UCHUVCHISIZ UCHUVCHI APPARATLARI UCHISH DINAMIKASINI STABILLIGINI OSHIRISHDA PID SOZLAMALARINI O‘RNI

Аннотация

Maqolada birinchi navbatda, kvadrokopterning matematik modeli 
yaratiladi va u Nyuton-Eyler usuli yordamida momentning harakat va kuchlari 
tenglamasiga asoslanadi. Ikkinchidan, kaskadli PID kontrolleri berilgan traektoriyani 
kuzatish uchun mo'ljallangan. Tanlangan model chiziqli bo'lmagan model chiziqli 
bo'lgan balandlikda harakatlanish uchun qilingan. Bunga qo'shimcha ravishda, chiziqli 
va chiziqli bo'lmagan modelning javobi tahlil qilinadi va chiziqli bo'lmagan model 
uchun PID tekshirgichi ishlab chiqiladi va natijalar tahlil qilinadi. PID qanday 
ishlashini tushunish dronini haqiqiy salohiyatini ochishning muhim jihati hisoblanadi. 
Ushbu keng qamrovli PID sozlashda, biz uning parvoz samaradorligi, barqarorligi va 
boshqaruviga qanday ta'sir qilishini o'rganamiz.

ACUMEN: International journal of multidisciplinary research
Тип источника: Журналы
Годы охвата с 2023
inLibrary
Google Scholar
Выпуск:
https://doi.org/10.5281/zenodo.14632167
CC BY f
44-56
31

Скачивания

Данные скачивания пока недоступны.
Поделиться
Alimardonov Shohruh Erkin o‘g‘li. (2025). UCHUVCHISIZ UCHUVCHI APPARATLARI UCHISH DINAMIKASINI STABILLIGINI OSHIRISHDA PID SOZLAMALARINI O‘RNI. ACUMEN: Международный журнал междисциплинарных исследований, 2(1), 44–56. извлечено от https://inlibrary.uz/index.php/aijmr/article/view/64526
Crossref
Сrossref
Scopus
Scopus

Аннотация

Maqolada birinchi navbatda, kvadrokopterning matematik modeli 
yaratiladi va u Nyuton-Eyler usuli yordamida momentning harakat va kuchlari 
tenglamasiga asoslanadi. Ikkinchidan, kaskadli PID kontrolleri berilgan traektoriyani 
kuzatish uchun mo'ljallangan. Tanlangan model chiziqli bo'lmagan model chiziqli 
bo'lgan balandlikda harakatlanish uchun qilingan. Bunga qo'shimcha ravishda, chiziqli 
va chiziqli bo'lmagan modelning javobi tahlil qilinadi va chiziqli bo'lmagan model 
uchun PID tekshirgichi ishlab chiqiladi va natijalar tahlil qilinadi. PID qanday 
ishlashini tushunish dronini haqiqiy salohiyatini ochishning muhim jihati hisoblanadi. 
Ushbu keng qamrovli PID sozlashda, biz uning parvoz samaradorligi, barqarorligi va 
boshqaruviga qanday ta'sir qilishini o'rganamiz.


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

44

Acumen: International Journal of Multidisciplinary Research

UCHUVCHISIZ UCHUVCHI APPARATLARI UCHISH DINAMIKASINI

STABILLIGINI OSHIRISHDA PID SOZLAMALARINI O‘RNI

Alimardonov Shohruh Erkin o‘g‘li

Oʻzbekiston Respublikasi Mudofaa vazirligi Axborot-kommunikatsiya texnologiyalari

va aloqa harbiy instituti Radioelektron razvedka va kurash kafedrasi kursanti

Annotatsiya.

Maqolada birinchi navbatda, kvadrokopterning matematik modeli

yaratiladi va u Nyuton-Eyler usuli yordamida momentning harakat va kuchlari
tenglamasiga asoslanadi. Ikkinchidan, kaskadli PID kontrolleri berilgan traektoriyani
kuzatish uchun mo'ljallangan. Tanlangan model chiziqli bo'lmagan model chiziqli
bo'lgan balandlikda harakatlanish uchun qilingan. Bunga qo'shimcha ravishda, chiziqli
va chiziqli bo'lmagan modelning javobi tahlil qilinadi va chiziqli bo'lmagan model
uchun PID tekshirgichi ishlab chiqiladi va natijalar tahlil qilinadi. PID qanday
ishlashini tushunish dronini haqiqiy salohiyatini ochishning muhim jihati hisoblanadi.
Ushbu keng qamrovli PID sozlashda, biz uning parvoz samaradorligi, barqarorligi va
boshqaruviga qanday ta'sir qilishini o'rganamiz.

Kalit so’zlar:

PID, Nyuton-Eyler usuli, dronni dinamik modellashtirish,

kvadrokopterning matematik modelining umumiy tuzilishi, aerodinamik kuchlar,
giroskopik effektlar, inertial qarshi moment, o'rganilayotgan tizimga qo'llaniladigan
kuchlar, dronga ta'sir etuvchi momentlar, kvadrokopterni boshqaradigan to'liq dinamik
model.

