Statistical Analysis and Forecasting Of Cotton Yield Dynamics In Region

Abstract

Observations of a certain phenomenon, the nature of which changes over time, give rise to an ordered sequence, which is called a time series. In the article, using the method of statistical time series analysis, statistical pattern of time series ((y_t ) ̅ ) -average yield of cotton in 5-regions of the Republic of Uzbekistan(on materials of CSB of the Republic of Uzbekistan for 20-30 years). Point and interval estimates for the average cotton yield were constructed with a 95% guarantee, explicit types of trends were determined, and the yield in the region was predicted for subsequent years. Using statistical criteria of Durbin-Watson, it was found that the average yield of cotton in the region has an autocorrelation dependence. The used methods of processing and analysis of dynamic series after testing can be used in the research of masters and researchers.

American Journal Of Applied Science And Technology
Source type: Journals
Years of coverage from 2022
inLibrary
Google Scholar
HAC
doi
 
CC BY f
36-43
0

Downloads

Download data is not yet available.
To share
Fayziyev Axtam Asraevich. (2025). Statistical Analysis and Forecasting Of Cotton Yield Dynamics In Region. American Journal Of Applied Science And Technology, 5(06), 36–43. https://doi.org/10.37547/ajast/Volume05Issue06-09
0
Citations
Crossref
Сrossref
Scopus
Scopus

Abstract

Observations of a certain phenomenon, the nature of which changes over time, give rise to an ordered sequence, which is called a time series. In the article, using the method of statistical time series analysis, statistical pattern of time series ((y_t ) ̅ ) -average yield of cotton in 5-regions of the Republic of Uzbekistan(on materials of CSB of the Republic of Uzbekistan for 20-30 years). Point and interval estimates for the average cotton yield were constructed with a 95% guarantee, explicit types of trends were determined, and the yield in the region was predicted for subsequent years. Using statistical criteria of Durbin-Watson, it was found that the average yield of cotton in the region has an autocorrelation dependence. The used methods of processing and analysis of dynamic series after testing can be used in the research of masters and researchers.


background image

American Journal of Applied Science and Technology

36

https://theusajournals.com/index.php/ajast

VOLUME

Vol.05 Issue 06 2025

PAGE NO.

36-43

DOI

10.37547/ajast/Volume05Issue06-09



Statistical Analysis and Forecasting Of Cotton Yield
Dynamics In Region

Fayziyev Axtam Asraevich

Candidate Of Physical And Mathematical Sciences, Acting Professor, Tashkent University Of Economics And Pedagogy, Republic Of
Uzbekistan

Received:

14 April 2025;

Accepted:

10 May 2025;

Published:

17 June 2025

Abstract:

Observations of a certain phenomenon, the nature of which changes over time, give rise to an ordered

sequence, which is called a time series. In the article, using the method of statistical time series analysis, statistical
pattern of time series ((y_t )

̅

) -average yield of cotton in 5-regions of the Republic of Uzbekistan(on materials of

CSB of the Republic of Uzbekistan for 20-30 years). Point and interval estimates for the average cotton yield were
constructed with a 95% guarantee, explicit types of trends were determined, and the yield in the region was
predicted for subsequent years. Using statistical criteria of Durbin-Watson, it was found that the average yield of
cotton in the region has an autocorrelation dependence. The used methods of processing and analysis of dynamic
series after testing can be used in the research of masters and researchers.

Keywords:

Discrete, dynamic, series, trend, seasonality, component, linear, smallest, hypothesis, autocorrelation,

asymmetry, kurtosis.

Introduction:

In almost every field, there are phenomena that are
important to study in terms of their development and
changes over time. For example, one may strive to
predict the future based on knowledge of the past,
manage a process, or describe the key features of a
data series based on a limited amount of information.

When processing time series data, the methods
largely

rely

on

techniques

developed

by

mathematical statistics for distribution series. At
present, statistics offers a wide variety of time series
analysis methods, ranging from the simplest to quite
complex ones ([1,2,3,4,5]).

In general, a time series yt,t

T{y_t, t

T}yt,t

T

consists of four components: trend; fluctuations
around the trend; seasonal effect; and random
component ([1,2,3,4,5]).

In this study, cotton yield data over the past 20

30

years in five regions of the Republic of Uzbekistan is
processed and analyzed as a discrete time series.
Using statistical methods of time series analysis, point

and interval estimates of the average cotton yield
were constructed, explicit types of trends were
identified, forecasts for future yields were made, and
various statistical hypotheses were tested.

