The role of polymorphic genes of matrix metalloproteinases and their tissue inhibitors in chronic nephritic syndrome in children

Abstract

The purpose of the study is to determine the significance of genetic factors in the development of chronic nephritic syndrome in children and to clarify the features of the clinical course

The оbject of research were 129 children aged 4-15 years who were treated for chronic nephritis in the nephrology department of the Samarkand Regional Multidisciplinary Paediatric Medical Centre.

The scientific novelty of the study is as follows:it has been established that the severity of chronic nephritic syndrome in children is associated with clinical manifestations (gradual development, dyspepsia, abdominal pain) and an increase in the amount of Cystatin C in the blood;for the first time, it was revealed that the development of sclerotic lesions due to increased proliferation in patients with the presence of the MMP-9 (A-8202G) rs 11697325 genotypes in chronic nephritic syndrome leads to a worsening of the clinical course of the disease; established early diagnostic marker MMP-9 (A-8202G) rs 11697325 and its tissue inhibitor TIMP-2 (C536T) rs 11551797 in chronic nephritic syndrome in children in the diagnosis of the disease; for the first time, the prognostic value of the alleles of the MMP-9 (A-8202G) rs 11697325 genes and the homozygous G/G genotype in determining the risk of developing the disease in children with chronic nephritic syndrome has been proven.

Implementation of the research results. Based on scientific results of evaluation of the role of polymorphic genes of matrix metalloproteinase and its tissue inhibitors in chronic nephritic syndrome in children: methodological recommendation “The role of polymorphic genes of matrix metalloproteinase and its genetic inhibitors in the development of chronic nephritic syndrome in children” was developed and approved (reference of the Ministry of Health of the Republic of Uzbekistan No. 8n-r / 554 of 30.02.2022).

This methodological recommendation made it possible to predict the development of chronic nephritic syndrome in children and improve preventive measures; approved and developed on the basis of scientific results of research on early diagnosis and prognosis of chronic nephritic syndrome “Dynamics of clinical and laboratory parameters in nephritic syndrome in children”, (reference of the Ministry of Health of the Republic of Uzbekistan No. 8n-r / 555 of 30.02.2022).

This methodological recommendation made it possible to optimize the diagnosis and treatment tactics for various forms of nephritic syndrome in children;

The results obtained were implemented in the practice of health care, in particular, in the Republican Children's National Medical Center, in the 1st clinic of the Samarkand State Medical University, in the Samarkand Regional Children's Multidisciplinary Medical Center (conclusion No. 8 n-r/324 of 21.06.2022 of the Ministry of Health of Uzbekistan).

The application of the obtained results to practice has made it possible to reduce the frequency of recurrence of the disease in children, prevent complications of the disease, improve the quality of life of patients, diagnose and prevent the disease.

The structure and scope of the dissertation. The dissertation consists of an introduction, 4 chapters, conclusions, practical recommendations. The volume of the dissertation is 120 pages.

Source type: Dissertations
Years of coverage from 2000
inLibrary
Google Scholar
CC BY f
2-123
83

Downloads

Download data is not yet available.
To share

Payment is required for access to scientific work - 80 000 UZS
To make a payment, log in with your username.

Bozorova Н. . (2023). The role of polymorphic genes of matrix metalloproteinases and their tissue inhibitors in chronic nephritic syndrome in children. Catalog of Dissertations and Abstracts, 1(1), 2–123. Retrieved from https://inlibrary.uz/index.php/dissertations/article/view/24811
Crossref
Сrossref
Scopus
Scopus

Abstract

The purpose of the study is to determine the significance of genetic factors in the development of chronic nephritic syndrome in children and to clarify the features of the clinical course

The оbject of research were 129 children aged 4-15 years who were treated for chronic nephritis in the nephrology department of the Samarkand Regional Multidisciplinary Paediatric Medical Centre.

The scientific novelty of the study is as follows:it has been established that the severity of chronic nephritic syndrome in children is associated with clinical manifestations (gradual development, dyspepsia, abdominal pain) and an increase in the amount of Cystatin C in the blood;for the first time, it was revealed that the development of sclerotic lesions due to increased proliferation in patients with the presence of the MMP-9 (A-8202G) rs 11697325 genotypes in chronic nephritic syndrome leads to a worsening of the clinical course of the disease; established early diagnostic marker MMP-9 (A-8202G) rs 11697325 and its tissue inhibitor TIMP-2 (C536T) rs 11551797 in chronic nephritic syndrome in children in the diagnosis of the disease; for the first time, the prognostic value of the alleles of the MMP-9 (A-8202G) rs 11697325 genes and the homozygous G/G genotype in determining the risk of developing the disease in children with chronic nephritic syndrome has been proven.

Implementation of the research results. Based on scientific results of evaluation of the role of polymorphic genes of matrix metalloproteinase and its tissue inhibitors in chronic nephritic syndrome in children: methodological recommendation “The role of polymorphic genes of matrix metalloproteinase and its genetic inhibitors in the development of chronic nephritic syndrome in children” was developed and approved (reference of the Ministry of Health of the Republic of Uzbekistan No. 8n-r / 554 of 30.02.2022).

This methodological recommendation made it possible to predict the development of chronic nephritic syndrome in children and improve preventive measures; approved and developed on the basis of scientific results of research on early diagnosis and prognosis of chronic nephritic syndrome “Dynamics of clinical and laboratory parameters in nephritic syndrome in children”, (reference of the Ministry of Health of the Republic of Uzbekistan No. 8n-r / 555 of 30.02.2022).

This methodological recommendation made it possible to optimize the diagnosis and treatment tactics for various forms of nephritic syndrome in children;

The results obtained were implemented in the practice of health care, in particular, in the Republican Children's National Medical Center, in the 1st clinic of the Samarkand State Medical University, in the Samarkand Regional Children's Multidisciplinary Medical Center (conclusion No. 8 n-r/324 of 21.06.2022 of the Ministry of Health of Uzbekistan).

The application of the obtained results to practice has made it possible to reduce the frequency of recurrence of the disease in children, prevent complications of the disease, improve the quality of life of patients, diagnose and prevent the disease.

