Identification of sarcasm in texts for sentimental analysis

Abstract

Humanity has discovered various ways to express emotions. Depending on the context of speech, these emotions are sometimes accompanied by sarcasm, particularly when expressing intense feelings. Over the past few decades, social media platforms such as Facebook, Instagram, TikTok, Twitter, and YouTube have become popular tools for people to share such strong emotions and personal thoughts with wide audiences. Through techniques like sentiment analysis, this data can be valuable in various fields, including business, marketing, production, behavioral analysis, and public management during ecological or biological crises, as well as in times of war.

Most current research treats sentiment and sarcasm classification as two separate tasks, approaching each as an independent text classification problem. In recent years, studies using deep learning algorithms have significantly improved the effectiveness of these independent classifiers. However, one of the main challenges these approaches face is their inability to accurately classify sarcastic statements as negative. Taking this into account, we argue that recognizing sarcasm enhances sentiment classification, and vice versa. In this work, we demonstrate that these two tasks are interrelated. This paper proposes a multi-task learning framework that leverages deep neural networks to model this interrelation, aiming to improve the overall effectiveness of sentiment analysis.

Source type: Journals
Years of coverage from 2022
inLibrary
Google Scholar
HAC
elibrary
doi
 
95-104
37

Downloads

Download data is not yet available.
To share
Rаhhimov X. . (2024). Identification of sarcasm in texts for sentimental analysis. Foreign Linguistics and Lingvodidactics, 2(4/S), 95–104. Retrieved from https://inlibrary.uz/index.php/foreign-linguistics/article/view/68058
Crossref
Сrossref
Scopus
Scopus

Abstract

Humanity has discovered various ways to express emotions. Depending on the context of speech, these emotions are sometimes accompanied by sarcasm, particularly when expressing intense feelings. Over the past few decades, social media platforms such as Facebook, Instagram, TikTok, Twitter, and YouTube have become popular tools for people to share such strong emotions and personal thoughts with wide audiences. Through techniques like sentiment analysis, this data can be valuable in various fields, including business, marketing, production, behavioral analysis, and public management during ecological or biological crises, as well as in times of war.

Most current research treats sentiment and sarcasm classification as two separate tasks, approaching each as an independent text classification problem. In recent years, studies using deep learning algorithms have significantly improved the effectiveness of these independent classifiers. However, one of the main challenges these approaches face is their inability to accurately classify sarcastic statements as negative. Taking this into account, we argue that recognizing sarcasm enhances sentiment classification, and vice versa. In this work, we demonstrate that these two tasks are interrelated. This paper proposes a multi-task learning framework that leverages deep neural networks to model this interrelation, aiming to improve the overall effectiveness of sentiment analysis.


background image

Xorijiy lingvistika va lingvodidaktika

Зарубежная

лингвистика

и

лингводидактика

Foreign

Linguistics and Linguodidactics

Journal home page:

https://inscience.uz/index.php/foreign-linguistics

Identification of sarcasm in texts for sentimental analysis

Kh

аsаnboy RА

KHIMOV

1


Andijan State University,

Nаmаngаn Stаte Institute of Foreign Languages

ARTICLE INFO

ABSTRACT

Article history:

Received August 2024

Received in revised form

10 September 2024
Accepted 25 September 2024

Available online

25 October 2024

Humanity has discovered various ways to express emotions.

Depending on the context of speech, these emotions are

sometimes accompanied by sarcasm, particularly when

expressing intense feelings. Over the past few decades, social

media platforms such as Facebook, Instagram, TikTok, Twitter,
and YouTube have become popular tools for people to share such

strong emotions and personal thoughts with wide audiences.

Through techniques like sentiment analysis, this data can be

valuable in various fields, including business, marketing,
production, behavioral analysis, and public management during

ecological or biological crises, as well as in times of war.

Most current research treats sentiment and sarcasm

classification as two separate tasks, approaching each as an

independent text classification problem. In recent years, studies
using deep learning algorithms have significantly improved the

effectiveness of these independent classifiers. However, one of

the main challenges these approaches face is their inability to

accurately classify sarcastic statements as negative. Taking this
into account, we argue that recognizing sarcasm enhances

sentiment classification, and vice versa. In this work, we

demonstrate that these two tasks are interrelated. This paper
proposes a multi-task learning framework that leverages deep
neural networks to model this interrelation, aiming to improve

the overall effectiveness of sentiment analysis.

2181-3701

2024 in Science LLC.

DOI:

https://doi.org/10.47689/2181-3701-vol2-iss4

/S

-pp95-104

This is an open-access article under the Attribution 4.0 International

(CC BY 4.0) license (

https://creativecommons.org/licenses/by/4.0/deed.ru

)

Keywords:

sentiment analysis,
social media platforms,
NLP,
sarcasm,

deep learning algorithm,
multi-task learning,
polarity,

tokenization.

Sentiment tahlil uchun matnlardagi kinoyalarni aniqlash

ANNOTATSIYA

Kalit so‘zlar

:

sentiment analizi,

Insoniyat o‘z his

-

tuyg‘ularini ifoda etishning turli xil usullarini

topgan. Nutq vaziyatidan kelib chiqib, bu hislar ba’zan kinoya bilan

1

Bаsic Doctorаl Stud

ent, Andijan State University,

Intern Teаcher, Nаmаngаn Stаte Institute of Foreign Languages.


background image

Xorijiy lingvistika va lingvodidaktika

Зарубежная лингвистика

и лингводидактика

Foreign Linguistics and Linguodidactics

Special Issue

4 (2024) / ISSN 2181-3701

96

ijtimoiy media platformalari,

NLP,
kinoya(sarcazm) ,
deep learning algoritm,

multi-task learning,
polaritet,
tokenizatsiya

qo‘shilib keladi, ayniqsa kuchli tuyg‘ularni namoyon qilayotganda.