Аннотация.

Прежде всего, в статье создана математическая модель

квадрокоптера, основанная на уравнении движения и сил момента с
использованием метода Ньютона-Эйлера. Во-вторых, каскадный ПИД-регулятор
предназначен для следования заданной траектории. Выбранная модель
предназначена для перемещения на высоте, на которой нелинейная модель
является линейной. Кроме того, анализируется отклик линейной и нелинейной
модели, разрабатывается ПИД-регулятор для нелинейной модели и
анализируются результаты. Понимание того, как работает PID, является важным
аспектом раскрытия истинного потенциала вашего дрона. В этом подробном
руководстве по настройке ПИД-регулятора мы рассмотрим, как это влияет на
летные характеристики, стабильность и управляемость.

Ключевые слова:

ПИД, метод Ньютона-Эйлера, динамическое

моделирование дрона, общая структура математической модели квадрокоптера,
аэродинамические силы, гироскопические эффекты, момент инерционного
противодействия, силы, приложенные к изучаемой системе, моменты,


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

45

Acumen: International Journal of Multidisciplinary Research

действующие на дрон, управление. полностью динамическая модель
квадрокоптера.

Abstract.

First of all, in the article, a mathematical model of the quadcopter is

created and it is based on the equation of motion and forces of the moment using the
Newton-Euler method. Second, the cascade PID controller is designed to follow a
given trajectory. The selected model is designed to move at a height where the non-
linear model is linear. In addition, the response of the linear and non-linear model is
analyzed, and a PID controller for the non-linear model is developed and the results
are analyzed. Understanding how PID works is an important aspect of unlocking your
drone's true potential. In this comprehensive PID tuning tutorial, we'll explore how it
affects flight performance, stability, and control.

Keywords:

PID, Newton-Euler method, dynamic modeling of the drone, general

structure of the mathematical model of the quadcopter, aerodynamic forces, gyroscopic
effects, inertial counter moment, forces applied to the studied system, moments acting
on the drone, controlling the quadcopter fully dynamic model.

PID - bu parvoz boshqaruvchisining dasturiy ta'minotidagi algoritm bo'lib,

sensorlardan ma'lumotlarni o'qiydi va kerakli aylanish tezligiga erishish uchun kerakli
vosita tezligini hisoblash uchun radio buyruqlarini qayta ishlaydi.

PID algoritmi boshqaruv tizimining muhim qismidir. PID tekshirgichida uchta

atama mavjud: proportsional (P), integral (I) va derivative (D).

1-rasm. PID blok diagrammasi

P (proportsional) hozirgi xatoga tegishli. U parvoz boshqaruvchisi xatolarni

tuzatish uchun ishlash intensivligini aniqlaydi. Xato qanchalik katta bo'lsa, u
shunchalik qiyin bo'ladi - matematikada bu xatoga proportsionaldir.

D (derivative) kelajakdagi xatoni bashorat qiladi. U belgilangan nuqtaga

qanchalik tez yaqinlashishini ko'rib chiqadi va maqsadga yaqinlashganda haddan


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

46

Acumen: International Journal of Multidisciplinary Research

tashqari oshib ketishni minimallashtirish uchun P ga qarshi ta'sir qiladi - matematikada
bu xatoning hosilasidir.

I (Integral) o'tgan xatolarni to'playdi. U vaqt o'tishi bilan yuzaga keladigan tashqi

kuchlarni, masalan, shamol yoki markazdan tashqari og'irlik tufayli belgilangan
nuqtadan uzoqlashayotgan dronga, unga qarshi turish uchun vosita tezligini sozlash
orqali hal qiladi - matematik nuqtai nazardan, bu xatoning ajralmas qismidir.

PID ko'rsatkichlarini o'zgartirish kvadrokopterning parvoz harakatiga ta'sir

qiladi. PIDning ichki ishlashini tushunish shart emas, lekin bu yutuqlarning o'zgarishi
sizning droningizning ishlashiga qanday ta'sir qilishini bilish juda muhimdir. Biz PID
haqida tushunchaga ega bo’lgandan keyin, kvadrokopterning dinamikasi hisobga olgan
holda, uni matematik modulini ishlab chiqamiz.

Uchuvchisiz havo vositalari (UAVs) sifatida ham tanilgan kvadrokopter droni 4

rotor yordamida ko'tariladigan va harakatga keltiriladigan ko'p rotorli uchuvchisiz
uchish apparatidir. U turli o'lcham va shakllarda ham mavjud. [1], [2], [3], [4], [5].
So'nggi yillarda tadqiqotchilar yugurish nuqtasi atrofida dinamikani chiziqli qilish
orqali chiziqli manipulyatsiya usullaridan foydalangan holda kvadrokopterni
boshqarish mumkinligini ko'rsatdi [6]. Biroq, barcha parvoz zonalarida avtomobil
dinamikasining umumiy shakli hisoblangan chiziqli bo'lmagan boshqaruv usullaridan
foydalangan holda yanada kengroq parvoz va yaxshi ko'rsatkichlarga erishish mumkin.