The structure and scope of the dissertation. The dissertation consists of an introduction, 4 chapters, conclusions, practical recommendations. The volume of the dissertation is 120 pages.

Payment is required for access to scientific work - 80 000 UZS
To make a payment, log in with your username.

Login

References

Ахмеджанова Н.И., Асланова Д.Ш., Юлдашев Б.А., Абдурасулов Ф.П., Холова Н.Н. Влияние анемии на биохимические показатели при хронической болезни почек у детей // Проблемы биологии и медицины. – Самарканд, 2016. – С. 28–31.

Ахмеджанова Н.И. Способ диагностики и лечения хронического пиелонефрита у детей: Метод.рекомендации. – Ташкент, 2018. – 22 с.

Ахмеджанова Н.И., Ахмеджанов И.А. Способ лечения хронического пиелонефрита у детей. Монография. Рига (Латвия), 2018. – 247 с.

Ахмеджанова Н.И., Дильмурадова К.Р., Ахмеджанов И.А. Показатели эндогенной интоксикации у детей с хроническим пиелонефритом // Наука и образование. – Прага. – 2014. – № 9. – С. 6-7.

Байко С. В. Хроническая болезнь почек у детей: определение, классификация и диагностика // Нефрология и диализ. – 2020. – Т. 22. – №. 1. – С. 53–70.

Баринов И. В. Оптимизация диагностики, прогнозирование исходов и профилактика хронической почечной недостаточности у детей. Дис. – Самарский государственный медицинский университет, 2020.

Бегляров Р. О. Иммунологическая реактивность у детей с хроническим гломерулонефритом // Research'n Practical Medicine Journal. – 2018. – Т. 5. – №1.

Бегляров Р.О. Провоспалительные цитокины и фагоцитарная активность у детей с хроническим гломерулонефритом // Pediatrics. Eastern Europe. – 2018. – С. 26.

Вельков В.В. Цистатин С: точный индикатор скорости клубочковой фильтрации и ранний маркер преэклампсии // Лаборатория. – 2010. – №10. – С. 18–22.

Вялкова А.А. и др. Хроническая болезнь почек у детей // Нефрология. – 2019. – Т. 23. – №. 5. – С. 29–46.

Ганусевич И.И. Роль матриксных металлопротеиназ (ММП) при злокачественных новообразованиях. II. Участие ММП в ангиогенезе, инвазии и метастазировании опухолей. Онкология 2010; (2):108–17. [Ganusevich I.I. Role Matrix Metalloproteinases (MMP) in Malignancies. II Participation of MMPs in Angiogenesis, Invasion and Metastasis of Tumors. Onkologiya = Oncology 2010;(2):108–17.

Герштейн Е.С., Муштенко В.В., Короткова Е.А., Бежанова С.Д., Морозов А.А., Алферов А.А., Казанцева И.А., Кушлинский Н.Е. Матриксные металлопротеиназы-2, 7, 8, 9 и их тканевой ингибитор 1-го типа в сыворотке крови больных раком почки: клинико-морфологические корреляции. Альманах клинической медицины. – 2017;45(2): 94–101. doi: 10.18786/2072-0505-2017-45-2- 94-101.

Герштейн Е.С., Огнерубов Н.А., Кушлинский Н.Е. Ассоциированные с опухолью протеазы и их тканевые ингибиторы. В: Биологические маркеры опухолей: фундаментальные и клинические исследования / Ред. Кушлинский Н.Е., Красильников М.А. – М.: Издательство РАМН, 2017. – С. 197–230.

Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. – М. – Мир, 2002.

Гломерулонефриты: учебное пособие / О.В. Тирикова, И.А. Филатова; под ред. Н.М. Козловой; ФГБОУ ВО ИГМУ Минздрава России, Кафедра факультетской терапии. – Иркутск: ИГМУ, 2017. – 44 с.

Григоркевич О.С., Мокров Г.В., Косова Л.Ю. (2019). Матриксные металлопротеиназы и их ингибиторы // Фармакокинетика и фармакодинамика. 2019 г – 2(5), с. 3–16.

Грищенко А.В., Жамбалова Л.М., Дмитриева А.В. (2011). Матриксные металлопротеиназы и их ингибиторы при заболеваниях почек у детей // Науки о человеке. 2011. 1 (3), 8–27.

Даминов Б.Т., Махмудова Н.Р. Роль липидных нарушений у больных с хроническими болезнями почек // Вестник врача. (2018, №3)– С. 5.

Жаббаров О.О., Турсунова Л.Д. Методическое пособие. Нефротический синдром. (Ташкент) – 2019.

Жабборов А.А. и др. Оценка эффективности антиагрегантной терапии у больных с хроническим гломерулонефритом с нефротическим синдромом // Авиценна. – 2019. – №. 41. – С. 45–54.

Жмуров Д.В. и др. Хроническая болезнь почек // Colloquium-journal. – Голопристанський міськрайонний центр зайнятості, 2020. – №. 12 (64). – С. 28–34.

Исмаилов И.Я., Скворцов В.В. Хронический гломерулонефрит // Медицинская сестра. – 2018. – №6.

Ишкабулов Д.У., Ахмедов Ю.М., Ишкабулова Г., Эргашев А. Хроническая почечная недостаточность у детей: современные методы оценки течения, лечения и прогноза хронических заболеваний почек в стадии почечной недостаточности // Вестник врача. – 2008. – (1). – С. 73–83.

Каримджанов И.А., Исканова Г.Х., Рахманова Л.К. Поражение органов мишеней при хронической болезни почек у детей // Медицина: теория и практика. – 2019. – Т. 4. – №. S. – С. 241-242.

Комарова О.В., Цыгин А.Н., Кучеренко А.Г. с соавт. Цистатин С как маркер почечных функций у детей с ХБП РДО // Нефрология и диализ. – 2010. – Т.12, №4 – С. 15–17.

Крутова А.С. и др. Роль матричных металлопротеиназ и их ингибиторов в физиопатологических процессах у детей с заболеваниями почек // Тихоокеанский медицинский журнал. – 2020. – №. 1 (79). – С. 11–15.

