PARALLELIZATION OF FAST HAAR TRANSFORM ALGORITHMS ON DUAL-CORE SPECIALIZED PROCESSORS

Аннотация

This article addresses the issue of parallelizing digital signal processing methods based on the Haar transform using Andrews' algorithm on dual-core specialized processors. The study develops mechanisms for parallel execution of the fast Haar transform algorithm by effectively utilizing the hierarchical memory model, DMA controller, and core architecture of the Blackfin ADSP-BF561 processor. Algorithmic experiments were conducted in C++ using the VisualDSP++ platform, based on block-polynomial basis functions (constant, linear, quadratic). Practical tests compared performance between the single-core ADSP-BF533 and dual-core ADSP-BF561 processors, achieving speed-up coefficients ranging from 1.14 to 1.80. The results demonstrate that multi-core computing significantly improves signal processing efficiency and reduces processing time.

Тип источника: Журналы
Годы охвата с 2023
inLibrary
Google Scholar
Выпуск:
Отрасль знаний
f
68-73

Скачивания

Данные скачивания пока недоступны.
Поделиться
Ибрагимов S. (2025). PARALLELIZATION OF FAST HAAR TRANSFORM ALGORITHMS ON DUAL-CORE SPECIALIZED PROCESSORS. Международный журнал искусственного интеллекта, 1(7), 68–73. извлечено от https://inlibrary.uz/index.php/ijai/article/view/132473
Crossref
Сrossref
Scopus
Scopus

Аннотация

This article addresses the issue of parallelizing digital signal processing methods based on the Haar transform using Andrews' algorithm on dual-core specialized processors. The study develops mechanisms for parallel execution of the fast Haar transform algorithm by effectively utilizing the hierarchical memory model, DMA controller, and core architecture of the Blackfin ADSP-BF561 processor. Algorithmic experiments were conducted in C++ using the VisualDSP++ platform, based on block-polynomial basis functions (constant, linear, quadratic). Practical tests compared performance between the single-core ADSP-BF533 and dual-core ADSP-BF561 processors, achieving speed-up coefficients ranging from 1.14 to 1.80. The results demonstrate that multi-core computing significantly improves signal processing efficiency and reduces processing time.


background image

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 08,2025

Journal:

https://www.academicpublishers.org/journals/index.php/ijai

68

PARALLELIZATION OF FAST HAAR TRANSFORM ALGORITHMS ON DUAL-

CORE SPECIALIZED PROCESSORS

Ibragimov Sanjarbek Salijanovich

Andijan State Technical Institute, associate professor, PhD

e-mail:

sanjari07@yahoo.com

Annotation:

This article addresses the issue of parallelizing digital signal processing methods

based on the Haar transform using Andrews' algorithm on dual-core specialized processors. The

study develops mechanisms for parallel execution of the fast Haar transform algorithm by

effectively utilizing the hierarchical memory model, DMA controller, and core architecture of

the Blackfin ADSP-BF561 processor. Algorithmic experiments were conducted in C++ using

the VisualDSP++ platform, based on block-polynomial basis functions (constant, linear,

quadratic). Practical tests compared performance between the single-core ADSP-BF533 and

dual-core ADSP-BF561 processors, achieving speed-up coefficients ranging from 1.14 to 1.80.

The results demonstrate that multi-core computing significantly improves signal processing

efficiency and reduces processing time.

Keywords:

Fast Haar Transform (FHT), Andrews Algorithm, Parallel Computation, Dual-Core

Processor, Blackfin ADSP-BF561, Digital Signal Processing (DSP), Piecewise Polynomial

Basis Functions, VisualDSP++ Development Environment, Acceleration Coefficient.

INTRODUCTION

The Blackfin ADSP-BF561 processors are symmetric dual-core specialized processors

[ 2,8,9]. The ADSP-BF561 employs a hierarchical three-level memory architecture. The first-

level (L1) memory operates at the core clock frequency, although its capacity is relatively

limited. Each Blackfin core is equipped with 100 KB of L1 memory, which includes the

following components [4]:

16 KB instruction memory (SRAM/cache)

16 KB instruction memory (SRAM)

32 KB data memory (SRAM/cache)

32 KB data memory (SRAM)

4 KB scratchpad memory (fast SRAM)

The second-level (L2) memory consists of a 128 KB SRAM that is integrated with the

core. The L2 memory is shared between both cores and can store common instructions and data.