So‘nggi o‘n yillar mobaynida, Facebook, Instagram, TikTok, Twitter

va You Tube kabi ijtimoiy tarmoq platformalari odamlar ana
shunday kuchli his-

tuyg‘ulari, shaxsiy fikr

-mulohazalarini ifoda

qilib , ko‘plab auditoriyalar bilan baham ko‘rish uchun mashhur

vositalarga aylandi. Sentiment analiz kabi mos ajratib olish

texnikalari bilan, bu ma’lumotlar biznes, marketing, ishlab

chiqarish, xulq-atvor analizi, ekologik va biologik kulfatlar yoki

u

rushlar davrida omma boshqaruvi kabi ko‘plab jabhalarda foydali

bo‘la oladi. Hozirgi izlanishlarning aksariyati bularni ikkita alohida

topshiriqlar sifatida qabul qiladi. Aksariyat sentiment va sarkazm
klassifikatsiya yondashuvlari mustaqil ravishda matnni tasniflash

muammosi sifatida ko‘rib chiqilgan. So‘nggi yillarda chuqur

o‘rganish algoritmlaridan foydalanib qilingan tadqiqot ishlari bu

mustaqil klassifikatorlarning samaradorligini sezilarli darajada

oshirgan. Bu yondashuvlar tomonidan duch kelinadigan eng katta
muammolardan biri bu -

ular kinoyali gaplarni to‘g‘ri tarzda salbiy

deb tasniflay olmasliklarida edi. Buni inobatga olgan holda, biz

kinoyani aniqlashni bilish sentiment klassifikatsiyasiga yordam

berishini va aksincha ekanligini da’vo qilamiz. B

izning ishimiz

ushbu ikki topshiriqlar o‘zaro bog‘liq ekanligini ko‘rsatdi. Ushbu

maqola sentiment analizining umumiy samaradorligini oshirish

maqsadida ushbu o‘zaro bog‘liqlikni modellashtirish uchun chuqur

neytral tarmoqlardan foydalanadigan multi-task learningga
asoslangan ramkani taklif qiladi.

Выявление иронии в текстах для сентиментального
анализа

АННОТАЦИЯ

Ключевые слова:

анализ тональности,
платформы социальных
сетей,

NLP,

сарказм,

алгоритмы глубокого
обучения,

обучение с несколькими
задачами,

полярность,

токенизация.

Человечество нашло множество способов выражения

эмоций, которые, в зависимости от ситуации, могут
сопровождаться сарказмом, особенно при передаче сильных

чувств. За последние десятилетия социальные платформы,
такие как Facebook, Instagram, TikTok, Twitter и YouTube,

стали популярными каналами для выражения эмоций и

личных размышлений широкой аудитории. С помощью
методов анализа тональности эти данные находят

применение в таких сферах, как бизнес, маркетинг,

производство, анализ поведения и управление обществом в

условиях экологических и биологических катастроф или
военных

конфликтов.

Большинство

современных

исследований рассматривают анализ тональности и

сарказма

как

две

отдельные

задачи

текстовой

классификации. В последние годы благодаря алгоритмам
глубокого обучения удалось существенно повысить

эффективность этих классификаторов. Однако одна из

ключевых проблем заключается в том, что такие подходы

часто

не

способны

корректно

классифицировать


background image

Xorijiy lingvistika va lingvodidaktika

Зарубежная лингвистика

и лингводидактика

Foreign Linguistics and Linguodidactics

Special Issue

4 (2024) / ISSN 2181-3701

97

саркастические высказывания как негативные. В связи с

этим мы утверждаем, что умение распознавать сарказм

улучшает классификацию тональности и наоборот,
поскольку эти задачи взаимосвязаны. В данной статье

предложена модель на основе обучения с несколькими

задачами (multi

-

task learning), использующая глубокие

нейронные сети для моделирования взаимосвязи между
классификацией тональности и сарказма, что повышает

общую эффективность анализа тональности.

Datareportal sayti ma’lumotlariga qaraganda, 2024

-

yilda dunyo bo‘ylab internetdan

foydalanuvchi soni 5.35 milliard kishini yoki dunyo aholisining taxminan 66.2 foizini
tashkil etmoqda.

Bu yil davomida internet foydalanuvchilari soni 1.8 foizga o‘sib, jami 97

million yangi foydalanuvchi 2023 yilda internetdan birinchi marta foydalangan. Jami
umumiy miqdorning 90% i ijtimoiy media foydalanuvchilari hisoblanadi [1]. Instagram,
Facebook, TikTok kabi ijtimoiy media platformalari bizning hayotimizning ajralmas
qismiga aylandi. Biz bu ijtimoiy media platformalari orqali tadbirkorlik, ishbilarmonlik
voqealaridan tortib, shaxsiy fikr va his-

tuyg‘ularimizni ham deyarli hammasini baham

ko‘ramiz. Bundan tashqari, ijtimoiy media deyarli real vaqt rejimida axborot olish u

chun

ommabop va ishonchli platforma ham hisoblanadi. Odamlar ijtimoiy mediada boshqa

foydalanuvchilardan olingan va baham ko‘rilgan ma’lumotlarga katta ishonch bilan

qaraydilar. Boshqacha qilib aytganda, odamlar bir-birlarini ijtimoiy media platformalari
o

rqali xabardor qilib, ularga ta’sir ko‘rsata oladilar. Bu jamiyatga ijtimoiy, siyosiy va

iqtisodiy jihatdan sezilarli ta’sir ko‘rsatadi. O‘zbekistonda ham so‘nggi paytlarda
biznesmenlar o‘z mahsulotlarini iste’molchilarining ehtiyojlarini tushunish va o‘z

mahsulotlarini yoki xizmatlarini reklama qilish uchun yuqorida sanab o‘tilgan ijtimoiy

platformalar bilan bir qatorda turli sayt va ilovalarni ham yuritishmoqda. Ular Yandex Go,

Uzum Market, ZoodMall, OLX kabi ilovalar orqali iste’molchilar ko‘rishni ist

agan

narsalarini tanlash va qanday munosabat bildirishini to‘liq nazorat qilishadi. Birgina
mahsulot haqidagi sharh iste’molchilar xatti