Кушніренко С. В. Цистатин С: оценка и прогноз почечной функции у детей с хронической болезнью почек // Урологія= Урология. – 2019. – Т. 23. – №. 3. – С. 257–263.

Кушлинский Н.Е., Бабкина И.В., Кузнецов И.Н., Короткова Е.А., Тен Е.А., Булычева И.В., Соловьев Ю.Н., Алиев М.Д. Ассоциированные с опухолью матриксные металлопротеиназы в сыворотке крови больных первичными саркомами костей // Молекулярная медицина. – 2014. – (1). – С. 43–46.

Кушлинский Н.Е., Герштейн Е.С. Матриксные металлопротеиназы и компоненты системы активации плазминогена в патогенезе и клиническом течении рака толстой кишки // Патогенез. – 2013. – 11(3). – С. 4–12.

Лепшеева А.Ю. Факторы хронизации гломерулонефритов у детей // Актуальные проблемы медико-биологических дисциплин. – 2019. – С. 327-328.

Лобода А.М., Маркевич В.Е. Діагностична значимість визначення цистатину С та креатиніну у сироватці крові новонароджених у разі ішемічної нефропатії // Неонатологія. – 2012. – №2 (37). – C. 142–148.

Маркелова Е.В., Здор В.В., Романчук А.Л. и др. Матриксные металлопротеиназы: их взаимосвязь с системой цитокинов, диагно-стический и прогностический потенциал // Иммунология, аллергология, инфектология. – 2016. – № 2. – С. 11–22. [Markelova E.V., Zdor V.V., Romanchuk A.L., et al. Matriksnye metalloproteinazy: ikh vzaimosvyaz' s sistemoi tsitokinov, diagnosticheskii i prognosticheskii potentsial. Immunologiya, allergologiya, infektologiya. 2016;2:11–22.

Махмудов Х.У., Ахмеджанова Н.И. Характеристика течения и клинико-лабораторных данных хронического гломерулонефрита у детей // Достижения науки и образования. – 2021. – №. 7 (79). – С. 69–71.

Морозов С.Л., Длин В.В., Сухоруков В.С., Воронкова А.С. Молекулярная нефропатология: новые возможности в диагностике заболеваний почек // Рос вестн перинатол и педиатрии. – 2017. – 62:(3). – С. 32–36.

Раимкулова Н.Р., Даминов Б.Т., Жаббаров А.А. Нарушение липидного обмена у больных хроническим гломерулонефритом и оценка эффективности применения статинов // Нефрологический семинар. – 2006. – Т. 2006. – С. 125.

Рахманова Л.К., Даминов Б.Т., Каримова У.Н. Методическое пособие. Хронический гломерулонефрит у детей. Ташкент- 2017.

Рахманова Л.К., Искандарова И.Р. Фактор риска прогрессирования хронического гломерулонефрита у детей // Re-health journal. – 2021. – №. 1. – С. 229–237.

Ройт А., Бростофф Дж., Мейл Д. Иммунология. – М.: Мир, 2001.

Саипова Д.С., Рузметова И.А., Эгамбердиева Д.А. Оценка гемодинамических параметров у больных хронической болезнью почек // Восточно-европейский научный журнал. – 2016. – Т. 14. – №. 1. – С. 98–102.

Сахаталиева Р.Р. Хронический гломерулонефрит у детей и его лечение // Экономика и социум. – 2021. – №. 1-2. – С. 399–403.

Семешина О. В. и др. Диагностическая значимость цитокинового профиля сыворотки крови при хронической болезни почек у детей // Нефрология. – 2018. – Т. 22. – №. 4. – С. 81–89.

Сети С., Фервенца Ф.К. Стандартизированный подход к классификации и морфологическому описанию гломерулонефрита // Нефрология. – 2019. – Т. 23. – №. 4. – С. 27–35.

Смирнов А.В., Наточин Ю.В. Нефрология: фундаментальная и клиническая // Нефрология. – 2019. – Т. 23. – №. 4. – С. 9–26.

Суханова Г.А., Терентьева А.А., Кувшинов Н.Н. Роль матриксных металлопротеиназ и их тканевых и ингибиторов в развитии осложнений при заболеваниях почек у детей // Бюллетень сибирской медицины. – 14 (3). – 9–35. – 2015.

Спирина Л.В., Кондакова И.В., Клишо Е.В. и др. Металлопротеиназы как регуляторы неоангиогенеза в злокачественных новообразованиях // Сибирский онкологический журнал. – 2007. – 1. – С. 67–71 [Spirina L.V., Kondakova I.N., Klisho E.V. et al. Metaloproteinases as Neoangiogenesis Regulators in Cancer. Sibirskiy Onkologicheskiy Zhurnal = Siberian Journal of Oncology. – 2007. – (1). – С. 67–71.

Чиж К.А., Тушина А.К. Хроническая болезнь почек: патогенез, клиника, диагностика. – (Город), 2020.

Херрингтон С. и др. Молекулярная клиническая диагностика. Методы.– М.: Мир, 1999.

Ярмолинская М.И., Молотков А.С., Денисова В.М. Матриксные металлопротеиназы и ингибиторы: классификация, механизм действия // Журнал акушерства и женских болезней. – 2012. – LXI (1). – C. 113–125.

Abd-Allah S.H., Shalaby S.M., Pasha H.F., ElShal A.S., Abou El-Saoud A.M. Variation of Matrix Metalloproteinase 1 and 3 Haplotypes and Their Serum Levels in Patients with Rheumatoid Arthritis and Osteoarthritis. Genet Test Mol Biomarkers. 2012;16(1):15–20. doi: 10.1089/ gtmb.2011.0003.

Abdullaeva V.K. et al. Features of Affective Disorders and Compliance of Patients with Chronic Renal Failure Receiving Replacement Therapy by Hemodialysis // International Journal of Pharmaceutical Research. – 2020. – Т. 12. – №. 4. – С. 531–535.

Ahuja T.S. Doxycycline Decreases Proteinuria in Glomerulonephritis. Am J Kidney Dis. 2003;42:376–380.

