USING DIGITAL EDUCATIONAL TECHNOLOGIES IN TEACHING CHEMISTRY IN HIGH SCHOOL

Abstract

This quasi-experimental study examined the impact of digital education technologies (virtual labs, simulations, molecular visualization tools, and LMS) on secondary-school chemistry learning. Across three schools (Grades 9–10, N = 116), an 8 week intervention was implemented: treatment classes systematically used digital tools, while control classes followed business-as-usual instruction. Results showed significant gains favoring the treatment: (i) ANCOVA on concept test (post ~ group + pre) yielded Δadj = 8.7 percentage points, p < .01; Cohen’s d = 0.62 for conceptual understanding; (ii) d = 0.47 for procedural skills; (iii) extraneous cognitive load decreased (d = −0.45), attributed to guided instruction and well-aligned multiple external representations (MER). Qualitative findings highlighted enhanced engagement, faster error detection, and safe “re try” affordances. We conclude that when guided and purposefully integrated, digital technologies improve conceptual and practical outcomes in secondary chemistry; combining virtual and physical laboratories is recommended for optimum results.

Source type: Journals
Years of coverage from 2022
inLibrary
Google Scholar

Downloads

Download data is not yet available.
To share
Jumanazarova, R., & Isaqova, D. (2025). USING DIGITAL EDUCATIONAL TECHNOLOGIES IN TEACHING CHEMISTRY IN HIGH SCHOOL. Modern Science and Research, 4(11), 135–140. Retrieved from https://inlibrary.uz/index.php/science-research/article/view/139115
0
Citations
Crossref
Сrossref
Scopus
Scopus

Abstract

This quasi-experimental study examined the impact of digital education technologies (virtual labs, simulations, molecular visualization tools, and LMS) on secondary-school chemistry learning. Across three schools (Grades 9–10, N = 116), an 8 week intervention was implemented: treatment classes systematically used digital tools, while control classes followed business-as-usual instruction. Results showed significant gains favoring the treatment: (i) ANCOVA on concept test (post ~ group + pre) yielded Δadj = 8.7 percentage points, p < .01; Cohen’s d = 0.62 for conceptual understanding; (ii) d = 0.47 for procedural skills; (iii) extraneous cognitive load decreased (d = −0.45), attributed to guided instruction and well-aligned multiple external representations (MER). Qualitative findings highlighted enhanced engagement, faster error detection, and safe “re try” affordances. We conclude that when guided and purposefully integrated, digital technologies improve conceptual and practical outcomes in secondary chemistry; combining virtual and physical laboratories is recommended for optimum results.


background image

135

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

O‘RTA MAKTABDA KIMYO FANINI O‘QITISHDA RAQAMLI TA’LIM

TEXNOLOGIYALARIDAN FOYDALANISH

Jumanazarova Ra’no Jamoladdin qizi

1

ranojumanazarouva@gmail.com

Ilmiy rahbar: Isaqova Dilnoza Toshevna

2

dilnozaisoqova1991@gmail.com

Tashkilot: 1-Samarqand davlat pedagogika instituti talabasi

2- Samarqand davlat pedagogika instituti kimyo fanlari falsafa doktori (PhD).

https://doi.org/10.5281/zenodo.17553232

Annotatsiya.

Mazkur maqolada o‘rta maktabda kimyo fanini o‘qitishda raqamli ta’lim

texnologiyalarining (virtual laboratoriyalar, simulyatsiyalar, molekulyar vizualizatsiya
ilovalari) ta’siri eksperimental dizayn asosida baholandi. Uch umumta’lim maktabida (9–10-
sinflar, N = 116) 8 haftalik tadqiqot o‘tkazildi: tajriba sinflarida raqamli vositalar tizimli
qo‘llanildi, nazorat sinflarida odatiy usullar saqlandi. Asosiy natijalar: konseptual bilimlar
bo‘yicha ANCOVA tajriba foydasiga Δadj = 8.7 p.b., p < 0,01; Cohen d = 0,62; jarayon-
ko‘nikmalar testida d = 0,47; kognitiv yukning ortiqcha komponenti qisqardi, didaktik yo‘riqlar
va ko‘p reprezentatsiyali tasvirlar bilan muvofiqlashtirilgan dizayn hisobiga. Sifat tahlilida
o‘quvchilar faol ishtirok, xatoliklarni tezroq aniqlash va xavfsiz «qayta sinash» imkoniyatini
asosiy afzallik deb qayd etdilar. Xulosaga ko‘ra, yo‘riqnoma asosli, maqsadli integratsiya
qilinganda raqamli texnologiyalar kimyo o‘qitishning konseptual hamda amaliy natijalarini
oshiradi; optimal natija uchun virtual va an’anaviy laboratoriyalarni kombinatsiyalash tavsiya
etiladi.