-

harakatiga va qaror qabul qilishiga ta’sir

qilishi mumkin. Natijada, kompaniyaning muvaffaqiyati va muvaffaqiyatsizligi ommaga
oshkor qilinib, ijtimoiy media platformalari orqali tez va keng tarqaladi. Masalan, Podium

tomonidan o‘tkazilgan bir tadqiqotga ko‘ra, internet foydalanuvchilarining 93% i xaridlari
va qarorlariga mijozlar sharhlari ta’sir qiladi [2]. Shunday ekan,

agar kompaniya o‘z

mijozlarining fikrlari bilan tezroq hamnafas bo‘lsa, raqobatchilariga qarshi muvaffaqiyatli
strategiya ishlab chiqishda ko‘proq ustunliklarda ega bo‘ladi. Tanganing ikki tomoni bor

deganlaridek, faqatgina ishlab chiqaruvchilar emas, xar

idorlar ham o‘z navbatida bunday

qulayliklardan ,aynan bildirilgan emotsional fikrlar bilan tovarni yoki xizmatni sotib
olishdan avval tanishish, yoki haqqoniy fikrlarini erkin ifoda etish orqali kompaniyadan
sifatli xizmatni talab qila olish imkoniyati tufayli manfaatdordir. Ijtimoiy mediaga yana bir

ta’sir COVID

-19 pandemiyasi tarqalganida kuzatildi. 2019-

yil dekabr oyida paydo bo‘lgan

ushbu pandemiya 2022-

yil oktyabr holatiga ko‘ra 619 milliondan ortiq kishiga yuqib, 6,55

milliondan ortiq odamning hayot

iga zomin bo‘ldi. Bu odamlar orasida yuqtirib olishdan

qo‘rqish va kundalik hayoti haqida katta tashvish va stressni keltirib chiqardi. Amerika
Psixologiya Assotsiatsiyasi ma’lumotlariga ko‘ra, AQSh kattalari COVID

-19

pandemiyasining dastlabki kunlaridan beri eng yuqori stress darajasini qayd etishgan, va

bunga sabab bo‘lgan stressning 80% i COVID

-

19 tufayli bo‘lgan uzaytirilgan stressdan


background image

Xorijiy lingvistika va lingvodidaktika

Зарубежная лингвистика

и лингводидактика

Foreign Linguistics and Linguodidactics

Special Issue

4 (2024) / ISSN 2181-3701

98

iborat [4]. Ijtimoiy media odamlar uchun o‘zini tanitishning eng tezkor yo‘llaridan biriga

aylandi va shu sababli ijtimoiy tarmoqlardagi axborot olami ularning fikr-mulohazalarini

aks ettiruvchi ma’lumotlar bilan to‘ldirilmoqda. Albatta, ushbu fikr

-mulohazalarni tahlil

qilish ularning his-

tuyg‘ulari va kayfiyatini aniqlashning to‘g‘ridan

-

to‘g‘ri yo‘li hisoblanadi

[5]. Sentimental analiz bu tahlilning asosini tashkil qiladi. Yaqinda sentiment analiz

o‘zining ahamiyatini ko‘rsatib, COVID

-19 pandemiyasi davrida odamlarning his-

tuyg‘ularini tushunishda muhim rol o‘ynadi. Bu hukumatga COVID

-

19 bilan bog‘liq

odamlarning xavotirlarini tushunishda va shunga mos ravishda tegishli choralarni

ko‘rishda yordam berdi [14].

*Sentiment analiz(sentimental analysis) - bu odamlarning hayollari, hissiyot va

tuyg‘ularini analiz qilish, ya’ni hayol, his va tuyg‘ularni, ijobiy, salbiy va neytral

kategoriyalariga ajratish texnikasidir.

Sentiment analiz (hissiy tahlil, fikrlarni tagiga yetish)

bu tabiiy tilni qayta ishlash

(NLP)da matnni tahlil qilish va kompyuter lingvistikasi texnikalaridan foydalanib,

tuzilmagan matndan subyektiv ma’lumotlarni aniqlash, ajratish va tasniflash jarayon

i [6].

Bu jumlalar ularning ma’nosidan olingan so‘z belgilari yordamida

polaritetini aniqlashga

qaratilgan [ 7, 8]. Natijada, sentiment analiz turli postlar va sharhlar kabi tuzilmagan

ma’lumotlar manbalaridan foydali ma’lumotlarni olish uchun muhim texnika hisoblanadi

va bu texnika internetdagi mahsulot sharhlaridan fikrlarni

olish uchun keng qo‘llaniladi

[9]. Shu paytgacha sentiment analizni bir qator boshqa sohalarda, masalan, fond bozorini

bashorat qilish [10] va terrorchilik hujumlariga javoblarda ham qo‘llanilgan [11]. Bundan

tashqari, sentiment analiz va tabiiy til ishla

b chiqarish sohalarining o‘zaro kesishuvi

tadqiqotlari sentiment analizning qo‘llanilishiga oid bir qator muammolarni, masalan, ko‘p
tillilikni qo‘llab

-quvvatlash [12] va kinoyani aniqlash kabi masalalarni muhokama qilgan.

Kinoya(sarcazm) - ostida salbiy

niyat yotgan ijobiy gap deb ta’riflanadi. U ikki xil

ma’noda qo‘llaniladi: 1. Masxaralash, kulish uchun asl ma’nosidan boshqa, majoziy
ma’noda aytilgan so‘z, gap; qochirim, istehzo, piching, kesatiq ifodasi. 2. ad. Uslubiy vosita:

badiiy asardagi inkor eti

sh usullaridan biri bo‘lib, biror shaxs yoki narsa ustidan kesatiq,

qochiriq vositasida yashirin kulishdan iborat [13].

Avtomatlashtirilgan tahlilning ko‘plab yutuqlari bilan birga cheklovlari ham mavjud

bo‘lib, ular tabiiy tilning noaniqligi va post qilingan kontentning xususiyatlari tufayli
amalga oshirish murakkabligiga olib keladi. Shu muammolar ta’sirida, o’zbekcha dur

dona

asarlar avtomatik tarjimada o‘z qiymatini yo‘qotib, yaroqsiz holga kelishi mumkin. Ijtimoiy
tarmoqlardagi postlarni o‘rganish ham avtomatik tahlil turidagi cheklovlarning bir misoli
bo‘lib, ular odatda hashtaglar, emotsiyalar va havolalar bilan birga

keladi, bu esa

ifodalangan kayfiyatni aniqlashni qiyinlashtiradi. Bundan tashqari, avtomatlashtirilgan

texnikalar katta hajmdagi belgilangan postlar to‘plamini yoki kayfiyat qiymatlari bilan
bog‘liq hissiy so‘zlar lug‘atini talab qiladi. Insonlardan farqli o‘laroq, mashinalar matndagi

subyektivlikni, masalan, kinoyali kontekstni tushunishda qiynaladi [15]. Odamlar

ko‘pincha kinoyali matnlarda o‘zining salbiy his

-

tuyg‘ularini ifodalash uchun

ruhlantiruvchi so‘zlarni ishlatishadi. Bu holat kinoyali his

-

tuyg‘

ularni tahlil qilish

modellari uchun aldanishiga olib kelishi mumkin, agar model aynan kinoyani hisobga

oladigan tarzda ishlab chiqilmagan bo‘lsa. Alaloqibat, kinoyali jumlalarda ishlatiladigan

atamalar xilma-xilligini hisobga olganda, his-

tuyg‘ularni tahlil qilish modelini o‘rgatish

murakkablashadi.