Ali M.A., Chow A.K., Kandasamy A.D., Fan X., West L.J., Crawford B.D., Simmen T., Schulz R. Mechanisms of Cytosolic Targeting of Matrix Metalloproteinase-2. – J. Cell. Physiol. – 2012, 227, 3397–3404.

Amar S., Minond D., Fields G.B. Clinical Implications of Compounds Designed to Inhibit ECM-modifying Metalloproteinases // Proteomics. – 2017. doi: 10.1002/pmic.201600389.

Anvarovich I.D. et al. The Activity of Matrix Metalloproteinases and Their Inhibitors in Patients with Scleroderma // European Science Review. – 2017. – № 11-12. – С. 67–70.

Arpino V., Brock M., Gill S.E. The Role of TIMPs in Regulation of Extracellular Matrix Proteolysis. – Matrix Biol. – 2015, 44–46, 247–254.

Bardwell L., Zou X., Nie Q., Komarova N.L. Mathematical Models of Specificity in Cell Signaling. Biophys. J. – 2007, 92, 3425–3441. [PubMed]

Belo V.A., Luizon M.R., Carneiro P.C., Gomes V.A., Lacchini R., Lanna C.M., Souza-Costa D.C., Tanus-Santos J.E. Effect of Metabolic Syndrome Risk Factors and MMP-2 Genetic Variations on Circulating MMP-2 Levels in Childhood Obesity. – Mol Biol Rep. 2013;40(3):2697–704. doi: 10.1007/s11033-012-2356-7.

Bieniaś B., Sikora P. Urinary Metalloproteinases and Tissue Inhibitors of Metalloproteinasesas Potential Early Biomarkers for Renal Fibrosisin Children with Nephrotic Syndrome. – Medicine. – 97 (8), 64-97, 2018.

Brown W.M., Dziegielewska K.M. Friends and Relations of the Cystatin Super Family – New Members and the Irevolution // Protein Science. – 1997. – V. 6. – P. 5–12.

Brown L.M., Fox H.L., Hazen S.A., LaNoue K.F., Rannels S.R., Lynch C.J. Role of the Matrixin MMP-2 in Multicellular Organization of Adipocytes Cultured in Basement Membrane Components // Am. J. Physiol. Cell Physiol. – 1997, 272, Р. 937–949.

Bui T.P., Hoang A.N., Le P.L., Pham B.T., Nguyen L.T.T., Do H.M., Ta T.V., Trinh T.H. Matrix Metalloproteinases in Vietnamese Patients with Colorectal Cancer. – Oncol Lett. 2017;13(4):2097–2104. doi: 10.3892/ol.2017.5680.

Chase A.J., Newby A.C. Regulation of Matrix Metalloproteinase (matrixin) Genes in Blood Vessels: a Multi-step Recruitment Model for Pathological Remodelling. – J Vasc Res. 2003;40(4):329–43.

Checa M., Ruiz V., Montaño M., Velázquez-Cruz R., Selman M., Pardo A. MMP-1 Polymorphisms and the Risk of Idiopathic Pulmonary Fibrosis // Hum Genet. 2008;124(5):465–72. doi: 10.1007/ s00439-008-0571-z.

Chen Q., Jin M., Yang F., Zhu J., Xiao Q., Zhang L. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling. Mediators Inflamm // 2013;2013:928315. doi: 10.1155/2013/928315.

Cheng Z., Limbu M.H., Wang Z., Liu J., Liu L., Zhang X., Chen P., Liu B. MMP-2 and 9 in Chronic Kidney Disease. Int J. Mol Sci. 2017;18(4). pii: E776. doi: 10.3390/ijms18040776.

Cieplak P., Strongin A.Y. Matrix metalloproteinases – From the Cleavage Data to the Prediction Tools and Beyond // Biochim Biophys Acta. 2017. pii: S0167-4889(17)30064-2. doi: 10.1016/j.bbamcr.2017.03.010.

Cui N., Hu M., Khalil R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases // Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73.

Daminov B.T., Makhmudova N.R. Characteristics of the Lipid Spectrum Values in the Patients with Chronic Renal Diseases // European Science Review. – 2018. – № 7-8. – С. 91-92.

Daminov B.T., Raimkulova N.P. Effects of Simvastatin Therapy on the Lipid Blood Spectrum and Nitric Oxide in Patients with Chronic Glomerulonephritis // Likars' ka Sprava. – 2008. – № 7-8. – Р. 57–60.

Di Carlo A. Matrix Metalloproteinase-2 and -9 in the Sera and in the Urine of Human Oncocytoma and Renal Cell Carcinoma // Oncol Rep 2012; 28 (3): 1051–6. DOI: 10.3892/or.2012.1864. PMID: 22711190.

Domagała Z., Da˛browski P., KurlejW., Porwolik M., Woz´niak S., Kacała R.R., Gworys B. The Sequence of Lanugo Pattern Development on the Trunk Wall in Human Fetuses // Adv. Clin. Exp. Med. 2017, 26, 967–972.

Dufour A., Sampson N.S., Zucke S., Cao J. Role of the Hemopexin Domain of Matrix Metalloproteinases in Cell Migration // Cell Physiology 2008; 217(3):643–51. DOI: 10.1002/jcp.21535. PMID: 18636552

Egeblad M.,Werb Z. New Functions for the Matrix Metalloproteinases in Cancer Progression // Nat. Rev. Cancer 2002, 2, 161–174.

Erofili Giannakopoulou, Vasiliki Pardali, Efseveia Frakolaki, Vasileios Siozos, Vassilios Myrianthopoulos, Emmanuel Mikros, Martin C. Taylor, John M. Kelly, Niki Vassilaki, Grigoris Zoidis. Scaffold Hybridization Strategy Towards Potent Hydroxamate-based Inhibitors of Flaviviridae Viruses and Trypanosoma Species // MedChemComm 2019, 10 (6), 991-1006. DOI:10.1039/C9MD00200F.

