UCHUVCHISIZ UCHISH APPARATLARI YORDAMIDA QISHLOQ XO'JALIGIDA EKINLARNI MONITORING QILISH VA BOSHQARISH: SAMARADORLIK VA KELAJAKDAGI IMKONIYATLARI

Abstract

This article analyzes the use of Unmanned Aerial Vehicles (UAVs) in agricultural monitoring, nutrient assessment, and optimization of spraying processes [15]. The study demonstrates the effectiveness of multispectral and thermal sensors for detecting crop water stress, nutrient deficiencies, and early-stage pest infestations. A comparative analysis between traditional methods and the DJI Agras T40 drone-based approach highlights significant improvements in precision, efficiency, and sustainability. Findings show that UAV-based agriculture can reduce resource consumption by up to 30 times, minimize environmental impact, and increase yield productivity.

Source type: Journals
Years of coverage from 2022
inLibrary
Google Scholar
f
214-220
0

Downloads

Download data is not yet available.
To share
Mustofoyev, E. (2025). UCHUVCHISIZ UCHISH APPARATLARI YORDAMIDA QISHLOQ XO’JALIGIDA EKINLARNI MONITORING QILISH VA BOSHQARISH: SAMARADORLIK VA KELAJAKDAGI IMKONIYATLARI. Modern Science and Research, 4(11), 214–220. Retrieved from https://inlibrary.uz/index.php/science-research/article/view/139282
0
Citations
Crossref
Сrossref
Scopus
Scopus

Abstract

This article analyzes the use of Unmanned Aerial Vehicles (UAVs) in agricultural monitoring, nutrient assessment, and optimization of spraying processes [15]. The study demonstrates the effectiveness of multispectral and thermal sensors for detecting crop water stress, nutrient deficiencies, and early-stage pest infestations. A comparative analysis between traditional methods and the DJI Agras T40 drone-based approach highlights significant improvements in precision, efficiency, and sustainability. Findings show that UAV-based agriculture can reduce resource consumption by up to 30 times, minimize environmental impact, and increase yield productivity.


background image

214

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

UCHUVCHISIZ UCHISH APPARATLARI YORDAMIDA QISHLOQ XO'JALIGIDA

EKINLARNI MONITORING QILISH VA BOSHQARISH: SAMARADORLIK VA

KELAJAKDAGI IMKONIYATLARI

Mustofoyev Elnur Nurbek o‘g‘li

Uzaerospace ma’suliyati cheklangan jamiyati xodimi,

Uchuvchisiz uchish apparatlarini ekspluatatsiya qilish departamenti operatori.

https://doi.org/10.5281/zenodo.17559986

Annotatsiya.

Mazkur maqolada uchuvchisiz uchish apparatlari (UUAlar) yordamida

qishloq xo‘jaligi ekinlarini monitoring qilish, oziqlanish holatini baholash va kimyoviy dorilash
jarayonlarini optimallashtirish imkoniyatlari tahlil qilingan[15]. Tadqiqotda multispektral va
termal sensorlardan foydalanish orqali ekinlarning suv va oziq moddalarga bo‘lgan ehtiyojini
aniqlash, shuningdek, zararkunandalar va begona o‘tlarni erta bosqichda aniqlash
samaradorligi ko‘rsatib o‘tilgan. Shuningdek, DJI Agras T40 droni misolida an’anaviy va
zamonaviy (dronli) usullar o‘rtasidagi texnik va iqtisodiy taqqoslov amalga oshirilgan. Natijalar
shuni ko‘rsatadiki, UUAlardan foydalanish resurs sarfini 30 barobar kamaytiradi, ekologik
zararlarni pasaytiradi va hosildorlikni oshiradi.

Kalit so‘zlar:

Uchuvchisiz uchish apparatlari, qishloq xo‘jaligi, monitoring,

multispektral sensor, termal tahlil, NDVI, DJI Agras T40, samaradorlik, resurs tejamkorligi.

Kirish

Bugungi kunda qishloq xo'jaligi sohasi tez sur'atlar bilan rivojlanmoqda. Zamonaviy

texnologiyalar, xususan, UUAlar yordamida ekinlarni monitoring qilish va boshqarish yangi
imkoniyatlar yaratmoqda[2, 3]. UUAlar yordamida ekinlarni kuzatish, ularning salomatligini
baholash va samarali boshqarish amaliyoti qishloq xo'jaligi tizimlarini yanada samarali qilishga
xizmat qilmoqda. UUAlar yordamida ekinlarni monitoring qilishda, ularning suvsizlanish va
oziqlanish muammolarini aniqlash hamda pestitsidlar (zararkunandalar, kasalliklar, begona o'tlar
vaho kazolarga qarshi ishlatiladigan kimyoviy yoki biologik moddalar)ni aniq va samarali
tarqatish bo'yicha imkoniyatlar ko'rib chiqiladi [1].