background image

Xorijiy lingvistika va lingvodidaktika

Зарубежная лингвистика

и лингводидактика

Foreign Linguistics and Linguodidactics

Special Issue

4 (2024) / ISSN 2181-3701

99

Kinoyali matnlarning noto‘g‘ri tasniflanishi natijasida jumlaning polariteti o‘zgarib

ketishi mumkinligini hisobga olgan holda, ushbu maqolaning asosiy maqsadi mavjud his-

tuyg‘ular tahlili modelining aniqligini oshirish va yanada aqlli ma'lumotlarni ajrati

b olish

uchun kinoya aniqlashning his-

tuyg‘ular tahliliga ta'sirini o‘rganishdir. Bu ilmiy

maqolamiz orqali ikki xil maqsadni ko‘zladik. Birinchidan, his

-

tuyg‘ular tahlili va kinoya

aniqlashni yanada o‘rinli va aniqroq ma'lumotlarni ajratib olish uchun bir

lashtiruvchi

umumiy ramka yaratamiz. Boshqa tomondan, model murakkabligini kamaytirish va
samaradorligini oshirish uchun his-

tuyg‘ular tahlili va kinoya aniqlashni bir vaqtning

o‘zida o‘rgatuvchi chuqur multi

-

vazifa o‘rganishni taklif qilamiz.

His-

tuyg‘ular tahlilining ildizlarini Ikkinchi jahon urushigacha bo‘lgan qo‘lyozma

hujjatlar orqali kuzatish mumkin, bu davrda asosiy e'tibor asosan siyosatga qaratilgan edi.
2000-

yillarning o‘rtalaridan boshlab, Internetdagi turli mazmundagi subyektiv

ma'lumotlarni qazib olish uchun Tabiiy Tilni Qayta Ishlash (NLP) texnologiyalaridan
foydalanib, his-

tuyg‘ular tahlili faol tadqiqot yo‘nalishiga aylandi. His

-

tuyg‘ular tahlili

modellari uchun an’anaviy mashinani o‘rganish algoritmlaridan tortib, chuqur o‘rgan

ish

algoritmigacha bo‘lgan turli xil usullar taklif etilgan. Masalan, mashinani o‘rganish

yordamida his-

tuyg‘ular tahlili 1980

-yillargacha aksariyat tabiiy tilni qayta ishlash(NLP)

algoritmlari murakkab qo‘lda yozilgan qoidalar majmuasiga asoslangan edi.

Shundan

so‘ng, tabiiy tilni qayta ishlash sohasida mashinani o‘rganish algoritmlari joriy etilishi bilan

inqilob yuz berdi. Dastlabki ishlarda his-

tuyg‘ularni ijobiy va salbiy toifalarga ajratish usuli

asosida klassifikatsiya qilish amalga oshirilgan, masalan [7], his-

tuyg‘ularni klassifikatsiya

qilishda uchta mashinani o‘rganish algoritmi qo‘llanilgan. Ushbu algoritmlar:

1. Support Vector Machine (SVM),

2. Naïve Bayes klassifikatori

3. Maximum Entropy algoritmi
Klassifikatsiya jarayoni n-gram usuli yordamida amalga oshirilgan; bu usulda

unigram, bigram va ikkala usulning kombinatsiyasi qo‘llangan. Shuningdek, mashinani
o‘rganish algoritmlarini kiritish uchun bag

-of-words (BOW) paradigmasidan ham

foydalanilgan. Tadqiqotlar natijasida ularning ishlash samaradorligi istiqbolli

ko‘rsatkichlar bergan.

Hujjat darajasidagi his-

tuyg‘ularni tahlil qilish uchun so‘zlar orasidagi sintaktik

munosabatlardan foydalanilgan [16]. Ushbu maqolada SVM algoritmi uchun xususiyat
sifatida xizmat qiluvchi sub-

sekanslar va bog‘liqlik daraxtlari jumlalardan hosil qilingan.

Unigram, bigram, so‘zlar ketma

-

ketligi va bog‘liqlik ham har bir jumladan ajratib olinib,

tahlil uchun ishlatilgan. Shunga o‘xshash boshqa bir ishda esa so‘z vektorlarini o‘rganish

va keyinchalik semantik termin (hujjat ma'lumoti) va boy his-

tuyg‘u mazmun

ini olish

uchun nazoratsiz va nazoratli usullar aralashmasidan foydalanilgan [17].

Yuqori darajadagi n-

gram frazalarni past darajadagi o‘lchovli semantik latent fazo

bilan birlashtiruvchi mexanizm taklif qilingan [18]. Bu mexanizm his-

tuyg‘ularni tasniflash

funksiyasini aniqlash uchun ishlatilgan. Ular shuningdek, latent fazo parametrlarini

baholaydigan va tasniflash vazifasiga yo‘naltirilgan diskriminatsion tizim yaratish uchun
SVM dan foydalanganlar. Ushbu usul ikkilik tasniflash va ko‘p ballik his

-

tuyg‘ular tasnifini

amalga oshirishi mumkin, bu his-

tuyg‘u ballari to‘plamidagi prognozlashni o‘z ichiga oladi.

Entropiya bilan vaznlashgan genetik algoritm (EWGA) va SVM yordamida his-

tuyg‘ularni tasniflash usuli taklif etilgan[19]. Sintaktik va stilistik xususiyatlardan iborat
turli xil xususiyatlar to‘plami baholangan. Stilistik jihatdan, bu usul so‘z uzunligi t

aqsimoti,


background image

Xorijiy lingvistika va lingvodidaktika

Зарубежная лингвистика

и лингводидактика

Foreign Linguistics and Linguodidactics

Special Issue

4 (2024) / ISSN 2181-3701

100

lug‘at boyligi va maxsus belgilar chastotasini o‘lchaydi. Genetik algoritmdan

foydalanishdan oldin turli xil his-

tuyg‘u atributlariga vaznlar beriladi, bu esa his

-

tuyg‘ularni tasniflashni optimallashtirishga xizmat qiladi. Modelni tasdiqlash uchun SVM

va o

‘n marta krossvalidatsiya texnikasi qo‘llanilgan va istiqbolli natijalar olingan.