Fallata A.M., Wyatt R.A., Levesque J.M., Dufour A., Overall C.M., Crawford B.D. Intracellular Localization in Zebrafish Muscle and Conserved Sequence Features Suggest Roles for Gelatinase A Moonlighting in Sarcomere Maintenance. Biomedicines 2019, 7, 93.

Freitas-Rodríguez S., Folgueras A.R., LópezOtín C. The Role of Matrix Metalloproteinases in Aging: Tissue Remodeling and Beyond. Biochim. Biophys. Acta. 2017. pii: S0167-4889(17)30118-0. doi: 10.1016/j.bbamcr.2017.05.007.

Fulda S., Gorman A.M., Hori O., Samali A. Cellular Stress Responses: Cell Survival and Cell Death. Int. J. Cell. Biol. 2010, 2010, 214074. [PubMed; c.].

Gen Li, Yu Su, Yu-Hang Yan, Jia-Yi Peng, Qing-Qing Dai, Xiang-Li Ning, Cheng-Long Zhu, Chen Fu, Michael A McDonough, Christopher J. Schofield, Cheng Huang, Guo-Bo Li. MeLAD: an Integrated Resource for Metalloenzyme-ligand Associations. Bioinformatics 2019, 513 https://doi.org/10.1093/bioinformatics/btz648

Greenlee K.J., Werb Z., Kheradmand F. Matrix Metalloproteinases in Lung: Multiple, Multifarious, and Multifaceted // Physiol. Rev. 2007, 87, 69–98.

Grubb A, Löfberg H. Human γ-trace. Structure, function and clinical use of concentration measurements. Scand J Clin Lab Invest 1985;45(Suppl. 177):7-13.

Grubb A., Nyman U., Bjork J., et al. Simple Cystatin C-based Prediction Equations for Glomerular Filtration Rate Compared with the Modification of Diet in Renal Disease Prediction Equation for Adults and the Schwartz and the Counahan-Barratt Prediction Equations for Children // Clin. Chem. – 2005. – V. 51. – P. 1420–1431.

Gusev E.Y., Zotova N.V. Cellular Stress and General Pathological Processes // Curr. Pharm. Des. 2019, 25, 251–297.

Hall A. Structural Basis for the Biological Specificity of Cystatin C // Journal of Biological Chemistry. – 1995. – Vol. 270. – P. 5115–5121.

Han G., Wei Z., Lu Z., Cui H., Bai X., Ge H., Zhang W. Association between Matrix Metalloproteinase 1-1607 1G>2G Polymorphism and Cancer risk: a meta-analysis including 19706 subjects // Int. J. Clin. Exp. Med. 2014;7(9):2992–9.

He M., Wang W., Han X., Huang W. Matrix Metalloproteinase-1 rs1799750 Polymorphism and Glaucoma: A meta-analysis // Ophthalmic Genet. 2017;38(3):211–6. doi: 10.1080/13816810.2016.1193877.

Hieronimus B., Pfohl J., Busch C., Graeve L. Expression and Characterization of Membrane-Type 4 Matrix Metalloproteinase (MT4- MMP) and its Different Forms in Melanoma // Cell Physiol Biochem. 2017;42(1):198–210. doi: 10.1159/000477311.

Hou C., Miao Y., Wang X., Chen C., Lin B., Hu Z. Expression of Matrix Metalloproteinases and Tissue Inhibitor of Matrix Metalloproteinases in the Hair Cycle // Exp. Med. 2016, 12, 231–237.

Huang H.L., Wu S., Hsu L.A., Teng M.S., Lin J.F., Sun Y.C., Ko Y.L. Genetic Variants Associated with Circulating MMP1 Levels near Matrix Metalloproteinase Genes on Chromosome 11q21-22 in Taiwanese: Interaction with Obesity // BMC Med Genet. 2013;14:30. doi: 10.1186/1471-2350-14-30.

Huang R., Deng L., Shen A., Liu J., Ren H., Xu D.L. Associations of MMP1, 3, 9 and TIMP3 Genes Polymorphism with Isolated Systolic Hypertension in Chinese Han population // Int. J. Med. Sci. 2013;10(7): 840–7. doi: 10.7150/ijms.5728.

Jablonska-Trypuc A., Matejczyk M., Rosochacki S. Matrix Metalloproteinases (MMPs), the Main Extracellular Matrix (ECM) Enzymes in Collagen Degradation, as A target for Anticancer Drugs // J. Enzym. Inhib. Med. Chem. 2016, 31, 177–183.

Jackson H.W., Defamie V., Waterhouse P., Khokha R. TIMPs: Versatile Extracellular Regulators in Cancer // Nat. Rev. Cancer 2017, 17, 38–53.

Jillian M. Cathcart, Jian Cao. MMP Inhibitors: Past, Present and Future // Frontiers in Bioscience. 2015;20(7):1164–1178. DOI:10.2741/4365

Johannes Karges, Hui Chao, Gilles Gasser. Synthesis, Characterization, and Biological Evaluation of the Polymeric Encapsulation of a Ruthenium(II) Polypyridine Complex with Pluronic F‐127/Poloxamer‐407 for Photodynamic Therapy Applications // European Journal of Inorganic Chemistry, 2020, 2020 (34), 3242–3248. DOI:10.1002/ejic.202000545.

Johansson N., Saarialho-Kere U., Airola K., Herva R., Nissinen L.,Westermarck J., Vuorio E., Heino J., Kähäri V.M. Collagenase-3 (MMP-13) Is Expressed by Hypertrophic Chondrocytes, Periosteal Cells, and Osteoblasts during Human Fetal Bone Development // Dev. Dyn. 1997, 208, 387–397.

Jonathan Rittle, Mackenzie J. Field, Michael T. Green, F. Akif Tezcan. An Efficient, Step-economical Strategy for the Design of Functional Metalloproteins // Nature Chemistry 2019, 11 (5), 434–441. https://doi.org/10.1038/s41557-019-0218-9

Juchniewicz A., Kowalczuk O., Milewski R., Laudański W., Dzięgielewski P., Kozłowski M., Nikliński J. MMP-10, MMP-7, TIMP-1 and TIMP2 mRNA Expression in Esophageal Cancer // Acta Biochim Pol. 2017;64(2):295–9. doi: 10.18388/ abp.2016_1408.