The study and analysis of dynamic series have been
addressed in the works of Anderson [1], Kendall [2],
Tikhomirov [3], Vainu [4], Sulaimanov [5], and others.

Analysis of Results and Examples.

A graphical representation of the observed data
(Table 1, column 3, showing the statistical analysis of
cotton yield dynamics for the Bukhara region) and the
coordinate system provide a basis to preliminarily
assume the hypothesis that the trend component of
the process follows a linear dependence (Figure 1) of
the form:

yt=a+bty_t = a + btyt=a+bt

where the unknown parameters are determined
using the least squares method, i.e., based on the
empirical data, by solving the following system of
normal equations:


background image

American Journal of Applied Science and Technology

37

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

{

=

+

t

y

t

a

T

a

1

0

t

y

t

a

t

a

t

=

+

2

1

0

(1)

а)

в) с)

Figure 1. Diagram of the Time Series.

Using the calculations from Table 1, we obtain:

∑ 𝑦

𝑡

= 564 , 𝑎

0

=

1
Т

∑ 𝑦

𝑡

=

564

19

= 29,68

,

𝑎

1

=

1

∑ 𝑡

2

∑ 𝑦

𝑡

𝑡 =

19,7

570

= 0,035

.

From this, the linear trend (tendency) equation for cotton yield in the region is determined as:

y(t)=0.035t+29.68(2)y(t) = 0.035t + 29.68 \tag{2}y(t)=0.035t+29.68(2)

Using statistical criteria, it was established that in this equation the null hypothesis

H0:a1=0H_0: a_1 = 0H0a1=0

is rejected, and the alternative hypothesis

H1:a

1≠0H_1: a_1

\ne 0H1:a1 =0

is accepted at the significance level of α=0.05

\

alpha = 0.05α=0.05.

Proceeding to the calculation of the data for
determining the time series trend.

Table 1

1

2

3

4

5

6

7

N

Years of Observation

𝑦

𝑡

c/ha

t

t

2

𝑦

𝑡

t

𝑦

𝑡

∙ 𝑡

2

1

2001

27,1

-9

81

-243,9

2195,1

2

2002

28,2

-8

64

-225,6

1804,8

3

2003

29,3

-7

49

-205,1

1435,7

4

2004

30,6

-6

36

-183,6

1101,6

5

2005

30,9

-5

25

-154,5

772,5

6

2006

29,4

-4

16

-117,6

470,4

7

2007

30,3

-3

9

-90,9

272,7

8

2008

25,8

-2

4

-51,6

103,2

0

10

20

30

40

1 4 7 10 13 16 19

27.1 28.2

29.3

30.6

30.9

29.4

30.3

25.8

28.6

31

32.6

31.5

31.4

31.3

32.6

30.2

29.3

28.3 25.6

0

10

20

30

40

1

4

7 10 13 16 19


background image

American Journal of Applied Science and Technology

38

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

9

2009

28,6

-1

1

-28,6

28,6

10

2010

31

0

0

0

0

11

2011

32,6

1

1

32,6

32,6

12

2012

31,5

2

4

63

126

13

2013

31,4

3

9

94,2

282,6

14

2014

31,3

4

16

125,2

500,8

15

2015

32,6

5

25

163

815

16

2016

30,2

6

36

181,2

1087,2

17

2017

29,3

7

49

205,1

1435,7

18

2018

28,3

8

64

226,4

1811,2

19

2019

25,6

9

81

230,4

2073,6

Total

564

0

570

19,7

16349,3

By substituting t=2t = 2t=2 into equation (2), the expected cotton yield in the Bukhara region for the year 2024 is
found to be, on average, 29.82 centners per hectare (c/ha).

Results of the Statistical Analysis of Cotton Yield Dynamics in 5 Regions of the Republic of Uzbekistan (Table 2):

Table 2

Area

Trend part of the time series

Forecast average yields

2025 c/ha

1

Andijan

y(t) = 0,30t + 29,47

30,67

2

Bukhara

𝑦(𝑡) = 0,035𝑡 + 29,68

29,82

3

Samarkand

𝒚

(

𝒕

)=

𝟎

,

𝟏𝟏𝒕

+

𝟐𝟑

,

𝟖𝟐

24,37

4

Fergana

𝑦(𝑡) = 0,096𝑡 + 26,46

26,94

5

Khorezm

𝒚

(

𝒕

)=

𝟎

,09

𝟏𝒕

+

𝟐

5,54

26

6

By Republic

𝒚

(

𝒕

)=

𝟎

,58

𝒕

+

𝟐

4,64

26,96

For further statistical analysis, we calculate the finite differences (Table 2):

Δ

y1,

Δy2,…

\Delta y_1, \Delta y_2,

\ldots

Δ

y1,

Δ

y2,

. Then, we proceed to compute the higher-order finite differences (Table 3).