So‘nggi yillarda deep learning algoritmini keng qabul qilindi, chunki u an’anaviy,

vazifaga xos xususiyatlarni ishlab chiqishni talab qilmaydi, bu esa uni his-

tuyg‘ularni tahlil

qilish uchun kuchliroq alternativaga aylantiradi. Aynan shu algoritm tomonidan

hujjatlarning o‘xshashligini aniqlash uchun chuqur neyron tarmoqdan foydalanadigan
arxitektura taklif qilingan [20]. Arxitekturasi T&C dan olingan ko‘plab bozor yangiliklari
yordamida maqolalarning vektorli shakllarini yaratishga o‘rgatilgan. Belgilangan

hujjatlar

orasida kosinus o‘xshashligi, hujjatlarning polaritetini hisobga olib, lekin mazmunini
e’tiborsiz qoldirgan holda hisoblangan. Taklif etilgan usul maqolalarning o‘xshashlik
baholashida ajoyib natijalarni ko‘rsatdi.

Hujjat darajasida his-

tuyg‘ularni tahlil qilish uchun esa ketma

-ketlikni

modellashtiruvchi neyron tarmoq taklif qilingan bo‘lib, asosan vaqtga bog‘liq xususiyatga
ega mijozlar sharhlariga e’tibor qaratilgan [21]. Ularning usuli mahsulot va

foydalanuvchilar

ni taqsimlangan holda ifodalashni o‘rganish uchun qayta takrorlanuvchi

neyron tarmoqni (RNN-

GRU) o‘rgatdi. Tayyor ifodalar keyinchalik his

-

tuyg‘ularni

tasniflash uchun mashinani o‘rganish klassifikatoriga yuborilgan. Hosil bo‘lgan usul Yelp

va IMDb dan oli

ngan uchta ma’lumotlar to‘plamida sinovdan o‘tgan. Har bir baholash

reyting bali bo‘yicha tenglangan va tarmoqni o‘rgatish uchun orqaga qaytarish algoritmi
Adamning stoxastik optimizatsiyasi yordamida yo‘qotish funksiyasini hisoblash uchun

ishlatilgan. Simulyatsiya natijalari mahsulot va foydalanuvchilarni taqsimlangan holda

o‘rganishning ketma

-ketlik modellashtirishi hujjat darajasidagi his-

tuyg‘ularni tasniflash

samaradorligini oshirishini ko‘rsatdi.

[22]-da esa jumla darajasida his-

tuyg‘ularni tahlil qilish uchun Uzun

-Qisqa Muddatli

Xotira (Deep Recurrent Neural Network- (RNN-LSTM)) dan tashkil topgan chuqur qayta

takrorlanuvchi neyron tarmoq (RNN) taklif qilingan, chunki so‘zlarni kiritish vakili, hi

s-

tuyg‘u bilimlari, his

-

tuyg‘u o‘zgartiruvchi qoidalar, statistik va lingvistik bilimlarni o‘z

ichiga olgan yagona xususiyat to‘plamiga asoslangan his

-

tuyg‘ular tahlili oldin

o‘rganilmagan edi. Ushbu kombinatsiya ketma

-ketlikni qayta ishlash imkonini bergan va

an’anaviy usullarning ayrim kamchiliklarini bartaraf etgan. [23]

-da esa real vaqt rejimidagi

nozik his-

tuyg‘ularni tahlil qilish uchun ConvNet

-SVMBoVW deb nomlangan gibrid chuqur

o‘rganish usuli taklif etilgan. Gibrid polaritetni hisoblash uchun agreg

atsiya modeli

yaratilgan va vizual kontentning his-

tuyg‘usini bashorat qilish uchun bag

-of-visual-word

(BoVW) ni o‘rgatish uchun SVM ishlatilgan.

Taklif etilgan usullar nafaqat his-

tuyg‘ularni besh darajada (juda ijobiy, ijobiy,

neytral, salbiy va juda salbiy) nozik darajada tahlil qilish imkonini berdi, balki mavjud

usullardan ham yuqori natijalarni ko‘rsatdi. [24] tomonidan o‘tkazilgan tadqiqotda

arab

tilidagi onlayn avtomobil va ko‘chmas mulk sharhlari ma’lumotlar to‘plamidagi his

-

tuyg‘ular tahlil qilingan. Ular Bi

-

LSTM (Yo‘nalishli Uzun

-Qisqa Muddatli Xotira), LSTM,

GRU, CNN (Konvolyutsion Neyron Tarmoqlar) va CNN-

GRU kabi chuqur o‘rganish

algori

tmlarini BERT so‘z embedding modeli bilan birlashtirgan holda ishlatganlar.

Ko‘chmas mulk ma’lumotlar to‘plamida taxminan 6,434 fikr, avtomobil ma’lumotlar
to‘plamida esa 6,585 ga yaqin fikr mavjud edi. Har ikkala ma’lumotlar to‘plamidagi

yozuvlarga uch xil his-

tuyg‘u turi (salbiy, ijobiy va aralash) berilgan. BERT va LSTM bilan


background image

Xorijiy lingvistika va lingvodidaktika

Зарубежная лингвистика

и лингводидактика

Foreign Linguistics and Linguodidactics

Special Issue

4 (2024) / ISSN 2181-3701

101

birga ishlatilganda, avtomobil ma’lumotlar to‘plamida eng yuqori F1 ball 98,71% ni tashkil
etdi. Boshqa tomondan, ko‘chmas mulk uchun CNN bilan birga ishlatilganida maksimal F1

ball 98,67% ga yetdi.