Kapoor C., Vaidya S., Wadhwan V., Kaur G., Pathak A. Seesaw of Matrix Metalloproteinases (MMPs) // J. Cancer Res. Ther. 2016, 12, 28–35.

Kazantseva M.G., Hung NA., Highton J., Hessian P.A. MMP Expression in Rheumatoid Inflammation: the rs11568818 Polymorphism Is Associated with MMP-7 Expression at an Extra-articular Site // Genes Immun. 2013;14(3): 162–9. doi: 10.1038/gene.2012.65.

Kesh K., Subramanian L., Ghosh N., Gupta V., Gupta A., Bhattacharya S., Mahapatra N.R., Swarnakar S. Association of MMP7-181A"G Promoter Polymorphism with Gastric Cancer Risk: Influence of Nicotine in Differential Allele-Specific Transcription via Increased Phosphorylation of cAMP-Response Element-Binding Protein (CREB). J Biol Chem. 2015;290(23): 14391–406. doi: 10.1074/jbc.M114.630129.

Kim T.H., Mars W.M. Expression and Activation of Pro-MMP-2 and Pro-MMP-9 During Rat Liver Regeneration. Hepatology. 2003;31(1):75–82. DOI: 10.1002/hep.510310114.

Kobusiak-Prokopowicz M., Krzysztofik J., Kaaz K., Jolda-Mydlowska B., Mysiak A. (2018.) MMP-2 and TIMP-2 in Patients with Heart Failure and Chronic Kidney Disease // Open Medicine,13 (1), 237–246.

Kurzawski M., Modrzejewski A, Pawlik A., Droździk M. Polymorphism of Matrix Metalloproteinase Genes (MMP1 and MMP3) in Patients with Varicose Veins // Clin Exp Dermatol. 2009;34(5):613–7. doi: 10.1111/j.1365- 2230.2008.03166.x.

Kyhse-Andersen J., Schmidt C., Nordin G., Andersson B., Nilsson-Ehle P., Lindström V., Grubb A. Serum Cystatin C, Determined by a Rapid, Automated Particle-enhanced Turbidimetric Method, Is a Better Marker than Serum Creatinine for Glomerular Filtration rate // Clin Chem 1994;40:1921–6.

Levin M., Udi Y., Solomonov I., Sagi I. Next Generation Matrix Metalloproteinase Inhibitors – Novel Strategies Bring New Prospects. Biochim Biophys Acta. 2017. pii: S0167-4889(17)30161-1. doi: 10.1016/j.bbamcr.2017.06.009.

Li J., Wang J.M., Liu Y.H., Zhang Z., Han N., Wang J.Y., Xue S.H., Wang P. Effect of microRNA-106b on the Invasion and Proliferation of Trophoblasts through Targeting MMP-2. Zhonghua Fu Chan Ke Za Zhi. 2017;52(5):327–332. doi: 10.3760/ cma.j.issn.0529-567X.2017.05.007.

Liang H., Xu J.. Xue M., Jackson C. Matrix Metalloproteinases in Bone Development and Pathology: Current Knowledge and Potential Clinical Utility // Met. Med. 2016, 3, 93–102.

Lin H., Pan J.C., Zhang F.M. et al. Matrix Metalloproteinase-9 Is Required for Vasculogenic Mimicry by Clear Cell Renal Carcinoma Cells // Urol. Oncol. 2015; 33(4):9–16. DOI: 10.1016/j. urolonc.2014.12.007. PMID: 25618297.

Liu D., Duan W., Guo H., Xu X., Bai Y. Meta-analysis of Associations between Polymorphisms in the Promoter Regions of Matrix Metalloproteinases and the Risk of Colorectal Cancer // Int. J. Colorectal Dis. 2011; 26(9):1099–105. doi: 10.1007/ s00384-011-1198-4.

Ma A.J., Fan L.Y., Li W.J., Zhao H.Q., Han Y., Jiang X.S., Yi P., Li C.L., Song S., Ma C.L., Yao R.Y., Pan X.D. Association of Matrix Metalloproteinase-3 Gene Polymorphisms with Subtypes of Ischemic Stroke. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2013; 30(4):461–6. doi: 10.3760/cma.j.is sn.1003-9406.2013.04.018.

Maskos K. Crystal Structures of MMPs in Complex with Physiological and Pharmacological Inhibitors // Biochimie. 2005; 87:249–263. DOI: https:// doi.org/10.1016/j.biochi.2004.11.019.

McCawley L.J., Matrisian L.M. Matrix Metalloproteinases: they're not just for MATRIX anymore! Curr Opin Cell Biol. 2001;13(5):534–40.

Merchant N., Nagaraju G.P., Rajitha B., Lammata S., Jella K.K., Buchwald Z.S., Lakka S.S., Ali A.N. Matrix Metalloproteinases: their Functional Role in Lung Cancer // Carcinogenesis. 2017. doi: 10.1093/carcin/bgx063.

Miao C., Liang C., Zhu J., Xu A., Zhao K., Hua Y., Zhang J., Chen W., Suo C., Zhang C., Liu Y., Su S., Wang Z. Prognostic Role of Matrix Metalloproteinases in Bladder Carcinoma: a Systematic Review and meta-analysis // Oncotarget. 2017;8 (19): 32309–21. doi: 10.18632/oncotarget.15907.

Micheal S., Yousaf S., Khan M.I., Akhtar F., Islam F., Khan W.A., den Hollander A.I., Qamar R., Ahmed A. Mol Vis. 2013;19:441–7.

Montes A.H., Valle-Garay E., Alvarez V, Pevida M., García Pérez E., Paz J., Meana A., Asensi V. A Functional Polymorphism in MMP1 Could Influence Osteomyelitis Development // J. Bone Miner Res. 2010; 25(4):912–9. doi: 10.1359/jbmr.091013.

Morris D.R., Biros E., Cronin O., Kuivaniemi H., Golledge J. The Association of Genetic Variants of Matrix Metalloproteinases with Abdominal Aortic Aneurysm: a Systematic Review and meta-analysis // Heart. 2014; 100(4): 295–302. doi: 10.1136/heartjnl-2013-304129.

