Рак остается одной из самых острых проблем здравоохранения во всем мире, требуя постоянных исследований инновационных терапевтических подходов. В этой статье рассматриваются два критических фактора, влияющих на рак: некодирующие РНК и нанотерапия. Выясняется роль некодирующих РНК, включая микроРНК и длинные некодирующие РНК, в патогенезе рака, прогрессировании и резистентности к лечению. Кроме того, исследуется потенциал нанотерапии, использующей наноразмерные материалы для целенаправленной доставки лекарств и повышения терапевтической эффективности. Путем всестороннего анализа молекулярных механизмов, лежащих в основе нарушения регуляции некодирующих РНК, и перспектив нанотерапии в лечении рака эта статья направлена на предоставление ценной информации о новых терапевтических стратегиях борьбы с раком.
Ветеринарный научно-исследовательский институт, заведующий отделом подготовки и повышения квалификации научных кадров
Рак остается одной из самых острых проблем здравоохранения во всем мире, требуя постоянных исследований инновационных терапевтических подходов. В этой статье рассматриваются два критических фактора, влияющих на рак: некодирующие РНК и нанотерапия. Выясняется роль некодирующих РНК, включая микроРНК и длинные некодирующие РНК, в патогенезе рака, прогрессировании и резистентности к лечению. Кроме того, исследуется потенциал нанотерапии, использующей наноразмерные материалы для целенаправленной доставки лекарств и повышения терапевтической эффективности. Путем всестороннего анализа молекулярных механизмов, лежащих в основе нарушения регуляции некодирующих РНК, и перспектив нанотерапии в лечении рака эта статья направлена на предоставление ценной информации о новых терапевтических стратегиях борьбы с раком.
J.M. Reichert, J.B. Wenger, Development trends tor new cancer therapeutics and vaccines. Drug Discov. Today 13(1) (2008) 30-37.
L. The, GLOBOCAN 2018: counting the toll of cancer, Lancet 392 (10152) (2018) 985.
M. Dessale, G. Mengjstu, H.M. Mengist. Nanotechnology: a promising approach for cancel diagnosis, therapeutics and theragnosis, Int. J. Nanomed. 17 (2022) 3735-3749.
M.C. Roco, W.S. Bainbridge, The new world of discovery, invention, and
innovation: convergence of knowledge, technology, and society, J. Nanoput Res. 15(9) (2013) 1946.
A. Surendiran, et al., Novel applications of nanotechnology in medicine, Indian J. Med. Res. 130 (6) (2009) 689-701.
Z.T. Yao, et al.. New insights into die interplay between long non-coding RN.As and RNA-binding proteins in cancer. Cancer Common. (Lend.) 42 (2) (2022) 117-140.
N. Noiui, et al.. Role of miRNAs interference on ovarian functions and ркбпасиге ovarian failure. Cell Commun. Signal 20 (1) (2022) 198.
S.A. Bhat, et al., Long non-coding RNAs: mechanism of action and functional utility, Noncodiug RNA Res. 1 (1) (2016) 43-50.
N. Romero-Barrios, et al., Splicing regulation by long noncoding RNAs, Nucleic Acids Res. 46 (5) (2018) 2169-2184.
S.C. Chang, eta!.. Mechanisms of X-chromosome inactivation. Front Biosci. 11 (2006)852-866.
J.L. Rinn, et al., Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs, Cell 129 (7) (2007) 1311-1323.
X. Wang, et al., Induced ncRNAs allostcrically modify RNA-binding proteins in cis to inhibit transcription. Nature 454 (7200) (2008) 126-130.
W. Filipowicz, S.N. Bhattachaiyya, N. Sonenberg, Mechanisms of post-transcriptional regulation by microRNAs: are the answers insight? Nat. Rev. Genet 9 (2) (2008) 102-114.
J. Wang, et al.. Regulatory roles of long noncoding RNAs implicated in cancer hallmarks, Int. J. Cancer 146 (4) (2020) 906-916.
J.H. Yoon, et al.. The long noncoding RNA LUCAT1 promotes tumorigenesis by controlling ubiquitination and stability oftlKA methyltransferase 1 in esophageal squamous cell carcinoma, Cancer Lett 417 (2018) 47-57.
K. Tano, et al., MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes, FEBS Lett. 584 (22) (2010) 4575-4580.
C. Pei, X Gong, Y. Zhang, LncRNA MALAT-1 promotes growth and metastasis of epithelial ovarian cancer via sponging microrna-22, Am. J. Transl. Res 12 (11) (2020) 6977-6987.
Z. Sun, et al., Chemical composition and anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of mentha piperita grown in China, PLoS One 9 (12) (2014) el 14767.
Y. Han, et al.. Long intergenic non-coding RNA TUG1 is oveiexpiessed in urothelial carcinoma of the bladder, J. Surg. Oncol. 107 (5) (2013) 555-559.
Y. Xu. el al.. Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma, Tumour Biol. 36 (3) (2015) 1643-1651.
B. Zhao, et al.. Overexpression of IncRNA ANRH. promoted tire proliferation and migration of prostate cancer cells via regulating let-7a/TGF-jH / Smad signaling pathway, Cancer Biomark. 21 (3) (2018) 613-620.
C. Chen, et al., Long noncoding RNA KCNQ1OT1 promotes colorectal carcinogenesis by enhancing aerobic glycolysis via hexokinase-2, Aging 12 (12) (2020)11685-11697.