To optimize data exchange between L1 and L2 memory, the processor architecture includes a

dedicated four-channel internal Direct Memory Access (DMA) controller.


background image

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 08,2025

Journal:

https://www.academicpublishers.org/journals/index.php/ijai

69

Figure 1. Functional Block Diagram of the ADSP-BF561 Processor

In the hierarchical memory architecture of the Blackfin processor, the third-level (L3)

memory refers to external memory. The external memory space can map up to four SDRAM

banks ranging from 16 MB to 512 MB, as well as four asynchronous memory banks (such as

ROM, SRAM, EEPROM, or Flash), each with a capacity of up to 64 MB [1,6].

The Blackfin processor instruction set is optimized such that the most frequently used

instructions are encoded using 16-bit opcodes. Digital Signal Processing (DSP) instructions are

implemented as multifunctional operations encoded in 32-bit format. The internal bus

architecture and computational units are designed to enable each processor core to execute

multiple instructions per cycle, thereby enhancing code density.

In dual-core Blackfin ADSP-BF561 processors, parallel computing algorithms are utilized for

solving practical tasks. Computational processes are distributed separately across each core

[2,6-9].

RESEARCH METHODOLOGY

A parallel computation algorithm based on the Fast Haar Transform (FHT) was

developed for digital processing of one-dimensional geophysical signals on dual-core

specialized processors of the Blackfin ADSP-BF561 architecture.


background image

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 08,2025

Journal:

https://www.academicpublishers.org/journals/index.php/ijai

70

According to the Fast Haar Transform method proposed by Andrews, in each iteration,

the array X is formed by computing the sums of consecutive pairs from the previous X array,

while the array C contains the differences of the same consecutive pairs.

X i =X 2i +X 2i+1

(1)

C i+

N

2

j

=X 2i −X 2i+1

.

The sum of the X values computed in the final iteration is equal to the following

expression:

C 0 =X 0 +X 1

(2)

Here, i=0...N/2-1,

j=1…k

. The number of iterations is determined by the formula

k=log

2

N

.

The algorithm of the parallel computation process of the Fast Haar Transform based on

Andrews’ method on a dual-core specialized processor is presented in Figure 2.


background image

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 08,2025

Journal:

https://www.academicpublishers.org/journals/index.php/ijai

71

Figure 2 Parallel Computation Algorithm for Andrews-Based Fast Haar Transform on

the Dual-Core Processor Blackfin ADSP-BF561

Based on this algorithm, the processes of inputting and outputting array values are

executed sequentially on Core A. The computation of the Fast Haar Transform (FHT) is evenly

distributed between Core A and Core B. Specifically, for each iteration, the first half of the

array elements is processed by Core A, while the second half is processed by Core B, enabling

parallel execution. Initially, the program code on Core A is launched, and Core B is activated

using the adi_core_b_enable() function.

Figure 3. Block Diagram of the Parallel Computation Algorithm for Piecewise-Polynomial

Bases on a Dual-Core Specialized Processor

The parallel computation algorithm of Fast Haar Transforms (FHT) using piecewise-

polynomial bases on dual-core processors is presented in Figure 3.


background image

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 08,2025

Journal:

https://www.academicpublishers.org/journals/index.php/ijai

72

RESULTS

Fast Haar Transforms based on Andrews' method were implemented using piecewise-

polynomial bases on ADSP BF-533 (single-core) and ADSP BF-561 (dual-core) specialized

processors from the Blackfin processor family, utilizing the C++ programming language within

the VisualDSP++ development environment. The processors selected for the computations had

the same clock frequency: the ADSP BF-533 core operated at 600 MHz, and each core of the

ADSP BF-561 also operated at 600 MHz.

To evaluate the computation time of Fast Haar Transforms based on piecewise-

polynomial bases on these processors, experiments were conducted using the analytical

function y=e

x

as input data [3,7]. The results of the study are presented in Table 1.

Table 1.

Comparison of Computation Times for Fast Haar Transforms Based on Piecewise-

Polynomial Bases on Single-Core and Dual-Core Processors

N

Piecewise Constant

Piecewise Linear

Piecewise Quadratic

ADSP

BF-533

(sec.)

ADSP

BF-561

(sec.)

Accelerati

on

Coefficie

nt

ADSP

BF-533

(sec.)

ADSP

BF-561

(sec.)

Accelerati

on

Coefficie

nt

ADSP

BF-533

(sec.)

ADSP

BF-561

(sec.)