[1,2,3]

Kalit so‘zlar:

raqamli ta’lim texnologiyalari; kimyo didaktikasi; virtual laboratoriya;

simulyatsiya; kognitiv yuk; MER (aqliy sa’y darajasini baholash reytingi) o‘rta maktab.

USING DIGITAL EDUCATIONAL TECHNOLOGIES IN TEACHING CHEMISTRY IN

HIGH SCHOOL

Abstract

. This quasi-experimental study examined the impact of digital education

technologies (virtual labs, simulations, molecular visualization tools, and LMS) on secondary-
school chemistry learning. Across three schools (Grades 9–10, N = 116), an 8-week intervention
was implemented: treatment classes systematically used digital tools, while control classes
followed business-as-usual instruction. Results showed significant gains favoring the treatment:
(i) ANCOVA on concept test (post ~ group + pre) yielded Δadj = 8.7 percentage points, p < .01;
Cohen’s d = 0.62 for conceptual understanding; (ii) d = 0.47 for procedural skills; (iii)
extraneous cognitive load decreased (d = −0.45), attributed to guided instruction and well-
aligned multiple external representations (MER). Qualitative findings highlighted enhanced
engagement, faster error detection, and safe “re-try” affordances. We conclude that when
guided and purposefully integrated, digital technologies improve conceptual and practical
outcomes in secondary chemistry; combining virtual and physical laboratories is recommended
for optimum results.

Keywords:

digital education technologies; chemistry education; virtual labs;

simulations; cognitive load; MER; secondary school.

ИСПОЛЬЗОВАНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ В

ПРЕПОДАВАНИИ ХИМИИ В СРЕДНЕЙ ШКОЛЕ

Аннотация

. В статье представлен квази-экспериментальный анализ влияния

цифровых образовательных технологий (виртуальные лаборатории, симуляции,


background image

136

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

инструменты молекулярной визуализации и LMS) на обучение химии в средней школе. В
трех школах (9–10 классы, N = 116) проведено 8-недельное вмешательство: в
экспериментальных классах системно применялись цифровые средства, в контрольных —
сохранялась обычная методика. Результаты: значимые приросты в пользу эксперимента
на тесте концептуальных знаний (Δadj = 8,7 п.п., p < 0,01; d = 0,62), на умений — d =
0,47; снизилась избыточная когнитивная нагрузка (d = −0,45). Качественный анализ
выявил рост вовлеченности, ускоренную идентификацию ошибок и безопасные условия
для «повторных попыток». Сделан вывод, что при целенаправленной и управляемой
интеграции цифровые технологии повышают результаты; оптимально сочетать
виртуальные и физические лаборатории.

Ключевые слова:

цифровые технологии обучения; преподавание химии;

виртуальные лаборатории; симуляции; когнитивная нагрузка; MER; средняя школа.


Kirish

So‘nggi yillarda o‘rta ta’lim tizimida raqamli platformalar, virtual laboratoriyalar va

simulyatsiya vositalari keng qo‘llanilmoqda. Xalqaro baholashlar (masalan, PISA-2022)
o‘quvchilarning bilim darajasi va tenglikdagi tafovutlarga oid muammolar dolzarbligini
ko‘rsatdi, bu esa dars jarayoniga ilmiy asoslangan texnologik yechimlarni tatbiq etishni talab
qiladi. Shunday yondashuvlardan biri — multimedia asosidagi o‘qitish (Mayerning kognitiv
nazariyasi), ko‘p tashqi reprezentatsiyalar (MER) va simulyatsiyalar integratsiyasidir. Shu bilan
birga, virtual tajribalar an’anaviy laboratoriya ishlarini to‘ldirishi va ayrim hollarda samaradorlik
bo‘yicha teng yoki ustun natijalarni berishi mumkin.

[4,5]

Ushbu tadqiqot o‘rta maktab kimyo

ta’limida raqamli texnologiyalar ta’sirini tizimli ravishda baholaydi va amaliy tavsiyalar beradi.