Abstract.

This article analyzes the use of Unmanned Aerial Vehicles (UAVs) in

agricultural monitoring, nutrient assessment, and optimization of spraying processes [15]. The
study demonstrates the effectiveness of multispectral and thermal sensors for detecting crop
water stress, nutrient deficiencies, and early-stage pest infestations. A comparative analysis
between traditional methods and the DJI Agras T40 drone-based approach highlights significant
improvements in precision, efficiency, and sustainability. Findings show that UAV-based
agriculture can reduce resource consumption by up to 30 times, minimize environmental impact,
and increase yield productivity.

Keywords:

Unmanned Aerial Vehicles (UAVs), agriculture, monitoring, multispectral

imaging, thermal analysis, NDVI, DJI Agras T40, efficiency, sustainability.

Introduction

Today, the agricultural sector is developing at a rapid pace. Modern technologies,

particularly

Unmanned Aerial Vehicles (UAVs)

, are creating new opportunities for crop

monitoring and management [2, 3]. The use of UAVs enables the observation of crops,
assessment of their health, and implementation of effective management practices, all of which
contribute to improving the overall efficiency of agricultural systems.

When using UAVs for crop monitoring, it becomes possible to identify

issues related to

water deficiency and nutrient imbalance

in a timely manner, as well as to ensure the

precise


background image

215

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

and efficient distribution of pesticides

— chemical or biological substances used to combat

pests, diseases, and weeds

. In this way, UAV technologies help optimize agricultural

production, reduce costs, and minimize the negative impact on the environment[1].

Аннотация.

В статье рассмотрено применение беспилотных летательных

аппаратов (БПЛА) для мониторинга сельскохозяйственных культур, оценки их
питательного состояния и оптимизации процессов опрыскивания. Исследование
показывает эффективность использования мультиспектральных и тепловых сенсоров
для выявления водного и питательного дефицита растений, а также раннего
обнаружения вредителей и сорняков[15]. На примере дрона DJI Agras T40 проведено
сравнительное технико-экономическое исследование с традиционными методами.

Результаты показывают, что использование БПЛА снижает расход ресурсов до

30 раз, уменьшает вредное воздействие на окружающую среду и повышает
урожайность.

Ключевые слова:

Беспилотные летательные аппараты, сельское хозяйство,

мониторинг, мультиспектральный сенсор, тепловой анализ, NDVI, DJI Agras T40,
эффективность, ресурсосбережение.


Введение

В настоящее время сельское хозяйство развивается стремительными темпами.
Современные технологии, в частности беспилотные летательные аппараты (БПЛА),

открывают новые возможности для мониторинга и управления посевами[2, 3].

Применение

БПЛА

позволяет

проводить

наблюдение

за

состоянием

сельскохозяйственных культур, оценивать их здоровье и обеспечивать эффективное
управление агротехническими процессами, что способствует повышению общей
эффективности сельскохозяйственных систем.

Использование беспилотных летательных аппаратов при мониторинге посевов

позволяет своевременно выявлять проблемы, связанные с дефицитом влаги и питательных
веществ, а также осуществлять точное и рациональное распределение пестицидов —
химических или биологических веществ, применяемых для борьбы с вредителями,
болезнями и сорняками.

Таким образом, внедрение БПЛА способствует оптимизации агропроизводства,

снижению затрат и минимизации негативного воздействия на окружающую среду[1].

UUAlar yordamida ekinlar monitoringi:

UUAlar yordamida ekinlarni monitoring qilish

ko'plab afzalliklar taqdim etadi[3]. Ular, multispektral kameralar yordamida, ekinlarning
ekolagik holatini tahlil qilishda qo'llaniladi.

Masalan, Normalized Difference Vegetation Index (NDVI) kabi ko'rsatkichlar orqali

o'simliklarning fotosintez faoliyatini aniqlash mumkin[5, 6].