A. Bouyahya, et al., The role of epigenetic modifications in human cancers and the use of natural compounds as epidrugs: mechanistic pathways and pharmacodynamic actions, Biomolecules 12 (3) (2022).
A.M. Goodman, et al., Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers, Mol. Cancer Ther. 16 (11) (2017) 2598-2608.
N.A. Rizvi, et al.. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer, Science 348 (6230) (2015) 124-128.
S.A. Rosenberg, N.P. Restifo, Adoptive cell transfer as personalized immunotherapy for human cancer, Science 348 (6230) (2015) 62-68.
T.N. Schumacher, T-cell-receptor gene therapy, Nat. Rev. Immunol. 2 (7) (2002) 512-519.
S.A. Rosenberg, et al.. Durable complete responses in heavily prrtieated patients with metastatic melanoma using T-cell transfer immunotherapy, Clin. Cancer Res. 17 (13) (2011) 4550-4557.
MJ. Bciser, et al., Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma; intent-to-treat analysis and efficacy after failure to prior immunotherapies, Clin. Cancer Res. 19 (17) (2013) 4792-4800.
R. Andersen, ct al.. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen, Clin. Cancer Res. 22 (15) (2016) 3734-3745.
MA. Forget, et al.. Prospective analysis of adoptive TtL therapy in patients with metastatic melanoma: response, impact of anti-CTLA4, and biomat kers to predict clinical outcome, Clin. Cancer Res. 24 (18) (2018) 4416-4428.
P. Comoli, et al., Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes, J. Clin. Oncol. 23 (35)(2005) 8942-8949.
S. Stcvanovic, ct al., Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells, J. Clin. Oncol. 33 (14) (2015) 1543-1550.
S.L. Maude, et al., Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371 (16) (2014) 1507-1517.
C.E. Brown, et al.. Regression of glioblastoma after chimeric antigen receptor T-cell therapy, N. Engl. J. Med. 375 (26) (2016) 2561-2569.
C. Govers, et al., T cell receptor gene therapy, strategies for optimizing transgenic TCR pairing, Trends Mol. Med. 16 (2) (2016) 77-87.
L.A. Johnson, et al.. Gene therapy with human and mouse T-celi receptors mediates cancer regression and targets normal tissues expressing cognate antigen, Blood 114 (3) (2009) 535-546.
R.A. Morgan, et oi.. Cancer regression in patients after transfer of genetically engineered lymphocytes, Science 314 (5796) (2006) 126-129.
i Chodon, et al., Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma, Clin. Cancer Res. 20 (9) (2014) 2457-2465.
S. Rageyama, et al., Adoptive transfer of MAGE-A4 T-cell receptor gcnc-transduced lymphocytes in patients with recurrent Esophageal cancer, Clin. Cancer Res. 21 (10)(2015) 2268-2277.
M.R. Parkhurst, et al., T ceils targeting carernoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19 (3) (2011) 620-626.
S. Cooley, et al., First-in-human trial of rhlL-15 and haploidentical natural killercell therapy for advanced acute myeloid leukemia, Blood Adv. 3 (13) (2019) 1970-1980.
A.M. Tsimberidou, et al., Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat. Rev. 8b (2020) 102019.
U. Sahin, et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer, Nature 547 (7662) (2017) 222-226.
P.A. Ott, et al.. An immunogenic personal neoantigen vaccine for patients with melanoma, Nature 547 (7662) (2017) 217-221.
P.W. Kantoff, et al.. sipiih-iicel-T immunotherapy for castration-resistant prostate cancer, N. Engl. J. Med 363 (5) (2010) 411-422.
A. Ediriwickrema, W.M. Saltzman, Nanotherapy for cancer, targeting and multifunctionality in the future of cancer therapies, ACS Biomater Sci. Eng, 1 (2) (2015)64-78.
B.N. HO, C.M. PFEFFER, A.T.K. SINGH, Update on nanotechnology-based drug delivery systems in cancer treatment. Anticancer Res. 37 (11) (2017) 5975-5981.
S. Er, et al., Amino acids, peptides, and proteins: implications for nanotechnological applications in bioeensing and drug/gene delivery. Nanomaterials 11 (11) (2021).
Y. Ma. R.J.M. Nolte, J.J.L.M Cornelissen, Virus-based nanocarriers for drug delivery, Adv. Drug Deliv. Rev. 64 (9) (2012) 811-825.
] M.S. Chan, et al.. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-funcrionalized nanodiamonds circumvent drug resistance, ACS Appl. Mater. Interfaces 9 (13) (2017) 11780-11789.
D.M. Smith, J.K. Simon, J.R. Baker Jr., Applications of nanotechnology for immunology, Nat. Rev. Immunol. 13 (8) (2013) 592-605.
J. Bu, et al.. An avidity-based PD-L1 antagonist using nanoparticle-antilxxly conjugates for enhanced immunotherapy, Nano Lett. 20 (7) (2020) 4901-4909.
M.-J. Sanaei, et al.. The application of nano-medicine to overcome the challenges related to immune checkpoint blockades in cancer immunotherapy, recent advances and opportunities, Crit. Rev. Oncol. Hematol. 157 (2021) 103160.
4 Shang, et al.. Dendritic cells based immunotherapy, Am. J. Cancer Res. 7 (10) (2017) 2091-2102.