So‘nggi vaqtlarda multi

-

task learning chuqur o‘rganish tadqiqotlarida katta

e'tiborga sazovor bo‘ldi. Multi

-task learning bitta umumiy model orqali bir nechta

vazifalarni bir vaqtda bajarish imkonini beradi. [25]-da CNN va RNN asosida multi-vazifa

o‘rganis

h yondashuvi taklif qilingan. Ushbu model avtomatlashtirilgan sitata tahlilini

yaxshilash va bir vaqtda o‘rgatish uchun sitata his

-

tuyg‘usini klassifikatsiya qilish (CSC) va

sitata maqsadini klassifikatsiya qilish (CPC) ni birgalikda o‘rgatadi va shuningde

k, trening

ma’lumotlari yetishmasligi va vaqt talab qiluvchi xususiyatlarni ishlab chiqish

muammosini bartaraf etadi. Kinoyani aniqlash orqali mustaqil his-

tuyg‘ularni tasniflovchi

modelni yaxshilash usuli taklif qilingan bo‘lib [26], bizning taklif qilgan

metodimizga

o‘xshashdir. Bu usulda ikkita aniq o‘rgatilgan model talab qilinadi: his

-

tuyg‘u modeli va

kinoya modeli. Kinoyani aniqlash uchun xususiyatlarni ajratishda asosiy so‘z xususiyatlari,

Unigram va 4 Boaziz xususiyatlari, jumladan, tinish belgilari

bilan bog‘liq xususiyatlar, his

-

tuyg‘u bilan bog‘liq xususiyatlar va leksik va sintaktik xususiyatlar qo‘llangan. Kinoya

aniqlash uchun Random Forest algoritmi, his-

tuyg‘ularni klassifikatsiya qilish uchun esa

Naïve Bayes algoritmi ishlatilgan. Model 80.4

% aniqlik, 91.3% qaytaruvchanlik va 83.2%

aniqlik natijalarini ko‘rsatdi. Baholash natijalari kinoyani aniqlash his

-

tuyg‘ularni tahlil

qilish natijalarini taxminan 5.49% ga yaxshilanishini ko‘rsatdi. Ushbu bo‘limda N

-gram,

Gibrid MLT va Chuqur o‘rganish us

ullari kabi his-

tuyg‘ular tahlili bo‘yicha tadqiqotchilar

tomonidan qo‘llanilgan turli texnikalar kiritilgan. Shuningdek, ma'lumotlar to‘plamini

tanlash va ma'lumotlarni raqamli vektor shakliga aylantirish, yuqori natijalar olish uchun
tadqiqotchilar tomonidan qadam sifatida amalga oshiriladi. Turli usullardan olingan

aniqlik ko‘rsatkichlari yuqori bo‘lib, masalan, N

-gram usuli SVM yordamida 94,6%

aniqlikka erishgan [18], va gibrid MLT usuli EWGA va SVM gibridi yordamida 91,7% ga
yetgan [19]. Ushbu chuqur o

‘rganish usullarining aksariyati an’anaviy usullardan yuqori

natijalarni ko‘rsatdi. Biroq, bu usullarda ba’zi kamchiliklarni ham kuzatish mumkin. Ilgari

muhokama qilinganidek, kinoyali kontekst his-

tuyg‘ularni tasniflashda muhim rol

o‘ynaydi. Agar tizim ki

noyani hisobga olmasa, kinoyali matn ijobiy tvit sifatida tasniflanadi,

bu esa noto‘g‘ri tasniflanishga olib keladi. Ko‘proq aniq natijalar olish uchun bu noto‘g‘ri
tasniflanishni hal qilish uchun qo‘shimcha qadam talab qilinadi. Yaqin o‘n yillik
o‘tmishimizda mashinani o‘rganish va chuqur o‘rganish usullaridan foydalanib, matnga

asoslangan hujjatlarni yuklab olish va tushunish sohasida muhim yutuqlarga erishildi.

Biroq, mavjud texnikalarda tillarning o‘ziga xosligi, masalan, his

-

tuyg‘ularni ifodalashda

kinoya ishlatilishi kabi cheklovlar mavjud. Ushbu masala [26] har bir vazifa uchun ikkita

aniq o‘rgatilgan model yordamida hal qilingan. Bu usul yanada aniqroq his

-

tuyg‘ular

tahlilini taqdim etadi, lekin yuqori murakkablik, uzoqroq ishlov berish vaqti va haddan

tashqari o‘rganishga moyillik bilan keladi. Maqola orqali biz kinoyani aniqlash orqali his

-

tuyg‘ular tasnifini yaxshilovchi to‘liq ramkani taklif qilamiz. Model murakkabligini va

ishlov berish vaqtini kamaytirish uchun biz ramkada multi-task learningdan foydalanamiz.




background image

Xorijiy lingvistika va lingvodidaktika

Зарубежная лингвистика

и лингводидактика

Foreign Linguistics and Linguodidactics

Special Issue

4 (2024) / ISSN 2181-3701

102

Bosqich

Tushuntirish

Ma'lumotlarni

yig'ish(Data

Acquisition)

Sentiment

va

Kinoya

ma'lumotlar to'plamlari kirish

ma'lumotlari sifatida qo‘llaniladi.

Oldindan ishlov berish

(Pre-Processing)

Ma'lumotlarga ishlov berish jarayonlari

quyidagilarni o‘z ichiga oladi:

Tokenizatsiya

:

Matnni

so‘zlarga

ajratish.

So‘zlarni

normalizatsiya qilish

: So‘z

shakllarini standartlashtirish.

Shovqinli so‘zlarni olib tashlash

:

Keraksiz so‘zlarni olib tashlash.

Tin

belgilari

olib

tashlash:

Punktuatsiyalarni olib tashlash.

Keraksiz

so‘zlarni

olib

tashlash

:

Umumiy

so‘zlarni (masalan, "va",

"lekin") olib tashlash.

Stemming

: So‘zlarni ildiz shakliga

keltirish.

Ko‘p vazifali o‘rganish

tarmog‘i

(Multi-Task

Learning

Network)

Neyron tarmoq

bir vaqtning o‘zida sentiment

va kinoyani aniqlash vazifalarini bajaradi.

Ko‘p

qatlamli

perseptron qatlami (Multi-
Perceptron Layer)

Bu tarmoq ikki bo’limga bo‘linadi:

Sentiment tasnifi: Matnning sentimentini
aniqlash (ijobiy, salbiy, neytral).