Bu indekslar o'simliklarning holatini baholashda yordam beradi, shu bilan birga,

o'simliklarda suv va oziq moddalarining etishmasligi yoki zararkunandalarning ta'sirini aniqlash
imkonini yaratadi[13].


background image

216

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

UUAlar tomonidan qishloq xo‘jaligi uchun ishlatiladigan datchiklarga misollar: (

a

)

termal sensor; (

b

) RGB sensori; (

c

) multispektral sensor; va (

d

) hiperspektral sensor.

Suv yetishmasligini aniqlash:

Suv resurslari cheklangan sharoitda, suvning o'simliklar

uchun yetarli darajada ta'minlanishi muhim ahamiyatga ega[5]. UUAlar yordamida termal
tasvirlar olinganida, o'simliklarning stomatalaridan suv chiqarish jarayonlari va transpiration
(evapotranspiration)ni aniqlash mumkin. Bu orqali o'simliklar suv yetishmovchiligi yoki ortiqcha
suvdan aziyat chekayotganini erta bosqichda aniqlash mumkin.

Oziqlanish etishmovchiligi va stressni aniqlash:

UUAlar yordamida ekinlarning

oziqlanish holatini va etishmovchiliklarni aniqlash ham muhimdir. Masalan, o'simliklar azot,
fosfor, va kaliy kabi asosiy ozuqalar yetishmovchiligi holatida stressga uchraydi[7].

Multispektral tasvirlar yordamida o'simliklarning kuchli yoki zaif o'sishini aniqlash

mumkin[4]. Bu o'simliklarda aniqlangan stress zonasini tezda ko'rib chiqish va to'g'ri choralar
ko'rish imkonini beradi. Shu bilan birga, xlorofill o'lchovchi qurilmalar yordamida o'simliklarda
azot etishmovchiligini aniqlash va bu asosida agrotexnik choralarni qo'llash imkoniyatini
beradi[10].

Kasalliklar va zararkunandalar monitoringi:

UUAlar yordamida kasalliklarni va

zararkunandalarni erta aniqlash mumkin. Xususan, infraqizil kameralar yordamida o'simliklar
ichidagi infektsiyalarni aniqlay oladi. Agar kasallikning belgilari ko'rinmasdan oldin sezilsa,
o'simlikni uzib tashlash yoki pestitsidlar bilan davolash orqali kasallik tarqalishining oldini olish
mumkin[3]. UUAlar yordamida zararkunandalarga qarshi kurashish ham samaralidir, chunki ular
zararkunanda tarqalgan hududni aniq belgilab, pestitsidlarni faqat zararlangan hududga tarqatish
imkonini beradi[4].

Weed Control (Begona o'tlar nazorati):

Begona o'tlar qishloq xo'jaligida katta muammo

yaratadi, chunki ular o'simliklar bilan resurslarni birga baham ko'radi[7]. UUAlar yordamida
begona o'tlar monitoringi samarali amalga oshiriladi. Ular yordamida begona o'tlarning turli xil
sig'imi va xususiyatlari aniqlash imkoniyatiga ega. Bu esa pestitsidlarni faqat begona o'tlar
mavjud hududlarga tarqatish imkonini beradi[12].

Foydalanish va iqtisodiy samaradorlik:

UUAlar yordamida ekinlarni boshqarish qishloq

xo'jaligida ko'plab iqtisodiy foydalar keltiradi.


background image

217

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

Bu qurulmnalar yordamida pestitsidlarni samarali tarqatish, o'simliklarning oziqlanish

holatini va suv muammolarini aniqlash orqali hosilni optimallashtirish mumkin. UUAlar
yordamida bajarilgan monitoring va boshqarish ishlarining tezligi va aniqligi fermerlarga vaqt va
resurslarni tejash imkonini beradi. Shuningdek, ular yordamida ishlov berilgan maydonlarda
pestitsid va o'g'it sarfini kamaytirish mumkin, bu esa narxlarni pasaytiradi va ekologik muhitga
zarar keltirishni kamaytiradi.

An’anaviy va UUA lar yordamida qishloq xo’jalik ekinlariga ishlov berish, usularini

taqqoslash va tahlil qilish.

Zamonaviy qishloq xo‘jaligi tarmoqlari inson mehnatini yengillashtirish, ishlab chiqarish

unumdorligini oshirish va resurslardan tejamkor foydalanish uchun tobora ko‘proq

raqamli

texnologiyalar va avtomatlashtirilgan uchuvchisiz tizimlar

ga tayanmoqda[4]. Ushbu

texnologiyalar ichida

dronlar

alohida o‘rin egallaydi. Bu tenologiyalardan foydalanishning

asosiy afzalliklaridan biri —

aniq dehqonchilik

tamoyillarini to‘liq joriy etish imkoniyatidir.