Tadqiqot bo‘shlig‘i va maqsad.

Raqamli vositalar keng tarqalayotgan bo‘lsa-da, ularning

o‘ziga xos dizayn xususiyatlari (kognitiv yukni boshqarish, yo‘riqnomalar, MER) va darsdagi
o‘rni

(virtual–fizik

laboratoriyalarni

kombinatsiyalash)

ko‘p

hollarda

yetarlicha

tizimlashtirilmaydi. Maqola maqsadi — yo‘riqnoma asosli integratsiyaning o‘quv natijalari va
kognitiv yukka ta’sirini baholash hamda metodik model taklif etish.

Tadqiqot savollari.

(RQ1) Raqamli intervensiya konseptual bilimlar natijalarini

yaxshilaydimi? (RQ2) Jarayon-ko‘nikmalar (masalan, hisoblash va ma’lumot tahlili)ga ta’siri
qanday? (RQ3) Kognitiv yukning tarkibiy qismlariga (intrinsic, extraneous, germane) ta’siri
qanday? (RQ4) O‘quvchilar va o‘qituvchilar tajribasi (foydalanish qulayligi, motivatsiya)
qanday tasvirlanadi?

Gipotezalar.

G1: Intervensiya konseptual bilimlarda o‘rtacha–katta ta’sir ko‘rsatadi (d ≥

0,5). G2: Jarayon-ko‘nikmalarda o‘rtacha ta’sir (0,3 ≤ d ≤ 0,6) kuzatiladi. G3: ortiqcha kognitiv
baza pasayadi; foydali kognitiv baza ortadi. G4: Virtual va fizik laboratoriyalarni
kombinatsiyalash yakka tipdan samaraliroq bo‘ladi.

[6,7,8,9]

Materiallar va usullar

Dizayn. Kvazi-eksperimental, pretest–posttest nazoratli dizayn. 8 hafta davomida 12 ta

sinf (6 tajriba, 6 nazorat) qatnashdi.

Ishtirokchilar. 3 ta umumta’lim maktabining 9–10-sinf o‘quvchilari (boshlang‘ich N = 6;

yakuniy N = 84; 4 ta attritsiya). O‘rtacha yosh 15,7 ± 0,6. Guruhlar sinf bo‘yicha klasterlangan.

Intervensiya mazmuni.

-

Virtual laboratoriyalar va simulyatsiyalar: PhET, Crocodile Chemistry 605 kabi muhitlar.

-

Molekulyar vizualizatsiya: Jmol/JSmol orqali 3D tuzilmalar, reaksiyalar yo‘llari.


background image

137

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

-

LMS va nazorat: topshiriqlar, oraliq testlar, video-yo‘riqnomalar.

-

Dizayn tamoyillari

:

kognitiv yukni boshqarish (segmentatsiya, signallash, redundansdan

qochish), ko‘p reprezentatsiyalarni muvofiqlashtirish (aqliy darajasini baholash reytingi),
yo‘naltirilgan so‘rov .

Nazorat sharoiti.

Odatdagi amaliyot: darslik, o‘qituvchi namoyishi, an’anaviy

laboratoriya ishlari (resurslar doirasida).

[10,11,12]

Raqamli vositalar minimal.

1.

Kimyo konseptual testi (30 savol, KR-20 = 0,81; mazmun: zarrachaviy darajadagi

tushunchalar, stexiometriya, eritmalar).

2.

Jarayon-ko‘nikmalar testi (24 topshiriq: ma’lumotlarni tahlil qilish, grafiklar, hisoblash; α

= 0,84).

3.

Kognitiv yuklama shkalalari: Leppink va hammualliflar (2013) asosida 10 bandlik

IL/EL/GL; Paas 9-ballik umumiy yuklamalar.

4.

Qisqa so‘rovnomalar va fokus-intervyular: motivatsiya, foydalilik, qo‘llashdagi to‘siqlar.

Jarayon.

1-hafta: diagnostika va moslashtirish; 2–7-haftalar: mavzular (reaksiyalar

sinflari, eritmalar, gaz qonunlari, kislota–asoslar) bo‘yicha integratsiyalashgan darslar; 8-hafta:

o‘zlashtirish

va so`rovnomalar. Har dars 45 min; haftasiga 2 dars.

Tahlil.