Ushbu ishda kvadrokopterning dinamikasini hisobga olgan holda matematik

modeli ishlab chiqilgan. Kvadrokopterning asosiy harakati va kuchlari tenglamalari
olinadi va berilgan kvadrokopter uchun dizayn parametrlari tanlanadi. Model
kvadrokopter uchun nochiziqli bo'lishi uchun Nyuton-Eyler usuli yordamida
momentning harakat va kuchlari tenglamasi asosida yaratilgan. Balandlikni nazorat
qilish uchun [7], [8], [9] va [10] kvadrotorni boshqarish uchun PID kontrolleri
ishlatilgan. Biroq, ushbu maqolada PID-kontroller sxemasi nafaqat balandlikni, balki
kvadrokopterning kosmosdagi pozitsiyasini, yo'nalishini va holatini ham boshqarish
uchun qo'llanilgan. Tanlangan model chiziqli bo'lmagan model chiziqli bo'lgan
balandlikda harakatlanish uchun qilingan. Maqsad, kvadrakopterning holatlarini vaqt
bo'yicha har xil mos yozuvlar holatlarining ixtiyoriy to'plamiga yaqinlashishiga imkon
beruvchi boshqaruvchi usulini topishdir. Shunday qilib, chiziqli bo'lmagan model
uchun PID tekshirgichi ishlab chiqilgan va natijalar tahlil qilinadi. Shuningdek, amalga
oshirishni osonlashtirish uchun traektoriyani kuzatish uchun oddiy kaskadli PID
kontrolleri taklif etiladi.

Ushbu maqola quyidagicha tashkil etilgan. Birinchi bo'lim dronni dinamik

modellashtirishga bag'ishlangan va kvadrakopterning matematik modelining umumiy


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

47

Acumen: International Journal of Multidisciplinary Research

tuzilishi tavsifini taklif qiladi. Haqiqatan ham, dronning dinamik modeli ishlab
chiqilgan va ushbu tizimni boshqarishning davlat modeli berilgan.

Ikkinchi bo'lim Simulink dasturi ostida tayyorlangan dronning umumiy

sxemasiga bag'ishlangan. Keyinchalik, dronni boshqarish uchun PID kontroller
texnikasini qo'llash ko'rib chiqiladi. Biroq, Simulink simulyatsiyasi natijalari uchinchi
bo'limda ko'rsatilgan.

1-jadval

Nomenklatura

(

𝜑

,

𝜃𝜃

,

𝜓𝜓

)

3

Eyler burchaklari

ℜB

div frame Flat (yassi tana ramkasi)

ℜE

earth frame (yer ramkasi)

𝜉

3

Yassi yer koordinatasidagi massa
markazining holati

𝜂

3

Yassi

yer

koordinatasidagi

tana

ramkasining burchaklari. Burchak

𝜔𝑖

i pervanelining tezligi

𝑉

3

Tana ramkasidagi (div frame) tezlik
Aylanish

𝑅

𝑅^3𝑥3

matritsani o'zgartirish

Ω

3

Tana ramkasidagi (div frame) jami
burchak tezligi

𝐹

3

kvadrokopterga ta'sir qiluvchi kuch

𝑀

3

Kvadrokopterga ta'sir qiluvchi umumiy
moment va moment

𝐼

ℝ3×3

Simmetrik inertsiya matritsasi

𝑚

Kvadrokopterning massasi

𝑔

Gravitatsion tezlashuv

𝑏

Trust constant (doimiy)

𝐶𝑑

3

Translational

drag

coefficients

(qarshilik koeffitsientlari)

𝑙

Dvigatel

o'qi

va

kvadrokopter

massasining markazi orasidagi masofa

𝑑

Drag factor


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

48

Acumen: International Journal of Multidisciplinary Research

𝐶𝑎

3

Aerodinamik

ishqalanish

koeffitsientlari

𝐽𝑟

Rotor inertsiyasi

(

𝐾𝑝

,

𝐾𝐼

,

𝐾𝐷

)

3

Proportsional, integral va hosilaviy
daromad xatosi

𝑒

(

𝑡

)

Xato funktsiyasi

𝑦

(

𝑡

)

Dinamik modelning chiqishi

Dronning matematik modelini ishlab chiqishdan oldin 2-rasmda

ko'rsatilganidek, ikkita

𝑅

𝐸

(𝑂, 𝐼,

⃗⃗ 𝐽 𝐾)

⃗⃗⃗⃗

va

𝑅

𝐵

(𝑂, 𝐼,

⃗⃗ 𝐽 𝐾)

⃗⃗⃗⃗

belgilarini bajarish kerak.