Table 3

Data Calculations for Determining Finite Differences

1

2

3

4

5

6

7

8

9

Years of

Observation

Y(t)

c/ha

Y

t

2

ΔY

t

ΔY

t

2

Δ

2

Y

t

Δ

2

Y

t

2

Δ

3

Y

t

Δ

3

Y

t

2

2001

27,1

734,41

2002

28,2

795,24

1,1

1,21


background image

American Journal of Applied Science and Technology

39

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

2003

29,3

858,49

1,1

1,21

2,2

4,84

2004

30,6

936,36

1,3

1,69

2,4

5,76

0,2

0,04

2005

30,9

954,81

0,3

0,09

1,6

2,56

-0,8

0,64

2006

29,4

864,36

-1,5

2,25

-1,2

1,44

-2,8

7,84

2007

30,3

918,09

0,9

0,81

-0,6

0,36

0,6

0,36

2008

25,8

665,64

-4,5

20,25

-3,6

12,96

-3

9

2009

28,6

817,96

2,8

7,84

-1,7

2,89

1,9

3,61

2010

31

961

2,4

5,76

5,2

27,04

6,9

47,61

2011

32,6

1062,76

1,6

2,56

4

16

-1,2

1,44

2012

31,5

992,25

-1,1

1,21

0,5

0,25

-3,5

12,25

2013

31,4

985,96

-0,1

0,01

-1,2

1,44

-1,7

2,89

2014

31,3

979,69

-0,1

0,01

-0,2

0,04

1

1

2015

32,6

1062,76

1,3

1,69

1,2

1,44

1,4

1,96

2016

30,2

912,04

-2,4

5,76

-1,1

1,21

-2,3

5,29

2017

29,3

858,49

-0,9

0,81

-3,3

10,89

-2,2

4,84

2018

28,3

800,89

-1

1

-1,9

3,61

1,4

1,96

2019

25,6

655,36

-2,7

7,29

-3,7

13,69

-1,8

3,24

Total

564

16816,56

-1,5

61,45

-1,4

106,42

-5,9

103,97

According to Table 3, the coefficients of variation of the finite differences are calculated, and it is established that

V1≈V2≈V3.V_1

\approx V_2 \approx V_3.V1

V2

V3.

Therefore, the first-order finite differences eliminate the linear trend.

The presence of autocorrelation in the cotton yield time series is tested using the

Durbin

Watson criterion

:

d=∑t=2n(et−et−1)2∑t=1net2(3)d =

\frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}

\tag{3}d=

t=1net2

t=2n(et

et

1)2(3)

Using formula (3), the computed value is:

dobserved=0.0026d_{\text{observed}} = 0.0026dobserved=0.0026

This is compared with the

critical value

from the table:

dcritical=1.08([5], p. 120).d_{\text{critical}} = 1.08 \quad \text{([5], p. 120)}.dcritical=1.08([5], p. 120).

Since

dobserved=0.0026<dcritical=1.08,d_{\text{observed}} = 0.0026 < d_{\text{critical}} =
1.08,dobserved=0.0026<dcritical=1.08,

it follows that the average cotton yield in the region exhibits

autocorrelation dependence

:


background image

American Journal of Applied Science and Technology

40

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Yt=ρYt−1+et,Y_

t = \rho Y_{t-1} + e_t,Yt=

ρYt−

1+et,

where

ρ=Cov(Yt,Yt+1)=E[(Yt−yˉt)(Yt+1−yˉt)].

\rho = \text{Cov}(Y_t, Y_{t+1}) = \mathbb{E}[(Y_t - \bar{y}_t)(Y_{t+1} -

\bar{y}_t)].

ρ

=Cov(Yt,Yt+1)=E[(Yt

−yˉt

)(Yt+1

−yˉt

)].

Using Table 4 and the formulas from sources [1, 2, 3, 4, 5], the

autocorrelation coefficients

RLR_LRL are

determined for

L=1,2,3,4,5,L = 1, 2, 3, 4, 5,L=1,2,3,4,5,

where LLL represents the

lag

, i.e., the time shift or delay between the interrelated phenomena.