Pretest kovariatli ANCOVA; Cohen d, Hedges g; 95% CI. α = 0,05. Kognitiv yuk

o‘zgarishlari uchun ANCOVA. Sifat ma’lumotlari tematik kodlash usulida tahlil qilindi.

Etika.

Ota-ona roziligi, anonimlashtirish, darslarga minimal aralashuv.

Natijalar

Asosiy o‘quv natijalari (ANCOVA bilan moslashtirilgan)

1-

Jadval

Ko‘rsatkich

Pre-test
(T)
M±SD

Pre-test
(C)
M±SD

Post adj.
(T)
M±SE

Post adj.
(C)
M±SE

Δadj
(p.b.)

95%
CI

p

Effekt

Konseptual
bilimlar (%)

52,1 ±
10,5

51,7 ±
10,3

68,4 ±
1,7

59,7 ±
1,8

8,7

[3,1;
14,3]

0,003 0,62

Jarayon-
ko‘nikmalar
(%)

49,8 ±
11,2

50,3 ±
10,9

65,1 ±
1,9

57,2 ±
2,0

7,9

[1,6;
14,2]

0,015 0,47

Izoh:

T — tajriba, C — nazorat; Δadj — pre-test kovariatsiyasi bilanmoslashtirilgan farq.

Kognitiv yuk va jalb etilish ko‘rsatkichlari

2 – Jadval.

O‘lchov

(diapazon)

Tajriba

M±SE

Nazorat

M±SE

Farq

(T−C)

p

Cohen

d

Ishonchlilik

(α/KR-20)

Extraneous load
(1–5)

2,81 ± 0,09 3,42 ± 0,10 −0,61

0,004 −0,45

0,83

Germane load (1–
5)

3,76 ± 0,10 3,38 ± 0,11 +0,38

0,028 +0,38

0,84

Intrinsic load (1–
5)

3,02 ± 0,08 3,05 ± 0,09 −0,03

0,71

−0,04

0,82

Paas mental
effort (1–9)

4,7 ± 0,12

5,4 ± 0,13

−0,7

0,006 −0,41

Konseptual test
(KR-20)

0,81


background image

138

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

Ishtirok va ishonchlilik. Testlar ichki mosligi qoniqarli (KR-20/α ≥ 0,81). Intervensiya

davomida darsga qatnashish > 95%.

K1. Konseptual bilimlar. ANCOVA natijasi guruh omili uchun F(1,113) = 8,92, p =

0,003; tajriba sinfida posttest o‘rtachasi 68,4% (SE = 1,7), nazoratda 59,7% (SE = 1,8); Δadj =
8,7 p.b. (95% CI [3,1; 14,3]); d = 0,62.

K2. Jarayon-ko‘nikmalar. Guruh omili F(1,113) = 6,11, p = 0,015; tajriba 65,1% (SE =

1,9), nazorat 57,2% (SE = 2,0); Δadj = 7,9 p.b.; d = 0,47.

K3. Kognitiv yuk. Extraneous load pasaydi (tajriba − nazorat d = −0,45), germane load

oshdi (d = 0,38); umumiy Paas shkalasi bo‘yicha

M

tajribada 0,7 ballga past.

Sifat natijalari. O‘quvchilar «xavfsiz qayta sinash», «ko‘rinarli zarraviy jarayonlar»,

«xatoni tez topish»ni afzallik deb ko‘rsatdilar; o‘qituvchilar esa vaqtni aniq rejalash va
yo‘riqnoma shablonlari muhimligini ta’kidladilar.

Asosiy miqdoriy natijalar (pretest kovariatsiyasi bilan)

3-

Jadval.

Ko‘rsatkich

Tajriba
(M±SE)

Nazorat
(M±SE)

Δadj
(p.b.)

p

d

Konseptual bilimlar (post,
%)

68,4 ± 1,7

59,7 ± 1,8

+8,7

0,003 0,62

Jarayon-ko‘nikmalar

(post,

%)

65,1 ± 1,9

57,2 ± 2,0

+7,9

0,015 0,47

Extraneous load (↓ yaxshi)

2,81 ± 0,09

3,42 ± 0,10

−0,61

0,004 −0,45

Germane load (↑ yaxshi)

3,76 ± 0,10

3,38 ± 0,11

+0,38

0,028 0,38

Izoh: Kognitiv yuk shkalalari 1–5 diapazonda standartlashtirilgan.