Shunday qilib, mos yozuvlar

𝑅

𝐸

yerga bog'langan va

𝑅

𝐵

mos yozuvlar dron korpusiga

bog'langan ramka bo'lib, uning markazi dronning massa markaziga to'g'ri keladi.

2-rasm. Kvadrokopterning tuzilishi va koordinata tizimlari

Haqiqiy kvadrokopter modeli bilan ishlash uchun tortishish va surish kuchidan

tashqari aerodinamik kuchlarni ham kiritish kerak. Kvadrokopterning harakatlari
mexanik yoki aerodinamik ta'sirlar bilan boshqariladi. Dronga asosiy ta'sirlar 2-
jadvalda ko'rsatilgan.

2-jadval

Mexanik harakatlar va manbalar

Mexanik harakat

Manba

Aerodinamik effekt

Pervanellarning aylanishi

Inertial qarshi moment

Pervanellarning tezligini o'zgartirish

Gravitatsiya

Umumjahon tortishish qonuni

Giroskopik effektlar

Kvadrokopterning yo'nalishini

o'zgartirish


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

49

Acumen: International Journal of Multidisciplinary Research

Ishqalanish

Havo qarshiligi


O'rganilayotgan tizimning harakat tenglamalarini olish uchun quyidagi taxminlar
qilingan:

-

Kvadrokopter qattiq korpus bo'lib, u simmetrik tuzilishga ega.

-

Og'irlik markazi va massa markazi kvadrokopterning geometrik markaziga
to'g'ri keladi.

-

Parvonalarning inersiya momenti e'tiborga olinmaydi.

Kvadrokopterning matematik modelini takrorlash uchun Nyuton-Eyler

formuladan [11] foydalaniladi. Tenglamalarni quyidagicha ifodalash mumkin:

[

F

M

] =

[

mI

3x3

0

3x3

0

3x3

I

]

[V

̇

Ω̇

] +

[

Ω

^ mV

Ω

^

]

(1)

Tenglama (1) ikki qismga bo'linadi, birinchisi kuch dinamikasi (Nyutonning ikkinchi
qonuni) va ikkinchisi aylanish dinamikasi (Eylerning aylanish tenglamalari).

O'rganilayotgan tizimga qo'llaniladigan kuchlar:

Dronning og'irligi:

𝑊 = [0

0

− 𝑚𝑔]

𝑇

(2)

Rotorlarning ishonchi:

𝐹

𝑡

= 𝑅 ∑

𝐹

𝑖

= 𝑏 ∑

𝜔

𝑖

2

[

𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜑

𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃

− 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜑

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑

]

4

𝑖=1

4

𝑖=1

(3)

Tortish kuchi va havo ishqalanishi:

𝐹

𝑑

=

𝐶

𝑑

𝜉̇ = [

−𝐶

𝑑𝑥

0

0

0

−𝐶

𝑑𝑦

0

0

0

−𝐶

𝑑𝑧

]

[

𝑥̇
𝑦̇

𝑧̇

] = − [

𝐶

𝑑𝑥

𝑥̇

𝐶

𝑑𝑦

𝐶

𝑑𝑧

𝑦̇

𝑧̇

]

(4)

Nyutonning ikkinchi qonunini qo'llash orqali

(𝐹 = 𝑚𝜉̈ = 𝑊 + 𝐹

𝑡

+ 𝐹

𝑑

)

kvadrokopterning translyatsion harakatini boshqaradigan harakat tenglamasi
quyidagicha ifodalanadi:

{

𝑥̈ =

𝑏

𝑚

(𝜔

1

2

+ 𝜔

2

2

+ 𝜔

3

2

+ 𝜔

4

2

)

(𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜑) −

𝐶

𝑑𝑥

𝑚

𝑥̇

𝑦̈ =

𝑏

𝑚

(𝜔

1

2

+ 𝜔

2

2

+ 𝜔

3

2

+ 𝜔

4

2

)(𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜑) −

𝐶

𝑑𝑦

𝑚

𝑦̇

𝑧̈ =

𝑏

𝑚

(𝜔

1

2

+ 𝜔

2

2

+ 𝜔

3

2

+ 𝜔

4

2

)𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑

𝐶

𝑑𝑧

𝑚

𝑧̇

− 𝑔

(5)

Dronga ta'sir etuvchi momentlar:

Aylanish momenti:


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

50

Acumen: International Journal of Multidisciplinary Research

𝜏

𝑥

= [

0

−𝑙

0

]

^

[

0
0

𝐹

2

]

+

[

0

𝑙

0

]

^

[

0
0

𝐹

4

] = [

𝑙𝑏(𝑤

4

2

𝑤

2

2

0
0

]

(6)

Pitch momenti:

𝜏

𝑦

= [

𝑙

0
0

]

^

[

0
0

𝐹

1

]