(4)

Data for Calculating Autocorrelation Coefficients

Table 4

T

𝑌

𝑡

𝑌

𝑡

∙ 𝑌

𝑡+1

𝑌

𝑡

∙ 𝑌

𝑡+2

𝑌

𝑡

∙ 𝑌

𝑡+3

𝑌

𝑡

∙ 𝑌

𝑡+4

𝑌

𝑡

∙ 𝑌

𝑡+5

2001

27,1

2002

28,2

764,22

2003

29,3

826,26

794,03

2004

30,6

896,58

862,92

829,26

2005

30,9

945,54

905,37

871,38

837,39

2006

29,4

908,46

899,64

861,42

829,08

796,74

2007

30,3

890,82

936,27

927,18

887,79

854,46

2008

25,8

781,74

758,52

797,22

789,48

755,94

2009

28,6

737,88

866,58

840,84

883,74

875,16

2010

31

886,6

799,8

939,3

911,4

957,9

2011

32,6

1010,6

932,36

841,08

987,78

958,44

2012

31,5

1026,9

976,5

900,9

812,7

954,45

2013

31,4

989,1

1023,64

973,4

898,04

810,12

2014

31,3

982,82

985,95

1020,38

970,3

895,18

2015

32,6

1020,38

1023,64

1026,9

1062,76

1010,6

2016

30,2

984,52

945,26

948,28

951,3

984,52

=

+

=

+

=

=

=

=

=

+

=

+

N

L

t

N

L

t

t

t

L

N

t

L

N

t

t

t

L

N

t

L

N

t

N

L

t

t

t

L

t

t

L

L

N

Y

Y

L

N

Y

Y

L

N

Y

Y

Y

Y

R

1

2

1

2

1

2

1

2

1

1

1


background image

American Journal of Applied Science and Technology

41

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

2017

29,3

884,86

955,18

917,09

920,02

922,95

2018

28,3

829,19

854,66

922,58

885,79

888,62

2019

25,6

724,48

750,08

773,12

834,56

801,28

Сумма

564

8029,92

15270,4

14390,33

13462,13

12466,36

A significant deviation of the autocorrelation
coefficient RLR_LRL from zero provides grounds to
assume that there is a substantial

autocorrelation

dependence

in cotton yield. Consequently, the cotton

yield in the Bukhara region this year depends on the
yields of previous and subsequent years.

Based on sample data and using the software packages

EV

М

x7.2019

and

Excel

, the numerical characteristics

yty_tyt for the

average cotton yield in the Bukhara

region

are calculated (see

Table 5

):

Estimation of the Main Parameters of the Time Series Table 5

Sample Characteristics

Sample Estimates of Characteristics

Average cotton yield

𝑦̅

Т

c/ha

29,68

Variance

4,15

Standard deviation

отклонение

𝜎

𝑇

2,04

Coefficient of variation

𝑣

(%)

6,87 %

Skewness А

-0,60

Kurtosis

𝐸

𝐾

-0,25

Standard error of the mean

𝑦̅

Т

,

𝑚

у

m

у

=

𝜎

у

√𝑛

= 0,58

Maximum error

𝑚

у

m’

у

= t m

у

= 2,06

∙ 0

,47 = 0,97

Standard error of the standard

deviation

𝜎

𝑇

m

𝜎

=

𝜎

√2𝑛

=

2,04
6,16

= 0,33

Confidence interval (95%)

:

𝑦̅

Т

± 𝑡𝑚

у

for cotton yield

𝑦̅

𝑇

± t m

у

= 29,68 ± 0,97

(28,71; 30,65 )

ц

/

га

Statistical hypothesis testing

:

Н

0

: 𝑃(𝑋 < 𝑥) = Ф

а,𝜎

(х)

95%

гарантий гипотезы

Н

0

принимается

Results of the Statistical Analysis of Cotton Yield Dynamics in 5 Regions and in the Republic of Uzbekistan

Table 6

Parameter
Estimation

Andijan

Bukhara

Samarkand

Fergana

Khorezm

Republic-
wide or
Across the
Republic


background image

American Journal of Applied Science and Technology

42

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Average cotton

yield

𝑦̅

Т

c/ha

29,47

29,68

23,82

26,46

25,54

24,64

Variance

6,70

4,15

4,72

9,31

15,66

3,09

Standard
deviation

𝜎

𝑇

2,58

2,04

2,17

3,05

3,96

1,76

Coefficient of
variation

𝑣

(%)