Kinoya tasnifi: matnda kinoya mavjudligini
aniqlash

Baholash (Evolution)

Model samaradorligi Tasdiqlash aniqligi va

Tasdiqlash yo'qotilishi kabi mezonlar bilan
baholanadi.





background image

Xorijiy lingvistika va lingvodidaktika

Зарубежная лингвистика

и лингводидактика

Foreign Linguistics and Linguodidactics

Special Issue

4 (2024) / ISSN 2181-3701

103

FOYDALANILGAN ADABIYOTLAR RO‘YXATI:

1.

https://datareportal.com/reports/digital-2024-deep-dive-the-state-of-

internet-adoption

2.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X.,

Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., & Cao, B. (2020). Clinical
features of patients infected with 2019 novel coronavirus in Wuhan China. The Lancet,
395(10223), 497

506. https:// doi. org/ 10. 1016/ s0140- 6736(20) 30183-5

3.

American Psychological Association. (n.d.). APA: U.S. adults report highest

stress level since early days of the COVID-19 pandemic. American Psychological
Association. Retrieved October 6, 2022, from https:// www. apa. org/ news/ press/
releases/ 2021/ 02/ adults- stress- pandemic

4.

Online Reviews Stats & Insights. Podium. (n.d.). Retrieved October 6, 2022,

from https:// www. podium.com/ resources/ podium- state- of- online- reviews.

5.

De Choudhury, Munmun, Counts, & Scott. (2012). The nature of emotional

expression in social media: measurement, inference and utility. Human Computer
Interaction Consortium (HCIC).

6.

Zhao, J., Liu, K., & Xu, L. (2016). Sentiment analysis: Mining opinions,

sentiments, and emotions. Computational Linguistics, 42(3), 595

598. https://doi. org/

10. 1162/ coli_r_ 00259

7.

Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using

subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual
Meeting on Association for Computational Linguistics

–ACL ’04. https:// doi. org/ 10.

3115/ 12189 55. 12189 90

8.

Turney, P. D. (2001). Thumbs up or thumbs down? Semantic orientation

applied to unsupervised classification of reviews. Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics

–ACL ’02. https:// doi. org/ 10.

3115/ 10730

83. 10731 53

9.

Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery:

Opinion extraction and semantic classification of product reviews. In: Proceedings of the
Twelfth International Conference on World Wide Web -

WWW ’03. https:// doi. org/ 10.

1145/ 775152. 775226

10.

Khadjeh Nassirtoussi, A., Aghabozorgi, S., Ying Wah, T., & Ngo, D. C. (2014).

Text mining for market prediction: A systematic review. Expert Systems with Applications,
41(16), 7653

7670. https:// doi.org/ 10. 1016/j. eswa. 2014. 06. 009

11.

Burnap, P., Williams, M. L., Sloan, L., Rana, O., Housley, W., Edwards, A., Knight,

V., Procter, R., & Voss, A. (2014). Tweeting the terror: Modelling the social media reaction
to the Woolwich terrorist attack. Social Network Analysis and Mining. https:// doi. org/
10. 1007/ s13278- 014- 0206-4

12.

Hogenboom, A., Heerschop, B., Frasincar, F., Kaymak, U., & de Jong, F. (2014).

Multi-lingual support for lexicon-based sentiment analysis guided by semantics. Decision
Support Systems, 62, 43

53. https:// doi. org/ 10. 1016/j. dss. 2014. 03. 004

13.

O‘zbek tilining izohli lug‘ati sayt: https://izoh.uz/word/kinoya

14. Arunachalam, R., & Sarkar, S. (2013). The new eye of government: Citizen

sentiment analysis in social media. In: Proceedings of the IJCNLP 2013 Workshop on
Natural Language Processing for Social Media (SocialNLP), 23

28.


background image

Xorijiy lingvistika va lingvodidaktika

Зарубежная лингвистика

и лингводидактика

Foreign Linguistics and Linguodidactics

Special Issue

4 (2024) / ISSN 2181-3701

104

15. Diana, M., & MA, G. (2014). Who cares about sarcastic tweets? Investigating the

impact of sarcasm on sentiment analysis. Lrec 2014 Proceedings.

16. Matsumoto, S., Takamura, H., & Okumura, M. (2005). Sentiment classification

using word sub-sequences and dependency sub-trees. Advances in Knowledge Discovery
and Data Mining. https:// doi.org/ 10. 1007/ 11430 919_ 37

17. Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning

word vectors for sentiment analysis. Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, 142

150.

18. Bespalov, D., Bai, B., Qi, Y., & Shokoufandeh, A. (2011). Sentiment classification

based on supervised latent N-gram analysis. Proceedings of the 20th ACM International
Conference on Information and Knowledge Management -

CIKM ’11. https:// doi. org/ 1

0.

1145/ 20635 76. 20636 35

19. Abbasi, A., Chen, H., & Salem, A. (2008). Sentiment analysis in multiple languages:

Feature selection for opinion classification in web forums. ACM Transactions on
Information Systems, 26(3), 1

34. https:// doi. org/ 10. 1145/ 13616 84. 13616 8520.

Yanagimoto, H., Shimada, M., & Yoshimura, A. (2013). Document similarity estimation for
sentiment analysis using neural network. 2013 IEEE/ACIS 12th International Conference
on Computer and Information Science (ICIS). https:// doi. org/ 10. 1109/ icis. 2013. 66078
25

21. Chen, T., Xu, R., He, Y., Xia, Y., & Wang, X. (2016). Learning user and product

distributed representations using a sequence model for sentiment analysis. IEEE
Computational Intelligence Magazine,11(3), 34

44. https:// doi. org/ 10. 1109/ mci. 2016.

25725 39

22. Abdi, A., Shamsuddin, S. M., Hasan, S., & Piran, J. (2019). Deep learning-based

sentiment classification of evaluative text based on multi-feature fusion. Information
Processing & Management, 56(4),1245

1259. https:// doi. org/ 10. 1016/j. ipm. 2019. 02.

018

23. Kumar, A., Srinivasan, K., Cheng, W.-H., & Zomaya, A. Y. (2020). Hybrid context

enriched deep learning model for fine-grained sentiment analysis in textual and visual
semiotic modality social data. Information Processing & Management, 57(1), 102141.
https:// doi. org/ 10. 1016/j. ipm. 2019. 102141

24. Yafoz, A., & Mouhoub, M. (2021). Sentiment analysis in Arabic social media using

deep learning models. 2021 IEEE International Conference on Systems, Man, and
Cybernetics SMC. https:// doi. org/10. 1109/ smc52 423. 2021. 96592 45

25. Yousif, A., Niu, Z., Chambua, J., & Khan, Z. Y. (2019). Multi-task learning model

based on recurrent convolutional neural networks for citation sentiment and purpose
classification. Neurocomputing, 335,195

205. https:// doi. org/ 10. 1016/j. neucom. 2019.