+

[

−𝑙

0
0

]

^

[

0
0

𝐹

3

] = [

0

𝑙𝑏(𝑤

3

2

𝑤

1

2

0

]

(7)

Aylanish momenti:

𝜏

𝑧

= [

0
0

𝑑(𝜔

1

2

− 𝜔

2

2

+ 𝜔

3

2

− 𝜔

4

2

)

]

(8)


Aerodinamik ishqalanish natijasida yuzaga keladigan moment:

𝜏

𝑎

=

𝐶

𝑎

[

𝜑

2

̇

𝜃

2

̇

𝜓

2

̇

]

=

[

𝐶

𝑎𝑥

0

0

0

𝐶

𝑎𝑦

0

0

0

𝐶

𝑎𝑧

]

[

𝜑

2

̇

𝜃

2

̇

𝜓

2

̇

]

=

[

𝐶

𝑎𝑥

𝜑

2

̇

𝐶

𝑎𝑦

𝐶

𝑎𝑧

𝜃

2

̇

𝜓

2

̇

]

(9)

Parvonadan giroskopik effekt:

𝜏

𝑔𝑝

=

𝐽

𝑟

𝜂̇

𝛬

[

0
0

(−1)

𝑖+1

𝜔

𝑖

4

𝑖=1

] =

𝐽

𝑟

𝛺

𝑟

[

𝜃̇

−𝜑

̇

0

] 𝑤𝑖𝑡ℎ

𝛺

𝑟

=

(−1)

𝑖+1

𝜔

𝑖

4

𝑖=1

(10)


Eylerning aylanish tenglamalarini qo'llash orqali kvadrokopterning aylanish harakatini
boshqaradigan harakat tenglamasi quyidagicha ifodalanadi:

𝜑̈ =

𝑙𝑏(𝜔

4

2

−𝜔

2

2

𝐼

𝑥

𝐶

𝑎𝑥

𝐼

𝑥

𝜑

2

̇

𝐽

𝑟

𝛺

𝑟

𝐼

𝑥

𝜃̇

(𝐼

𝑧

−𝐼

𝑦

)

𝐼

𝑥

𝜃̇𝜓̇

𝜃̈ =

𝑙𝑏(𝜔

3

2

−𝜔

3

2

𝐼

𝑦

𝐶

𝑎𝑦

𝐼

𝑦

𝜃

2

̇

𝐽

𝑟

𝛺

𝑟

𝐼

𝑦

𝜑̇

(𝐼

𝑥

−𝐼

𝑧

)

𝐼

𝑦

𝜑̇𝜓̇

𝜓̈ =

𝑑

𝐼

𝑧

(𝜔

1

2

− 𝜔

2

2

+ 𝜔

3

2

− 𝜔

4

2

) −

𝐶

𝑎𝑧

𝐼

𝑧

𝜓

2

̇ −

(𝐼

𝑦

−𝐼

𝑥

)

𝐼

𝑧

𝜑̇𝜃̇

(11)

Natijada, kvadrotorni boshqaradigan to'liq dinamik model quyidagicha:


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

51

Acumen: International Journal of Multidisciplinary Research

{

𝑥̈ =

𝑢

1

𝑢

𝑥

𝑚

𝐶

𝑑𝑥

𝑚

𝑥̇

𝑦̈ =

𝑢

1

𝑢

𝑦

𝑚

𝐶

𝑑𝑦

𝑚

𝑦̇

𝑧̈ =

𝑢

1

𝑚

− 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑

𝐶

𝑑𝑥

𝑚

𝑧̇

− 𝑔

𝜑̈ =

𝑢

2

𝐼

𝑥

𝐶

𝑎𝑥

𝐼

𝑥

𝜑

2

̇

𝐽

𝑟

𝛺

𝑟

𝐼

𝑥

𝜃̇

(𝐼

𝑧

−𝐼

𝑦

)

𝐼

𝑥

𝜃̇𝜓̇

𝜃̈ =

𝑢

3

𝐼

𝑦

𝐶

𝑎𝑦

𝐼

𝑦

𝜃

2

̇ +

𝐽

𝑟

𝛺

𝑟

𝐼

𝑦

𝜑̇

(𝐼

𝑥

−𝐼

𝑧

)

𝐼

𝑦

𝜃̇𝜓̇

𝜓̈ =

𝑢

4

𝐼

𝑧

𝐶

𝑎𝑧

𝐼

𝑧

𝜓

2

̇

(𝐼

𝑦

−𝐼

𝑥

)

𝐼

𝑧

𝜑̇𝜃̇

𝑤𝑖𝑡ℎ

{

𝑢

𝑥

= 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜑

𝑢

𝑦

= 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜑

𝑢

1

= 𝑏𝜔

1

2

+ 𝑏𝜔

2

2

+ 𝑏𝜔

3

2

+ 𝑏𝜔

4

2

𝑢

2

= −𝑙𝑏𝜔

2

2

+ 𝑙𝑏𝜔

4

2

𝑢

3

= −𝑙𝑏𝜔

1

2

+ 𝑙𝑏𝜔

3

2

𝑢

4

= 𝑑(𝜔

1

2

− 𝜔

2

2

+ 𝜔

3

2

− 𝜔

4

2

)