8,75

6,87

19,81

11,52

15,48

7,14

Skewness А

0,17

0,60

-1,81

0,66

-0,99

-1,49

Kurtosis

𝐸

𝐾

0,23

0,25

2,68

0,18

2,17

1,65

Standard error

of the mean

𝑦̅

Т

,

𝑚

у

m

у

=

𝜎

у

√𝑛

=

0,58

m

у

=

𝜎

у

√𝑛

=

0,58

m

у

=

𝜎

у

√𝑛

=

0,40

m

у

=

𝜎

у

√𝑛

=

0,58

M

у

=

𝜎

у

√𝑛

= 0,75

M

у

=

𝜎

у

√𝑛

=

0,44

Maximum error

𝑚

у

m’

у

= t m

у

=

2,09

∙ 0

,58 =

1,21

m’

у

= t

m

у

= 2,06

0

,47 = 0,97

m’

у

= t m

у

=

2,06

∙ 0

,40

=0,82

m’

у

= t

m

у

= 2,06

0

,58 = 1,20

m’

у

=tm

у

=

2,06

∙ 0

,747 =

1,54

m’

у

=tm

у

=

2,06

∙ 0

,44

=0,94

Standard error
of the standard
deviation

𝜎

𝑇

m

𝜎

=

𝜎

√2𝑛

=

2,58
6,33

=

0,41

m

𝜎

=

𝜎

√2𝑛

=

2,04
6,16

=

0,33

m

𝜎

=

𝜎

√2𝑛

=

2,17
6,16

= 0,35

m

𝜎

=

𝜎

√2𝑛

=

3,05
7,48

=

0,41

m

𝜎

=

𝜎

√2𝑛

=

3,956
7,483

= 0,53

m

𝜎

=

𝜎

√2𝑛

=

1,76

7,483

=

0,24

Confidence
interval (95%)
for cotton yield

:

𝑦̅

Т

± 𝑡𝑚

у

𝑦̅

𝑇

± t m

у

=

29,47 ± 1,21

(28,26; 30,68

)

ц

/

га

𝑦̅

𝑇

± t m

у

=

29,68 ± 0,97

(28,71; 30,65

)

ц

/

га

𝑦̅

𝑇

± t m

у

=

23,82 ± 0,82

(23,00; 23,64

)

ц

/

га

𝑦̅

𝑇

± t m

у

=

26,46 ± 1,20

(25,26; 27,66

)

ц

/

га

𝑦̅

𝑇

± tm

у

=

25,54 ± 1,54,

(24,00; 27,08)

ц

/

га

𝑦̅

𝑇

± tm

у

=

24,64 ± 0,94,
(23,7; 25,6)

ц

/

га

Statistical
hypothesis test

:

Н

0

: 𝑃(𝑋 < 𝑥)

= Ф

а,𝜎

(х)

95%

Guarantee

hypothesis

Н

0

accepted

95%

Guarantee

hypothesis

Н

0

accepted

95%

Guarantee

hypothesis

Н

0

accepted

95%

Guarantee

hypothesis

ы

Н

0

accepted

95%

Guarantee

hypothesis

Н

0

accepted

95%
Guarantee
hypothesis

Н

0

accepted

CONCLUSIONS

Based on the above statistical analyses of the dynamics
of the average cotton yield

yˉt

\bar{y}_t

yˉt

in five

regions of the Republic of Uzbekistan as a time series,
with a confidence level of

γ

=0.95\gamma = 0.95

γ

=0.95,

the following conclusions can be drawn:

Point and interval statistical estimates for the

average cotton yield have been constructed;

Clear types of trends have been identified, and

their linearity has been established;

The average cotton yield has been forecasted

for the coming years;

Using statistical criteria, it has been proven

that the average cotton yield in the region exhibits
autocorrelation. Consequently, the cotton yield in a


background image

American Journal of Applied Science and Technology

43

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

given year depends on the yields of previous and
subsequent years.

REFERENCES

Т.Андерсон “Статистический анализ временных

рядов”. Москва,“МИР”, 1976. 759 с.

М.

Кендал,

А.

Стьюарт

“Многомерный

статистический анализ и временные ряды”.

-

Москва: “Наука”, 1976.

-

736 с.