Natijada,

resurs sarfi 20–30% gacha kamayadi

, hosildorlik esa

10–15% gacha ortadi

.

Misol

DJI Agras T40

droni soatiga

15–21 gektar

maydonga ishlov bera oladi. U ikki

rotorlu konstruktsiyaga ega bo‘lib, 40 litr sig‘imli bak orqali suyuqlik purkaydi. Dronning RTK
aniqlash tizimi ±5 sm gacha aniqlik beradi, bu esa dori yoki o‘g‘itni aniq belgilangan yo‘nalishda
purkash imkonini yaratadi. Shu bilan birga, radar va lidar sensorlari yordamida u to‘siqlarni
avtomatik aniqlab, real vaqt rejimida ularni aylanib o‘tadi[11, 12].

DJI Agras T40 droni yordamida qishloq xo

jalik ekinlariga ishlov berish

Qishloq xo‘jaligida UUAlardan foydalanishning yana bir muhim afzalligi —

mehnat

unumdorligini keskin oshirishi

. An’anaviy usulda kimyoviy dorilashda yoki o‘g‘it sepishda bir

ishchi kuniga 1–2 gektar maydonga ishlov bera olsa, dron bir soatda 15–20 gektarni qamrab
oladi. Bu esa mehnat sarfini 10–15 barobar kamaytiradi.


background image

218

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

Shuningdek, operator xavfsiz masofada turib ishlashi mumkin, bu

pestitsidlarning inson

salomatligiga zararli ta’sirini

oldini oladi. Dronlar yordamida o‘g‘itlash va dorilash jarayoni

faqat tezlik bilan emas, balki

bir tekis taqsimlanish

bilan ham ajralib turadi. Masalan,

purkashning og‘ish darajasi ±2–3% atrofida bo‘lib, bu an’anaviy usullardagi ±10–15%
xatolikdan sezilarli darajada past[14]. Shu sababli, ekinlar orasida ozuqa yoki dorining notekis
tarqalishi kuzatilmaydi, natijada

ekinning o‘sish sur’ati muvozanatlashadi

.

Energiya samaradorligi jihatidan ham bu apparatlar afzal hisoblanadi. Masalan, DJI T40

bir soatda o‘rtacha

4 kWh

elektr energiya sarflaydi, bu samolyotlar yoki traktorlar bilan

solishtirganda

30 barobar tejamkor

. Shu bilan birga, u

nol CO₂ chiqindisi

bilan ishlaydi, bu

esa ekologik barqaror qishloq xo‘jaligi tamoyillariga to‘la mos keladi. Hozirgi bpaytda dunyo
bo‘ylab

DJI Agras T40, XAG P100, Hylio AG-272,

kabi dronlar keng qo‘llanilmoqda. Ular

yuqori aniqlikdagi RTK navigatsiya, AI boshqaruv tizimi, va o‘z-o‘zini tekshiruvchi sensorlar
bilan jihozlangan. Dronlar kichik hajmdagi maydonlarda

aniqlik va tejamkorlik

jihatidan ustun.

Boshqa tomondan,

qishloq xo‘jalik samolyotlari

(masalan,

Air Tractor AT-402B,

Thrush 510G, Cessna Agwagon

) katta hajmdagi plantatsiyalar uchun mo‘ljallangan. Ular bir

parvozda

150–200 gektar

maydonni qamrab oladi, lekin yoqilg‘i sarfi va ekspluatatsiya

xarajatlari yuqori.

Air Tractor AT-402B purkash samolyoti

Xulosa qilib aytganda,

dronlar – aniqlik, xavfsizlik va ekologik samaradorlikni

ta’minlovchi yangi avlod texnologiyasi

bo‘lsa, samolyotlar –

katta hajmli va tez ishlov berish

imkonini beruvchi

texnika hisoblanadi. Kelajakda bu ikki texnologiyaning birgalikda

qo‘llanilishi qishloq xo‘jaligida maksimal natija beradi:

dronlar – aniqlik uchun, samolyotlar

– hajm uchun.

