕНИЙ ДЛЯ ИЗУЧЕНИЯ ЯЗЫКА С ПОМОЩЬЮ

АНАЛИЗА ТЕКСТА. Advanced methods of ensuring the quality of education: problems and

solutions, 1(3), 106-111.

Библиографические ссылки

Муниров, Д. Д. О. (2024). КАК ОБЛАЧНЫЕ ТЕХНОЛОГИИ СПОСОБСТВУЮТ ЦИФРОВОЙ ТРАНСФОРМАЦИИ. MASTERS, 2(8), 44-51.

Муниров, Д. Д. О. (2024). РОЛЬ СЕТЕЙ В СОВРЕМЕННОЙ ИТ-ИНФРАСТРУКТУРЕ. WORLD OF SCIENCE, 7(8), 27-34.

Муниров, Д. Д. О. (2024). ВАЖНОСТЬ КИБЕРБЕЗОПАСНОСТИ В ЦИФРОВУЮ ЭПОХУ. PSIXOLOGIYA VA SOTSIOLOGIYA ILMIY JURNALI, 2(7), 35-42.

MUNIROV, J. (2024). THE FUTURE OF CLOUD TECHNOLOGY: DRIVING INNOVATION AND EFFICIENCY IN THE DIGITAL ERA. Medicine, pedagogy and technology: theory and practice, 2(9), 193-201.

Ogli, O. K. H. (2024). PROGRAMMING AND DIGITAL ART: CREATING THROUGH ALGORITHMS. BIOLOGIYA VA KIMYO FANLARI ILMIY JURNALI, 1(10), 39-44.

Ogli, O. K. H. (2024). PYTHON AND THE EVOLUTION OF PROGRAMMING PARADIGMS: A DEEP DIVE INTO VERSATILITY. WORLD OF SCIENCE, 7(12), 49-55.

Ogli, O. K. H. (2024). THE ROLE OF BLOCKCHAIN TECHNOLOGY IN ENHANCING CYBERSECURITY IN EDUCATION. MASTERS, 2(12), 57-62.

Ogli, O. K. H. (2024). LEVERAGING PYDANTIC FOR DATA VALIDATION AND SETTINGS MANAGEMENT IN PYTHON APPLICATIONS. MASTERS, 2(12), 63-69.

Ogli, O. K. H. (2024). PYTHON’S ROLE IN REVOLUTIONIZING AUTOMATION AND WORKFLOW OPTIMIZATION. BIOLOGIYA VA KIMYO FANLARI ILMIY JURNALI, 1(10), 33-38.

Bakhridtdinovich, H. B. (2024). FUTURE TECHNOLOGIES. BIOLOGIYA VA KIMYO FANLARI ILMIY JURNALI, 1(10), 20-25.

Jalolov, T. S. (2024). INTELLEKTUAL DRON TIZIMLARIDA O ‘ZO ‘ZINI BOSHQARISH TEXNOLOGIYALARI. Ensuring the integration of science and education on the basis of innovative technologies., 1(3), 50-55.

Jalolov, T. S. (2024). KASALLIKLARNI ERTA ANIQLASHDA SUN'IY INTELLEKTNING QO ‘LLANILISHI: IMKONIYATLAR VA CHEKLOVLAR. Ensuring the integration of science and education on the basis of innovative technologies., 1(3), 38-43.

Jalolov, T. S. (2024). SUN'IY INTELLEKTGA ASOSLANGAN SHAXSIYLASHTIRILGAN O ‘QUV DASTURLARINI YARATISH. Ensuring the integration of science and education on the basis of innovative technologies., 1(3), 1-6.

Jalolov, T. S. (2024). IQTISODIY MODELLASHTIRISHDA SUN'IY INTELLEKT TEXNOLOGIYALARIDAN FOYDALANISH. Ensuring the integration of science and education on the basis of innovative technologies., 1(3), 44-49.

Jalolov, T. S. (2024). ПРИЛОЖЕНИЙ ДЛЯ ИЗУЧЕНИЯ ЯЗЫКА С ПОМОЩЬЮ АНАЛИЗА ТЕКСТА. Advanced methods of ensuring the quality of education: problems and solutions, 1(3), 106-111.