Muhokama

Asosiy tadqiqotlar.

Yo‘riqnoma asosli raqamli integratsiya konseptual bilim va amaliy

ko‘nikmalarda o‘rtacha–katta ta’sir berdi; kognitiv yuk mezonlari, ayniqsa extraneous load,
sezilarli pasaydi. Bu natijalar multimedia o‘qitish va MER nazariyalari bilan mos keladi:
ortiqcha kognitiv yukni kamaytirish (signalizatsiya, segmentatsiya) va moslashtirilgan vizual–
matnli birliklar orqali semantik integratsiya tezlashadi.

[13,14,15]

Adabiyotlar bilan qiyos.

Simulyatsiyalar va virtual laboratoriyalar haqidagi sharhlar

hamda meta-tahlillar raqamli muhitlarning o‘quv natijalarini yaxshilashi yoki kamida an’anaviy
yondashuv bilan teng natija berishini ko‘rsatgan; fizik va virtual laboratoriyalarni
kombinatsiyalash eng maqbul yo‘nalish ekanligi takror tasdiqlanadi. Bizning natijalar ayni
tendensiyani qo‘llab-quvvatlaydi.

Amaliy implikatsiyalar.


background image

139

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

1.

Virtual va fizik laboratoriyalar kombinatsiyasi (pre-lab simulyatsiya → real tajriba →

post-lab raqamli tahlil).

2.

Didaktik dizayn: segmentatsiya, signalizatsiya, redundantlikdan qochish; MERni

maqsadli moslashtirish.

3.

Yo‘naltirilgan so‘rov (guided inquiry): maqsadli savollar, bosqichma-bosqich

yo‘riqnomalar.

4.

O‘qituvchilar kompetensiyasi: ICT CFT bo‘yicha bosqichma-bosqich malaka oshirish;

resurslar almashuvi (shablonlar, rubrikalar).

Cheklovlar.

Klasterlash tufayli ichki validlik cheklanishi; intervensiya 8 hafta bilan

chegaralangan; natijalar boshqa mavzularga to‘liq umumlashtirilmasligi mumkin. Kelgusida
uzunroq muddat, ko‘proq maktab va turli raqamli paketlar bilan taqqoslash tavsiya etiladi.

[16,17,18]

Xulosa

Raqamli ta’lim texnologiyalarining yo‘riqnoma asosida va maqsadli integratsiyasi o‘rta

maktab kimyo ta’limida konseptual hamda amaliy natijalarni yaxshilaydi; kognitiv yuk dizayni
muhim moderator omildir. Optimal yechim virtual va an’anaviy laboratoriyalarni o‘zaro
to‘ldiruvchi tarzda uyg‘unlashtirishdir.

Amaliy tavsiyalar (o‘qituvchi uchun «tez-start»)

Har mavzuda 15–20 daqiqalik pre-lab simulyatsiya bilan boshlang; asosiy parametrlarga

signal va tasmachalar qo‘ying.

MER (aqliy sa’y darajasini baholash reytingi) tayyorlang: zarracha darajadagi animatsiya

+ tenglama + grafik + qisqa matnli izoh.

Kichik guruhlarda maqsadli savollar va «xato topish» topshiriqlari berilsin.

[19,20]

Yakunda post-lab refleksiya: “Nimani ko‘rdik? Qaysi dalil qaysi xulosani tasdiqlaydi?”

Foydalanilgan adabiyotlar

1.

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with
multiple representations.

Learning and Instruction, 16

, 183–198.

2.

Xaliqulov X., Eshonqulov Z., Rabbimova Y. Kimyo fani boyicha steam dasturiga
asoslangan loyihalarni ishlab chiqish, qayta ishlangan plastmassadan 3d chop etish uchun
xomashyo yaratish //Modern Science and Research. – 2025. – Т. 4. – №. 2. – С. 562-574.

3.

Xaliqulov X., Abdukarimova M., Tilyabov M. Kimyo darslarida ekologik muammolarni
yoritish orqali ekologik madaniyatni shakllantirish //Modern Science and Research. –
2025. – Т. 4. – №. 5. – С. 66-70.

4.

Nortojiyeva S., Xaliqulov X., Tilyabov M. Kimyo fanidan zamonaviy va pedagogik
to’garaklarni tashkil etish texnologiyasi //Modern Science and Research. – 2025. – Т. 4. –
№. 5. – С. 71-74.