1-jadval

Ko‘rsatkichlar

DJI Agras T40

(dron)

Air Tractor AT-

402B (purkash

samolyoti)

Izoh (ilmiy tahlil)

Ishlov berish tezligi

15–21 ha/soat

150–200 ha/soat

Samolyot tezroq,
lekin faqat katta


background image

219

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

maydonlar uchun
samarali.

Aniqlik (purkash
chegarasi xatosi)

±5 cm

±1.5–2 m

Dronning RTK tizimi
tufayli ancha yuqori
aniqlik.

Resurs tejamkorligi
(yoqilg‘i / energiya)

1 soatda ≈ 4 kWh
elektr energiya

1 soatda ≈ 190 l
aviakerosin

Dron energiya
jihatdan ≈ 30 marta
tejamkor.

Operatsion masofa
(ish oralig‘i)

1–2 km (RTK
radiusida)

100 km+

Samolyot uzoq
masofada ishlay oladi.

Atrof-muhitga ta’siri
(CO₂ chiqindisi)

≈ 0 kg/soat

≈ 480 kg/soat

Dron ekologik
jihatdan toza.

O‘g‘it va dori sarfi
aniqligi

±2–3 %

±10–15 %

Dron purkashni
yanada bir tekis
taqsimlaydi.

Kelajakdagi Imkoniyatlar.

Kelajakda UUAlar qishloq xo'jaligida sun’iy intellekt (SI) yordamida o‘simliklarni

mustaqil tahlil qilish va monitoring qilishda yanada rivojlanadi[9]. SI algoritmlari UUAlarning
multispektral va termal kameralar orqali olingan tasvirlarini real vaqt rejimida tahlil qiladi[13].

Ular yordamida olingan tahlil ma’lumotlari SI tizimlari orqali to‘plangan katta

ma'lumotlar bazasiga qo‘shilib, fermerlarga o‘simliklar haqida batafsil prognozlar beradi[10].

Foydalanilgan adabiyotlar ro‘yxati

1.

Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang,
X.; et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping:
Current status and perspectives.

Front. Plant Sci.

2017

,

8

, 1111. [

Google Scholar

]

[

CrossRef

] [

PubMed

]

2.

Mogili, U.R.; Deepak, B. Review on application of drone systems in precision
agriculture.

Procedia Comput. Sci.

2018

,

133

, 502–509. [

Google Scholar

] [

CrossRef

]

3.

Puri, V.; Nayyar, A.; Raja, L. Agriculture drones: A modern breakthrough in precision
agriculture.

J. Stat. Manag. Syst.

2017

,

20

, 507–518. [

Google Scholar

] [

CrossRef

]

4.

Kulbacki, M.; Segen, J.; Knieć, W.; Klempous, R.; Kluwak, K.; Nikodem, J.; Kulbacka,
J.; Serester, A. Survey of Drones for Agriculture Automation from Planting to Harvest. In
Proceedings of the 2018 IEEE 22nd International Conference on Intelligent Engineering
Systems (INES), Las Palmas de Gran Canaria, Spain, 21–23 June 2018; pp. 000353–
000358. [

Google Scholar

]

5.

Manfreda, S.; McCabe, M.; Miller, P.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben
Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems
for environmental monitoring.

Remote Sens.

2018

,

10

, 641. [

Google Scholar

] [

CrossRef

]

6.

Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J. Hyperspectral
imaging: A review on UAV-based sensors, data processing and applications for
agriculture and forestry.

Remote Sens.

2017

,

9

, 1110. [

Google Scholar

] [

CrossRef

]

7.

Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in
precision agriculture.

Trends Plant Sci.

2019

,

24

, 152–164. [

Google Scholar

] [

CrossRef

]

[

PubMed

]


background image

220

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 11

8.

Current Capabilities and Future Directions; J. L. Zhang, Y.; P. Wang, D. H. Lee; MDPI
Sensors Journal; https://www.mdpi.com/1424-8220/20/19/5734

9.

Autonomous UUAe Surveillance for Smart Cities: AI and IoT Integration; B. D. Chen, A.
Gupta, J. R. Lee; IEEE Access; https://ieeexplore.ieee.org/document/9456783

10.

Precision Agriculture Using UAVs: A Data-Driven Approach; S. L. Yang, H. F.
Nakamura, R. M. Brown; MDPI Agriculture Journal; https://www.mdpi.com/2227-
7390/8/12/998

11.