(12)

Kvadrotor unchalik faol bo'lmagan tizimdir [12], ya'ni kosmosdagi oltita erkinlik

darajasi faqat to'rtta dvigatel bilan boshqariladi. Shu sababli, ushbu dronlarni
boshqarish erkinlik darajasining to'rtta qismi uchun o'rnatilishi kerak. Bundan tashqari,
X va Y koordinatalarini boshqarish mos ravishda qadam va roll yo'nalishiga bog'liq.
Ushbu bog'lanishni ko'rib chiqishda kvadrotorni boshqarish odatda koordinatalarning
ikki xil kichik to'plami uchun amalga oshiriladi.

Buyruq uchta pozitsiya koordinatalari va yaw orientatsiyasi uchun amalga

oshiriladi. Shunga qaramay, boshqaruv rejimi ham roll, ham pitch orientatsiyasi
kontrollerlaridan foydalanadi. Umumiy qilib aytganda, uchta pozitsiyani
boshqaruvchining boshqaruv signallari inertial koordinatalar tizimidagi kuch vektorini
(surish) belgilaydi. Ushbu vektorning yo'nalishi roll va pitch kontrollerlariga
yuborilgan belgilangan nuqtani belgilaydi. 2-rasmdagi diagramma ilgari tasvirlangan
narsalarni umumlashtiradi.


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

52

Acumen: International Journal of Multidisciplinary Research

3-rasm. Simulink yordamida kvadrokopterning to'liq arxitekturasi

Tanlangan boshqaruvchi PID turi [13] bo'lib, uni amalga oshirish juda oson va u

hali ham sanoatda keng qo'llaniladi. PID boshqaruvchisi uchta alohida parametrni o'z
ichiga oladi: mutanosib atama, integral atama va hosila atama. Proportsional atama
hisoblangan xatoga nisbatan to'g'ridan-to'g'ri harakatni belgilaydi, integral atama
reaksiyaga kirishish uchun oxirgi xatolar yig'indisini ko'rib chiqadi va hosila atama
xatoning o'zgarish tezligiga nisbatan reaksiyani aniqlaydi. Regulyatorning tenglamasi
quyidagi formula bilan berilgan:

𝑈(𝑡) = 𝐾

𝑝

𝑒(𝑡) + 𝐾

1

∫ 𝑒(𝑡)𝑑𝑡 + 𝐾

𝐷

𝑑𝑒(𝑡)

𝑑𝑡

𝑠𝑢𝑐ℎ 𝑢𝑠 𝑒(𝑡) = 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝑦(𝑡)

(13)

4-rasm. Tekshirish blokining arxitekturasi

Dronlarning o'ziga xos holati uchun PID boshqaruv arxitekturasi (4-rasmda

ko'rsatilgan) kaskadda o'rnatilgan ikkita regulyatordan iborat. Joylashuv


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

53

Acumen: International Journal of Multidisciplinary Research

ma'lumotlariga (X Desired, Y Desired va Z Desired) qarab, birinchi PID
barqarorlashtirish va gorizontal siljishlar uchun orientatsiya ko'rsatmalarini (

𝜑

Desired

va

𝜃𝜃

Desired) hosil qiladi, shuningdek

𝑢

1 surish regulyatorini yaratadi. Ushbu

ko'rsatmalarni aylanish, pitch va yaw bo'yicha bajarish bir soniyaning vazifasidir

𝑢

2,

𝑢

3 va

𝑢

4 buyruqlarini yaratishga imkon beruvchi PID.

Nihoyat, blok mikser boshqaruv chiqishlarini har bir dvigatelning aylanish

tezligiga aylantirishni ta'minlaydi.

Ushbu yondashuv vertolyotlar [14], [15] va koaksiyal rotorli dronlar kabi bir

nechta eksperimental platformalarda muvaffaqiyatli sinovdan o'tkazildi [16].

Dronga foydalanuvchi kiritgan yoʻldan borishiga ruxsat berish uchun uchta

belgilangan nuqtani yaratish oʻrnatildi va PID kontrollerning oʻsishini rostlashdan va
3-jadvalda koʻrsatilgan parametrlardan foydalangandan soʻng, 5(a)-rasmdagi
simulyatsiya amalga oshirildi.

5(a)-rasm. Dronning foydalanuvchining belgilangan nuqtalariga javobi; (b) X va Y

ning javobi

5(b)-rasmdan tizimning javobi juda qoniqarli ekanligini ko'rishimiz mumkin. U

juda kichik oshib ketish (X uchun 0,6% va Y uchun 1%) va juda past javob vaqti (X
uchun 15 soniya va Y uchun 10 soniya) bilan tavsiflanadi.