Murty M.S., Sharma U.K., Pandey V.B., Kankare S.B. Serum Cystatin C as a Marker of Renal Function in Detection of Early Acute Kidney Injury // Indian J. Nephrol. 2013; 23(3):180–183. doi:10.4103/0971-4065.111840.

Musiał K., Bargenda A., Zwolińska D. Urine Matrix Metalloproteinases and their Extracellular Inducer EMMPRIN in Children with Chronic Kidney Disease // Ren Fail. 2015; 37(6):980–4.

Nagase H., Visse R., Murphy G. Structure and Function of Matrix Metalloproteinases and TIMPs // Cardiovasc Res. 2006; 69(3): 562–73.

Naini A.E., Harandi A.A., Moghtaderi J., et al. Doxycycline: a Pilot Study to Reduce Diabetic Proteinuria // Am. J. Nephrol. 2007; 27:269–273.

Ning C., Min Hu, Raouf A. Kh. Biochemical and Biological Attributes of Matrix Metalloproteinases // Prog. Mol. Biol. Transl Sci., 2017; 147–173.

Ortega N., Behonick D.J., Werb Z. Matrix Remodeling during Endochondral Ossification // Trends Cell Biol. 2004, 14, 86–93.

Persic V., Bastiancic A.L., Rosovic I., Raljevic D., Samsa D.T., Bastiancic L., Miskulin R., Boban M., Laskarin G. Correlation between Immunological-Inflammatory Markers and Endothelial Disfunction in the Early Stage of Coronary Heart Disease // Medical hypotheses. 2018 Jun 1; 115: 72-6.

Pei J.S., Hsu P.C., Chou A.K., Tsai C.W., Chang W.S., Hsiao C.L., Hsu Y.N., Cheng S.P., Bau D.T. Matrix Metalloproteinase-1 Genotype Contributes to the Risk of Non-solid Tumor in Childhood Leukemia. Anticancer Res. 2016; 36(10):5127–32.

Peng Q., Xu Y. Association between Promoter Polymorphisms of Matrix Metalloproteinase-1 and Risk of Gastric Cancer // Onco Targets Ther. 2015; 8:2519–26. doi: 10.2147/OTT.S83004.

Price S.J., Greaves DR., Watkins H. Identification of Novel, Functional Genetic Variants in the Human Matrix Metalloproteinase-2 gene: Role of Sp1 in Allele-specific Transcriptional Regulation // J. Biol. Chem. 2001; 276(10):7549–58.

Qiao Z.K., Li Y.L., Lu H.T., et al. Expression of Tissue Levels of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Renal Cell Carcinoma // World J. Surg. Oncol., 2013; 11:1–6. DOI: 10.1186/1477-7819-11-1. PMID: 23281640.

Raffetto J.D., Khalil R.A. Matrix Metalloproteinases and their Inhibitors in Vascular Remodeling and Vascular Disease // Biochem Pharmacol. 2008; 75(2): 346–59.

Rawlings N.D. and Barrett A.J. Evolution of Proteins of the Cystatin Superfamily // Journal of Molecular Evolution. – 1990. – Vol. 30. – P. 60–71.

Rehberg P.B. Studies on Kidney Function. The Rate of Filtration and Reabsorption in the Human Kidney // Biochem. J. 1926; 20: 447-60.

Ribeiro B.F., de Araujo C.R.F., dos Santos B.R., de Almeida Freitas R. Immunohistochemical Expression of Matrix Metalloproteinases 1, 2, 7, 9 and 26 in the Calcifying Cystic Odontogenic Tumor // Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011; 112 (5): 609—15.

Richards T.J., Park C., Chen Y., Gibson K.F., Peter Di Y., Pardo A., Watkins SC, Choi A.M., Selman M., Pilewski J., Kaminski N., Zhang Y. Allele-specific Transactivation of Matrix Metalloproteinase 7 by FOXA2 and Correlation with Plasma Levels In idiopathic Pulmonary Fibrosis // Am. J. Physiol Lung. Cell Mol. Physiol. 2012;302(8): L746–54. doi: 10.1152/ajplung.00319.2011.

Ricketts C., Zeegers M.P., Lubinski J., Maher E.R. Analysis of Germline Variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in Familial and Sporadic Renal Cell Carcinoma // PLoS One. 2009;4(6):e6037. doi: 10.1371/journal. pone.0006037.

Rutter J.L., Mitchell T.I., Butticè G., Meyers J., Gusella J.F., Ozelius L.J., Brinckerhoff C.E. A Single Nucleotide Polymorphism in the Matrix Metalloproteinase-1 Promoter Creates an Ets Binding Site and Augments Transcription // Cancer Res. 1998; 58(23): 5321–5.

Sharov A.A., Schroeder M., Sharova T.Y., Mardaryev A.N., Peters E.M., Tobin D.J., Botchkarev V.A. Matrix Metalloproteinase-9 Is Involved in the Regulation of Hair Canal Formation // J. Investig. Derm. 2011, 131, 257–260.

Shen L.C., Chen Y.-K., Hsue S.S., Shaw S.Y. Expression of Osteonectin/secreted Protein Acidic and Rich in Cysteine and Matrixmetalloproteinases in Ameloblastoma // J. Oral Pathol. Med. 2010; 39 (3): 242–9.

Song J., Peng P., Chang J., et al. Selective non-zinc Binding MMP-2 Inhibitors: Novel Benzamide Ilomastat Analogs with Anti-tumor Metastasis // Bioorg Med Chem Lett. 2016;26(9):2174–2178. DOI:10.1016/j.bmcl.2016.03.064.

Sri Manjari K., Nallari P., Balakrishna N., Vidyasagar A., Prabhakar B., Jyothy A., Venkateshwari A. Influence of Matrix Metalloproteinase-1 Gene-1607 (1G/2G) (rs1799750) Promoter Polymorphism on Circulating Levels of MMP-1 in Chronic Pancreatitis // Biochem Genet. 2013;51(7–8): 644–54. doi: 10.1007/s10528-013-9594-9.