5.

Utashova S., Xoliqulov H., Tilyabov M. Conducting laboratory classes in chemistry on the
basis of the steam education program //Medicine, pedagogy and technology: theory and
practice. – 2024. – Т. 2. – №. 4. – С. 801-808.

6.

Xaliqulov X., Nurmaxamtov D., Kuchkarov O. D-metallarning atom orbitallarini
gibridlanishi va ularning koordinatsion birikmalar hosil qilishdagi roli //Modern Science
and Research. – 2025. – Т. 4. – №. 5. – С. 75-78.

7.

Eshonqulov Z., Xoliqulov H. Halogen elements and their importance in living organisms
//Medicine, pedagogy and technology: theory and practice. – 2024. – Т. 2. – №. 12. – С.
231-240.


background image

140

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

8.

Narzullayev M. et al. Application of generalized methods in chemistry classes.
organization of effective lessons based on kimbift //Modern Science and Research. – 2024.
– Т. 3. – №. 5. – С. 643-648.

9.

Umurzoqov S. S. et al. Oltingugurtning biologik ahamiyati //Science and Education. –
2025. – Т. 6. – №. 2. – С. 94-101.

10.

Xayrullo o'g P. U. et al. The importance of improving chemistry education based on the
STEAM approach //fan va ta'lim integratsiyasi (integration of science and education). –
2024. – Т. 2. – №. 1. – С. 56-62.

11.

Xayrullo o'g P. U. et al. The essence of the research of synthesis of natural indicators,
studying their composition and dividing them into classes //fan va ta'lim integratsiyasi
(integration of science and education). – 2024. – Т. 2. – №. 1. – С. 50-55.

12.

Xayrullo o'g P. U. et al. Using natural plant extracts as acid-base indicators and pKa value
calculation method //fan va ta'lim integratsiyasi (integration of science and education). –
2024. – Т. 2. – №. 1. – С. 80-85.

13.

Xoliyorova S., Tilyabov M., Pardayev U. Explaining the basic concepts of chemistry to 7th
grade students in general schools based on steam //Modern Science and Research. – 2024.
– Т. 3. – №. 2. – С. 362-365.

14.

Xayrullo o'g P. U. et al. Incorporating Real-World Applications into Chemistry
Curriculum: Enhancing Relevance and Student Engagement //Fan va ta'lim integratsiyasi
(integration of science and education). – 2024. – Т. 2. – №. 1. – С. 44-49.

15.

Nurmonova E., Berdimuratova B., Pardayev U. Davriy sistemaning iii a guruhi elementi
alyuminiyning davriy sistemada tutgan o ‘rni va fizik-kimyoviy xossalarini tadqiq etish
//Modern Science and Research. – 2024. – Т. 3. – №. 10. – С. 517-526.

16.

Abdukarimova M. A. Q. et al. Tabiiy fanlar o ‘qitishda STEAM yondashuvi //Science and
Education. – 2024. – Т. 5. – №. 11. – С. 237-244.

17.

Jiemuratova A., Pardayev U., Bobojonov J. coordination interaction between anthranilic
ligand and d-element salts during crystal formation: a structural and spectroscopic
approach //Modern Science and Research. – 2025. – Т. 4. – №. 5. – С. 199-201.

18.

Tilyabov M., Pardayev U. kimyo darslarida o ‘quvchilarni loyihaviy faoliyatga jalb qilish
usullari //Modern Science and Research. – 2025. – Т. 4. – №. 5. – С. 42-44.

19.

Pardayev U. et al. the chemical basis for the development of new agrochemical
preparations based on acrylonitrile //International journal of medical sciences. – 2025. – Т.
1. – №. 5. – С. 250-257.

20.

Tilyabov M., Xamidov G., Abdukarimova M. Zamonaviy kimyo ta’limida multimedia
texnologiyalarining roli va talabalarning kognitiv ko ‘nikmalari //Modern Science and
Research. – 2025. – Т. 4. – №. 5. – С. 62-65.

References

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198.

Xaliqulov X., Eshonqulov Z., Rabbimova Y. Kimyo fani boyicha steam dasturiga asoslangan loyihalarni ishlab chiqish, qayta ishlangan plastmassadan 3d chop etish uchun xomashyo yaratish //Modern Science and Research. – 2025. – Т. 4. – №. 2. – С. 562-574.