01. 021

26. Yunitasari, Y., Musdholifah, A., & Sari, A. K. (2019). Sarcasm detection for

sentiment analysis in Indonesian tweets. IJCCS Indonesian Journal of Computing and
Cybernetics Systems, 13(1), 53.https:// doi. org/ 10. 22146/ ijccs. 41136

References

https://datareportal.com/reports/digital-2024-deep-dive-the-state-of-internet-adoption

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. The Lancet, 395(10223), 497–506. https:// doi. org/ 10. 1016/ s0140- 6736(20) 30183-5

American Psychological Association. (n.d.). APA: U.S. adults report highest stress level since early days of the COVID-19 pandemic. American Psychological Association. Retrieved October 6, 2022, from https:// www. apa. org/ news/ press/ releases/ 2021/ 02/ adults- stress- pandemic

Online Reviews Stats & Insights. Podium. (n.d.). Retrieved October 6, 2022, from https:// www. podium.com/ resources/ podium- state- of- online- reviews.

De Choudhury, Munmun, Counts, & Scott. (2012). The nature of emotional expression in social media: measurement, inference and utility. Human Computer Interaction Consortium (HCIC).

Zhao, J., Liu, K., & Xu, L. (2016). Sentiment analysis: Mining opinions, sentiments, and emotions. Computational Linguistics, 42(3), 595–598. https://doi. org/ 10. 1162/ coli_r_ 00259

Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics–ACL ’04. https:// doi. org/ 10. 3115/ 12189 55. 12189 90

Turney, P. D. (2001). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics–ACL ’02. https:// doi. org/ 10. 3115/ 10730 83. 10731 53

Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In: Proceedings of the Twelfth International Conference on World Wide Web - WWW ’03. https:// doi. org/ 10. 1145/ 775152. 775226

Khadjeh Nassirtoussi, A., Aghabozorgi, S., Ying Wah, T., & Ngo, D. C. (2014). Text mining for market prediction: A systematic review. Expert Systems with Applications, 41(16), 7653–7670. https:// doi.org/ 10. 1016/j. eswa. 2014. 06. 009

Burnap, P., Williams, M. L., Sloan, L., Rana, O., Housley, W., Edwards, A., Knight, V., Procter, R., & Voss, A. (2014). Tweeting the terror: Modelling the social media reaction to the Woolwich terrorist attack. Social Network Analysis and Mining. https:// doi. org/ 10. 1007/ s13278- 014- 0206-4

Hogenboom, A., Heerschop, B., Frasincar, F., Kaymak, U., & de Jong, F. (2014). Multi-lingual support for lexicon-based sentiment analysis guided by semantics. Decision Support Systems, 62, 43–53. https:// doi. org/ 10. 1016/j. dss. 2014. 03. 004

O‘zbek tilining izohli lug‘ati sayt: https://izoh.uz/word/kinoya

Arunachalam, R., & Sarkar, S. (2013). The new eye of government: Citizen sentiment analysis in social media. In: Proceedings of the IJCNLP 2013 Workshop on Natural Language Processing for Social Media (SocialNLP), 23–28.

Diana, M., & MA, G. (2014). Who cares about sarcastic tweets? Investigating the impact of sarcasm on sentiment analysis. Lrec 2014 Proceedings.

Matsumoto, S., Takamura, H., & Okumura, M. (2005). Sentiment classification using word sub-sequences and dependency sub-trees. Advances in Knowledge Discovery and Data Mining. https:// doi.org/ 10. 1007/ 11430 919_ 37

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 142–150.

Bespalov, D., Bai, B., Qi, Y., & Shokoufandeh, A. (2011). Sentiment classification based on supervised latent N-gram analysis. Proceedings of the 20th ACM International Conference on Information and Knowledge Management - CIKM ’11. https:// doi. org/ 10. 1145/ 20635 76. 20636 35

Abbasi, A., Chen, H., & Salem, A. (2008). Sentiment analysis in multiple languages: Feature selection for opinion classification in web forums. ACM Transactions on Information Systems, 26(3), 1–34. https:// doi. org/ 10. 1145/ 13616 84. 13616 8520. Yanagimoto, H., Shimada, M., & Yoshimura, A. (2013). Document similarity estimation for sentiment analysis using neural network. 2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS). https:// doi. org/ 10. 1109/ icis. 2013. 66078 25

Chen, T., Xu, R., He, Y., Xia, Y., & Wang, X. (2016). Learning user and product distributed representations using a sequence model for sentiment analysis. IEEE Computational Intelligence Magazine,11(3), 34–44. https:// doi. org/ 10. 1109/ mci. 2016. 25725 39

Abdi, A., Shamsuddin, S. M., Hasan, S., & Piran, J. (2019). Deep learning-based sentiment classification of evaluative text based on multi-feature fusion. Information Processing & Management, 56(4),1245–1259. https:// doi. org/ 10. 1016/j. ipm. 2019. 02. 018

Kumar, A., Srinivasan, K., Cheng, W.-H., & Zomaya, A. Y. (2020). Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data. Information Processing & Management, 57(1), 102141. https:// doi. org/ 10. 1016/j. ipm. 2019. 102141

Yafoz, A., & Mouhoub, M. (2021). Sentiment analysis in Arabic social media using deep learning models. 2021 IEEE International Conference on Systems, Man, and Cybernetics SMC. https:// doi. org/10. 1109/ smc52 423. 2021. 96592 45

Yousif, A., Niu, Z., Chambua, J., & Khan, Z. Y. (2019). Multi-task learning model based on recurrent convolutional neural networks for citation sentiment and purpose classification. Neurocomputing, 335,195–205. https:// doi. org/ 10. 1016/j. neucom. 2019. 01. 021

Yunitasari, Y., Musdholifah, A., & Sari, A. K. (2019). Sarcasm detection for sentiment analysis in Indonesian tweets. IJCCS Indonesian Journal of Computing and Cybernetics Systems, 13(1), 53.https:// doi. org/ 10. 22146/ ijccs. 41136