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

54

Acumen: International Journal of Multidisciplinary Research

6-rasm. Belgilangan nuqta va haqiqiy traektoriya

6-rasmda ko'rsatilgan natija PID kontrollerning traektoriyani kuzatish samaradorligini
ko'rsatadi.

3-jadval

Simulyatsiyada ishlatiladigan kvadrokopterning parametrlari

Parameter

Value (qiymat)

Unit (birlik)

𝐼

𝑑𝑖𝑎𝑔

(3.8 × 10

−3

3.8 ×

10

−3

7.1 × 10

−3

)

𝑘𝑔

.

𝑚

2

𝑚

5.2

𝑘𝑔

𝑔

9.81

𝑚

.

𝑠

−2

𝑏

3.13 × 10

−5

𝑘𝑔

.

𝑚

𝐶𝑑

𝑑𝑖𝑎𝑔

(0.1 0.1 0.15)

𝑘𝑔

.

𝑠

−1

𝑙

0.32

𝑚

𝑑

7.5 × 10

−7

𝑘𝑔

.

𝑚

𝐶𝑎

𝑑𝑖𝑎𝑔

(0.1 0.1 0.15)

𝑘𝑔

.

𝑚

𝐽𝑟

6 × 10

−5

𝑘𝑔

.

𝑚

2

PID kontrollerlari boshqaruv tizimlarida aniqlik va ko'p qirralilikni ifodalaydi va

turli jarayonlar va ilovalarda tengsiz tartibga solishni taklif qiladi. Ushbu ishning
maqsadi tizimga ta'sir qiluvchi turli xil mexanik harakatlar va buzilishlarni hisobga
olgan holda dronning matematik modelini berish, shu tariqa Simulink ostida dronning
harakatini simulyatsiya qilish, bu kaskadli PID kontrollerdan foydalanishni talab
qiladi. Silliq amalga oshirish uchun traektoriyani kuzatish uchun dronning
manipulyatsiyasini boshqarish. Amalga oshirilgan simulyatsiya natijalari juda
qoniqarli bo'ldi va dron foydalanuvchi ko'rsatmalarini mukammal bajarishga muvaffaq
bo'ldi.


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

55

Acumen: International Journal of Multidisciplinary Research

FOYDALANILGAN ADABIYOTLAR RO’YXATI:

[1] R. Lozano, Unmanned Aerial Vehicles: Embedded Control. ISTE Ltd and

John Wiley and Sons Inc, (2010).

[2] R. K. Barnhart, S. B. Hottman, D. M. Marshall et E.Shappee, Introduction to

Unmanned Aircraft Systems. Taylor and Francis, (2012).

[3] K. Nonami, F. Kendoul, S. Suzuki, W. Wang et D. Nakazawa, Autonomous

Flying Robots - Unmanned Aerial Vehicles and Micro Aerial Vehicles, Springer,
(2010).

[4] R. Austin, Unmanned Aircraft Systems - UAVS Design, Development and

Deployment, Wiley, (2010).

[5] K. P.Valavanis, Advances in Unmanned Aerial Vehicles - State of the Art and

the Road to Autonomy, Springer, (2007).

[6] J. Kim, M. Kang, and S. Park, Accurate modeling and robust hovering control

for a quadrotor vtol aircraft, Journal of Intelligent and Robotic Systems, 57(1-4):
(2010) 9-26.

[7] H.Bolandi, M.Rezaei, R.Mohsenipour, H.Nemati, and S. M.Smailzadeh,

Attitude Control of a Quadrotor with Optimized PID Controller, Intelligent Control and
Automation (4): (2013) 335-342.

[8] A.L.Salih, M.Moghavvemi, H.A.Mohamed, and K.S.Gaeid, Modelling and

PID controller design for a quadrotor unmanned air vehicle, 2010 IEEE International
Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca:
(2010) 1-5.

[9] R.A.Garcia, F.R.Rubio, M.G.Ortega, Robust PID control of the quadrotor

helicopter, IFAC Proceedings Volumes (45): 229234 (2012).

[10] G.Bo, L.Xin, Z.Hui, W.Ling, Quadrotor helicopter Attitude Control using

cascade PID, Chinese Control and Decision Conference (CCDC), Yinchuan: (2016)
5158-5163.

[11] S.János, G.Martinovic, Navigation of Mobile Robots Using WSN‘s RSSI

Parameter and Potential Field Method, Acta Polytechnica Hungarica, Journal of
Applied Sciences Vol.10, No.4. (2013) 107-118.