Xaliqulov X., Abdukarimova M., Tilyabov M. Kimyo darslarida ekologik muammolarni yoritish orqali ekologik madaniyatni shakllantirish //Modern Science and Research. – 2025. – Т. 4. – №. 5. – С. 66-70.

Nortojiyeva S., Xaliqulov X., Tilyabov M. Kimyo fanidan zamonaviy va pedagogik to’garaklarni tashkil etish texnologiyasi //Modern Science and Research. – 2025. – Т. 4. – №. 5. – С. 71-74.

Utashova S., Xoliqulov H., Tilyabov M. Conducting laboratory classes in chemistry on the basis of the steam education program //Medicine, pedagogy and technology: theory and practice. – 2024. – Т. 2. – №. 4. – С. 801-808.

Xaliqulov X., Nurmaxamtov D., Kuchkarov O. D-metallarning atom orbitallarini gibridlanishi va ularning koordinatsion birikmalar hosil qilishdagi roli //Modern Science and Research. – 2025. – Т. 4. – №. 5. – С. 75-78.

Eshonqulov Z., Xoliqulov H. Halogen elements and their importance in living organisms //Medicine, pedagogy and technology: theory and practice. – 2024. – Т. 2. – №. 12. – С. 231-240.

Narzullayev M. et al. Application of generalized methods in chemistry classes. organization of effective lessons based on kimbift //Modern Science and Research. – 2024. – Т. 3. – №. 5. – С. 643-648.

Umurzoqov S. S. et al. Oltingugurtning biologik ahamiyati //Science and Education. – 2025. – Т. 6. – №. 2. – С. 94-101.

Xayrullo o'g P. U. et al. The importance of improving chemistry education based on the STEAM approach //fan va ta'lim integratsiyasi (integration of science and education). – 2024. – Т. 2. – №. 1. – С. 56-62.

Xayrullo o'g P. U. et al. The essence of the research of synthesis of natural indicators, studying their composition and dividing them into classes //fan va ta'lim integratsiyasi (integration of science and education). – 2024. – Т. 2. – №. 1. – С. 50-55.

Xayrullo o'g P. U. et al. Using natural plant extracts as acid-base indicators and pKa value calculation method //fan va ta'lim integratsiyasi (integration of science and education). – 2024. – Т. 2. – №. 1. – С. 80-85.

Xoliyorova S., Tilyabov M., Pardayev U. Explaining the basic concepts of chemistry to 7th grade students in general schools based on steam //Modern Science and Research. – 2024. – Т. 3. – №. 2. – С. 362-365.

Xayrullo o'g P. U. et al. Incorporating Real-World Applications into Chemistry Curriculum: Enhancing Relevance and Student Engagement //Fan va ta'lim integratsiyasi (integration of science and education). – 2024. – Т. 2. – №. 1. – С. 44-49.

Nurmonova E., Berdimuratova B., Pardayev U. Davriy sistemaning iii a guruhi elementi alyuminiyning davriy sistemada tutgan o ‘rni va fizik-kimyoviy xossalarini tadqiq etish //Modern Science and Research. – 2024. – Т. 3. – №. 10. – С. 517-526.

Abdukarimova M. A. Q. et al. Tabiiy fanlar o ‘qitishda STEAM yondashuvi //Science and Education. – 2024. – Т. 5. – №. 11. – С. 237-244.

Jiemuratova A., Pardayev U., Bobojonov J. coordination interaction between anthranilic ligand and d-element salts during crystal formation: a structural and spectroscopic approach //Modern Science and Research. – 2025. – Т. 4. – №. 5. – С. 199-201.

Tilyabov M., Pardayev U. kimyo darslarida o ‘quvchilarni loyihaviy faoliyatga jalb qilish usullari //Modern Science and Research. – 2025. – Т. 4. – №. 5. – С. 42-44.

Pardayev U. et al. the chemical basis for the development of new agrochemical preparations based on acrylonitrile //International journal of medical sciences. – 2025. – Т. 1. – №. 5. – С. 250-257.

Tilyabov M., Xamidov G., Abdukarimova M. Zamonaviy kimyo ta’limida multimedia texnologiyalarining roli va talabalarning kognitiv ko ‘nikmalari //Modern Science and Research. – 2025. – Т. 4. – №. 5. – С. 62-65.