Н.П.Тихомиров, Е.Ю.Дорохина “Эконометрика”.

-

Москва: Учебник. Изд. “Экзамен”, 2003. 512 с.

Я.Я.

-

Ф.Вайну “Корреляции рядов динамики”, М.

“Статистика”, 1977

Б.А.Сулаймонов,

А.А.Файзиев,

Ж.Н.

Файзиев

“Тажриба маълумотларининг статистик таҳлили”. –

Ташкент: Изд. ТашДАУ, 2015, 124 бет.

M.U.Achilov, A.A.Fayziev “

The analysis of dynamics of

fruits and berry froductivity grown in Uzbekistan

” ,

EPRA International journal of Research and

Development (IJRD). Volume: 4. Issue: 8. August 2019,

5-9 p .

А.А.Файзиев, Т. Тургунов “Статистический анализ и

прогнозирование динамики урожайности хлопка в

Республике

Узбекистан”//

Журнал.

-

Бюллетень

Института Матема

-

тики. ISSN 2181

-9483, http: //mib.

Mathinst. Uz. Ташкент, 2020. № 1.

-

С.107

-111.

Х.Ч.Буриев,

А.А.Файзиев,

А.Нишанова

“Статистический

анализ

и

прогнозирование

динамики уржайности бахчавых культур”. ЖУРНАЛ,

ВЕСТНИК аграрной НАУКИ УЗБЕКИСТАНА, BULLETIN

OF THE AGRARIAN, SCIENCE OF UZBEKISTAN. № 1 (85

), 2021. 47-

52 стр.

А.А.Файзиев,

О.З.Карабашов,

Н.Н.Мусаева

«Прогнозирование

динамики

урожайности

хлопчатника

Андижанской области». Издател.

“Пробемы науки” Вестник науки и образование.

Москва . Журнал N 8 (111). Апрел 2021, част

- 2, 6-

стр.

А.А.Файзиев, В.Вахобов “Прогнозирование

динамики урожайности хлопчатника

Ферганской

области”, Ташкентскый институт ирригации и

механизации

сельского

хозяйства

.Журнал

“Ирригация и милиорация”, № 6. 2020, 182

- 188

стр.

References

Т.Андерсон “Статистический анализ временных рядов”. Москва,“МИР”, 1976. 759 с.

М. Кендал, А. Стьюарт “Многомерный статистический анализ и временные ряды”.- Москва: “Наука”, 1976. -736 с.

Н.П.Тихомиров, Е.Ю.Дорохина “Эконометрика”.- Москва: Учебник. Изд. “Экзамен”, 2003. 512 с.

Я.Я.-Ф.Вайну “Корреляции рядов динамики”, М. “Статистика”, 1977

Б.А.Сулаймонов, А.А.Файзиев, Ж.Н. Файзиев “Тажриба маълумотларининг статистик таҳлили”. –Ташкент: Изд. ТашДАУ, 2015, 124 бет.

M.U.Achilov, A.A.Fayziev “The analysis of dynamics of fruits and berry froductivity grown in Uzbekistan” , EPRA International journal of Research and Development (IJRD). Volume: 4. Issue: 8. August 2019, 5-9 p .

А.А.Файзиев, Т. Тургунов “Статистический анализ и прогнозирование динамики урожайности хлопка в Республике Узбекистан”// Журнал.-Бюллетень Института Матема-тики. ISSN 2181-9483, http: //mib. Mathinst. Uz. Ташкент, 2020. № 1.-С.107-111.

Х.Ч.Буриев, А.А.Файзиев, А.Нишанова “Статистический анализ и прогнозирование динамики уржайности бахчавых культур”. ЖУРНАЛ, ВЕСТНИК аграрной НАУКИ УЗБЕКИСТАНА, BULLETIN OF THE AGRARIAN, SCIENCE OF UZBEKISTAN. № 1 (85 ), 2021. 47-52 стр.

А.А.Файзиев, О.З.Карабашов, Н.Н.Мусаева «Прогнозирование динамики урожайности хлопчатника Андижанской области». Издател. “Пробемы науки” Вестник науки и образование. Москва . Журнал N 8 (111). Апрел 2021, част - 2, 6-стр.

А.А.Файзиев, В.Вахобов “Прогнозирование динамики урожайности хлопчатника Ферганской области”, Ташкентскый институт ирригации и механизации сельского хозяйства .Журнал “Ирригация и милиорация”, № 6. 2020, 182 - 188 стр.