[12] H.Hou, J.Zhuang, H.Xia, G.Wang, and D.Yu, A simple controller of

minisize quad-rotor vehicle. In Mechatronics and Automation (ICMA), International
Conference on, (2010) 1701doi:10.1109/ICMA.2010.5588802.


background image

Acumen:

International Journal of

Multidisciplinary Research

ISSN: 3060-4745

IF(Impact Factor)10.41 / 2024

Volume 2, Issue 1

56

Acumen: International Journal of Multidisciplinary Research

[13] M.M. Atheer, L.Salih, A.F.Mohamed and K.S.Gaeid, Modelling and PID

Controller Design for a Quadrotor Unmanned Air Vehicle, in IEEE International
Conference on Automation Quality and Testing Robotics (AQTR) Cluj-Napoca (2010).

[14] D.H.Shim, T.J.Koo, F.Hoffmann et S.S.Sastry, A Comprehensive Study of

Control Design for an Autonomous Helicopter, Proceedings of the 37th IEEE
Conference on Decision and Control, Tampa, Florida, USA, vol. 4, (1998) 3653-3658.

[15] H.J.Kim et D.H.Shim, A Flight Control System for Aerial Robots:

Algorithms and Experiments, Control Engineering Practice, vol. 11, no. 12, (2003)
1389-1400.

[16] L.Lipera, J.Colbourne, M.Tischler, M.H.Mansur, M.Rotkowitz et

P.Patangui, The Micro Craft iSTAR Micro Air Vehicle: Control System Design and
Testing, Proceedings of the 57th Annual Forum of the American Helicopter Society,
Washington, District of Columbia, USA, (2001) 1-11.

Библиографические ссылки

R. Lozano, Unmanned Aerial Vehicles: Embedded Control. ISTE Ltd and

John Wiley and Sons Inc, (2010).

R. K. Barnhart, S. B. Hottman, D. M. Marshall et E.Shappee, Introduction to

Unmanned Aircraft Systems. Taylor and Francis, (2012).

K. Nonami, F. Kendoul, S. Suzuki, W. Wang et D. Nakazawa, Autonomous

Flying Robots - Unmanned Aerial Vehicles and Micro Aerial Vehicles, Springer,

(2010).

R. Austin, Unmanned Aircraft Systems - UAVS Design, Development and

Deployment, Wiley, (2010).

K. P.Valavanis, Advances in Unmanned Aerial Vehicles - State of the Art and

the Road to Autonomy, Springer, (2007).

J. Kim, M. Kang, and S. Park, Accurate modeling and robust hovering control

for a quadrotor vtol aircraft, Journal of Intelligent and Robotic Systems, 57(1-4):

(2010) 9-26.

H.Bolandi, M.Rezaei, R.Mohsenipour, H.Nemati, and S. M.Smailzadeh,

Attitude Control of a Quadrotor with Optimized PID Controller, Intelligent Control and

Automation (4): (2013) 335-342.

A.L.Salih, M.Moghavvemi, H.A.Mohamed, and K.S.Gaeid, Modelling and

PID controller design for a quadrotor unmanned air vehicle, 2010 IEEE International

Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca:

(2010) 1-5.

R.A.Garcia, F.R.Rubio, M.G.Ortega, Robust PID control of the quadrotor

helicopter, IFAC Proceedings Volumes (45): 229234 (2012).

G.Bo, L.Xin, Z.Hui, W.Ling, Quadrotor helicopter Attitude Control using

cascade PID, Chinese Control and Decision Conference (CCDC), Yinchuan: (2016)

-5163.

S.János, G.Martinovic, Navigation of Mobile Robots Using WSN‘s RSSI

Parameter and Potential Field Method, Acta Polytechnica Hungarica, Journal of

Applied Sciences Vol.10, No.4. (2013) 107-118.

H.Hou, J.Zhuang, H.Xia, G.Wang, and D.Yu, A simple controller of

minisize quad-rotor vehicle. In Mechatronics and Automation (ICMA), International

Conference on, (2010) 1701doi:10.1109/ICMA.2010.5588802

M.M. Atheer, L.Salih, A.F.Mohamed and K.S.Gaeid, Modelling and PID

Controller Design for a Quadrotor Unmanned Air Vehicle, in IEEE International

Conference on Automation Quality and Testing Robotics (AQTR) Cluj-Napoca (2010).

D.H.Shim, T.J.Koo, F.Hoffmann et S.S.Sastry, A Comprehensive Study of

Control Design for an Autonomous Helicopter, Proceedings of the 37th IEEE

Conference on Decision and Control, Tampa, Florida, USA, vol. 4, (1998) 3653-3658.

H.J.Kim et D.H.Shim, A Flight Control System for Aerial Robots:

Algorithms and Experiments, Control Engineering Practice, vol. 11, no. 12, (2003)

-1400.

L.Lipera, J.Colbourne, M.Tischler, M.H.Mansur, M.Rotkowitz et

P.Patangui, The Micro Craft iSTAR Micro Air Vehicle: Control System Design and

Testing, Proceedings of the 57th Annual Forum of the American Helicopter Society,

Washington, District of Columbia, USA, (2001) 1-11