Tsouros, D.C.; Triantafyllou, A.; Bibi, S.; Sarigannidis, P.G. Data acquisition and
analysis methods in UAV-based applications for Precision Agriculture. In Proceedings of
the 2019 IEEE 15th International Conference on Distributed Computing in Sensor
Systems (DCOSS), Santorini Island, Greece, 29–31 May 2019; pp. 377–384. [

Google

Scholar

]

12.

Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Deng, X.; Zhang, L. A fully convolutional
network for weed mapping of unmanned aerial vehicle (UAV) imagery.

PLoS

ONE

2018

,

13

, 1–19. [

Google Scholar

] [

CrossRef

] [

PubMed

]

13.

Hunt, E.R.; Horneck, D.A.; Spinelli, C.B.; Turner, R.W.; Bruce, A.E.; Gadler, D.J.;
Brungardt, J.J.; Hamm, P.B. Monitoring nitrogen status of potatoes using small
unmanned aerial vehicles.

Precis. Agric.

2018

,

19

, 314–333. [

Google Scholar

]

[

CrossRef

]

14.

Zhang, J.; Basso, B.; Price, R.F.; Putman, G.; Shuai, G. Estimating plant distance in
maize using Unmanned Aerial Vehicle (UAV).

PLoS ONE

2018

,

13

, e0195223. [

Google

Scholar

] [

CrossRef

] [

PubMed

]

15.

Wang, J.J.; Ge, H.; Dai, Q.; Ahmad, I.; Dai, Q.; Zhou, G.; Qin, M.; Gu, C. Unsupervised
discrimination between lodged and non-lodged winter wheat: A case study using a low-
cost unmanned aerial vehicle.

Int. J. Remote Sens.

2018

,

39

, 2079–2088. [

Google

Scholar

] [

CrossRef

]

References

Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef] [PubMed]

Mogili, U.R.; Deepak, B. Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]

Puri, V.; Nayyar, A.; Raja, L. Agriculture drones: A modern breakthrough in precision agriculture. J. Stat. Manag. Syst. 2017, 20, 507–518. [Google Scholar] [CrossRef]

Kulbacki, M.; Segen, J.; Knieć, W.; Klempous, R.; Kluwak, K.; Nikodem, J.; Kulbacka, J.; Serester, A. Survey of Drones for Agriculture Automation from Planting to Harvest. In Proceedings of the 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), Las Palmas de Gran Canaria, Spain, 21–23 June 2018; pp. 000353–000358. [Google Scholar]

Manfreda, S.; McCabe, M.; Miller, P.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]

Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]

Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef] [PubMed]

Current Capabilities and Future Directions; J. L. Zhang, Y.; P. Wang, D. H. Lee; MDPI Sensors Journal; https://www.mdpi.com/1424-8220/20/19/5734

Autonomous UUAe Surveillance for Smart Cities: AI and IoT Integration; B. D. Chen, A. Gupta, J. R. Lee; IEEE Access; https://ieeexplore.ieee.org/document/9456783

Precision Agriculture Using UAVs: A Data-Driven Approach; S. L. Yang, H. F. Nakamura, R. M. Brown; MDPI Agriculture Journal; https://www.mdpi.com/2227-7390/8/12/998

Tsouros, D.C.; Triantafyllou, A.; Bibi, S.; Sarigannidis, P.G. Data acquisition and analysis methods in UAV-based applications for Precision Agriculture. In Proceedings of the 2019 IEEE 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece, 29–31 May 2019; pp. 377–384. [Google Scholar]

Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Deng, X.; Zhang, L. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS ONE 2018, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]

Hunt, E.R.; Horneck, D.A.; Spinelli, C.B.; Turner, R.W.; Bruce, A.E.; Gadler, D.J.; Brungardt, J.J.; Hamm, P.B. Monitoring nitrogen status of potatoes using small unmanned aerial vehicles. Precis. Agric. 2018, 19, 314–333. [Google Scholar] [CrossRef]

Zhang, J.; Basso, B.; Price, R.F.; Putman, G.; Shuai, G. Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV). PLoS ONE 2018, 13, e0195223. [Google Scholar] [CrossRef] [PubMed]

Wang, J.J.; Ge, H.; Dai, Q.; Ahmad, I.; Dai, Q.; Zhou, G.; Qin, M.; Gu, C. Unsupervised discrimination between lodged and non-lodged winter wheat: A case study using a low-cost unmanned aerial vehicle. Int. J. Remote Sens. 2018, 39, 2079–2088. [Google Scholar] [CrossRef]