Stack M.S., Itoh Y., Young T.N., et al. Fluorescence Quenching Studies of Matrix Metalloproteinases (MMPs): Evidence for Structural Rearrangement of the proMMP-2/TIMP-2 Complex upon Mercurial Activation // Arch. Biochem. Biophys. 1996; 333(1): 163–169. DOI: 10.1006/abbi.1996.0377

Sternlicht M.D., Werb Z. How Matrix Metalloproteinases Regulate Cell Behavior // Annu. Rev. Cell Dev. Biol. 2001, 17, 463–516.

Tanaka T., Tsuchiya R., Hozumi Y., Nakano T., Okada M., Goto K. Reciprocal Regulation of P53 and NF-KB by Diacylglycerol Kinase ζ. Adv. Biol. Regul. 2016, 60, 15–21. [PubMed; c.]

Trombone A.P., Cavalla F, Silveira E.M., Andreo C.B., Francisconi C.F., Fonseca A.C., Letra A., Silva R.M., Garlet G.P. MMP1-1607 Polymorphism Increases the Risk for Periapical Lesion Development.

Vadillo-Ortega F., Estrada-Gutierrez G. Role of Matrix Metalloproteinases in Preterm Labor. Bjog. // Int. J. Obstet. Gynaecol. 2005, 112 (Suppl. 1), 19–22.

Verma R.P., Hansch C. Matrix Metalloproteinases (MMPs): Chemical-biological Functions and (Q) SARs // Bioorg Med Chem. 2007; 15(6): 2223–68.

Visse R., Nagase H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry // Circ Res. 2003; 92(8): 827–39.

Wang X., Khalil R.A. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease // Adv. Pharm. 2018, 81, 241–330.

Webster G.A.; Perkins N.D. Transcriptional Cross Talk between NF-κB and P53 // Mol. Cell. Biol. 1999, 19, 3485–3495. [CrossRef; c.] 61. Chittiboyina, S.; Bai, Y.; Lelièvre, S.A. Microenvironment-Cell Nucleus Relationship in the Context of Oxidative Stress. Front. Cell Dev. Biol. 2018, 6, 23.

Whittaker M., Floyd C.D., Brown P., et al. Design and Therapeutic Application of Matrix metalloproteinase Inhibitors // Chem. Rev. 1999;99(9): 2735–2776. DOI. 10.1021/cr9804543.

Wu S., Ma C., Shan S., Zhou L., Li W. High Expression of Matrix Metalloproteinases 16 Is Associated with the Aggressive Malignant Behavior and Poor Survival Outcome in Colorectal Carcinoma // Sci Rep. 2017;7: 46531. doi: 10.1038/srep46531.

Yan C., Boyd D.D. Regulation of Matrix Metalloproteinase Gene Expression // J. Cell Physiol. 2007; 211(1):19–26.

Yan Y., Liang H., Li T., Li M., Li R., Qin X., Li S. The MMP-1, MMP-2, and MMP-9 Gene Polymorphisms and Susceptibility to Bladder Cancer: a meta-analysis // Tumour Biol. 2014;35(4):3047– 52. doi: 10.1007/s13277-013-1395-6.

Yang H., Liu J., Fan Y., Guo Q., Ge L., Yu N., Zheng X., Dou Y., Zheng S. Associations between Various Possible Promoter Polymorphisms of MMPs Genes and Endometriosis Risk: a Meta-analysis. Eur J. Obstet Gynecol Reprod Biol. 2016;205:174–88. doi: 10.1016/j. ejogrb.2016.08.015.

Yang L., Song X., Zhu J., Li M., Ji Y., Wu .F, Chen Y, Cui X., Hu J., Wang L., Cao Y., Wei Y., Zhang W., Li F. Tumor Suppressor microrna-34a Inhibits Cell Migration and Invasion by Targeting MMP-2/ MMP-9/FNDC3B in Esophageal Squamous Cell Carcinoma. Int J. Oncol. 2017;51(1):378–88. doi: 10.3892/ijo.2017.4015.

Yari K., Rahimi Z., Moradi M.T., Rahimi Z. The MMP-2-735 C Allele is a Risk Factor for Susceptibility to Breast Cancer // Asian Pac J.Cancer Prev. 2014; 15 (15): 6199–203.

Ye S., Eriksson P., Hamsten A., Kurkinen M., Humphries S.E., Henney A.M. Progression of Coronary Atherosclerosis is Associated with Acommon Genetic Variant of the Human Stromelysin-1 Promoter which Results in Reduced Gene Expression. J. Biol. Chem., 1996; 271 (22): 13055–60.

Yelim Yi, Jiyeon Han, Min Hee Park, Nahye Park, Eunju Nam, Hee Kyung Jin, Jae-sung Bae, Mi Hee Lim. Tunable Regulatory Activities of 1,10-Phenanthroline Derivatives Towards Acid Sphingomyelinase and Zn(II)–amyloid-β. Chemical Communications 2019, 55 (42), 5847–5850. https://doi.org/10.1039/C9CC01005J.

Yu C., Zhou Y., Miao X., Xiong P., Tan W., Lin D. Functional Haplotypes in the Promoter of Matrix Metalloproteinase-2 Predict Risk of the Occurrence and Metastasis of Esophageal Cancer // Cancer Res. 2004;64(20):7622–8.

Yue Zhong, Yu-Ting Lu, Ying Sun, et al. Recent Opportunities in Matrix Metalloproteinase Inhibitor Drug Design for Cancer // Expert Opinion on Drug Discovery. 2017;13(1):75–87. DOI: 10.1080/17460441.2018.1398732.

Zakiyanov O., Kalousová M., Zima T., Tesař V. Matrix Metalloproteinases in Renal Diseases: a Critical Appraisal // Kidney and Blood Pressure Research. 2019; 44(3): 298–330.

Zitka O., Kukacka J., Krizkova S., et al. Matrix Metalloproteinases // Current Medicinal Chemistry. 2010;17 (31): 3751–3768. DOI: 10.2174/0929867