Accelerati

on

Coefficie

nt

16

0,00110 0,00096 1,14

0,00110 0,00100 1,10

0,00112 0,00097 1,15

32

0,00385 0,00297 1,30

0,00382 0,00295 1,30

0,00386 0,00278 1,39

64

0,01429 0,00950 1,50

0,01423 0,00994 1,43

0,01432 0,00914 1,57

128 0,05498 0,03414 1,61

0,05471 0,03567 1,53

0,05502 0,03322 1,66

256 0,21560 0,12723 1,69

0,21426 0,13206 1,62

0,21544 0,12534 1,72

512 0,85368 0,49602 1,72

0,84398 0,50379 1,68

0,85341 0,48413 1,76

1024 3,38911 1,94438 1,74

3,35060 1,93456 1,73

3,39144 1,90746 1,78

2048 13,4547

8

7,66087 1,76

13,30188 7,52543 1,77

13,4979

4

7,53445 1,79

4096 53,4154

8

30,26043 1,77

52,80848 29,72544 1,78

53,8568

0

29,89671 1,80

In this table:

N – number of array elements;

The Acceleration Coefficient [3,7,9] is calculated using the following formula:

Acceleration Coefficient=

T

single−core

T

dual−core

CONCLUSION

As seen from Table 1, the dual-core processor requires approximately 1.77 to 1.8 times

less computation time compared to the single-core processor, resulting in acceleration

coefficient of 1.8. This indicates that parallelization of computations using multi-core

processors significantly reduces processing time and improves overall efficiency compared to

single-core execution.


background image

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 08,2025

Journal:

https://www.academicpublishers.org/journals/index.php/ijai

73

One of the main advantages of developing parallel programs for dual-core processors on

the VisualDSP++ platform is the ability to create separate lightweight program modules for

each core and the shared memory. This enables both cores to perform different computations in

parallel simultaneously. Additionally, in the shared L2 memory design, both cores can access

common data and functions concurrently, further enhancing the potential for parallel processing.

REFERENCES:

1. Андрейченко Д.К., Велиев В.М., Ерофтиев А.А., Портенко М.С. Теоретические

основы параллельного программирования. Саратов 2015 – 282с.

2. Вальпа О.Д. Разработка устройств на основе цифровых сигнальных процессоров

фирмы Analog Devices с использованием Visual DSP++. – М.: Горячая линия-Телеком,

2007. – 270 с

3. Воеводин, В.В. Параллельные вычисления. СПб.: БХВ-Петербург. 2002. - 608 с.

4. Гергель

В.П.

Высокопроизводительные

вычисления

дл

многоядерных

многопроцессорных систем. Учебное пособие – Нижний Новгород; Изд-во ННГУ им.

Н.И.Лобачевского, 2010 – 420с.

5. Зайнидинов Х.Н, Усмонов Б.Ш. Архитектура компьютеров и компьютерных систем.

// Ташкентский университет информационных технологий им. Мухаммада Ал-

Хоразмий. –Т., 2020. -640с. ISBN 987-9943-5805-5-8

6. ADSP-BF561 Blackfin® Processor Hardware Reference, Analog Devices, Inc. 2013.

7. Deergha Rao K., Swamy M.N.S. Digital Signal Processing Theory and Practice // Springer

Nature Singapore Pte Ltd. 2018 – 799 p.

8. Zaynidinov H.N., Ibragimov S.S., Tojiboyev G‘.O. Comparative Analysis of the

Architecture of Dual-Core Blackfin Digital Signal Processors. International Conference On

Information Science And Communications Technologies: Applications, Trends And

Opportunities http://www.icisct2021.org/ ICISCT 2021, November 3-5, 2021.

https://ieeexplore.ieee.org/document/9670135 (SCOPUS). p.1-5

9. Zaynidinov H.N., Ibragimov S.S., Tojiboyev G‘.O., Nurmurodov J.N. Efficiency of

Parallelization of Xaar Fast Transform Algorithm in Dual-Core Digital Signal Processors.

2021 8th International Conference on Computer and Communication Engineering (ICCCE).

22-23 June 2021, Kuala Lumpur, Malaysia (SCOPUS). p. 7-12

Библиографические ссылки

Андрейченко Д.К., Велиев В.М., Ерофтиев А.А., Портенко М.С. Теоретические основы параллельного программирования. Саратов 2015 – 282с.

Вальпа О.Д. Разработка устройств на основе цифровых сигнальных процессоров фирмы Analog Devices с использованием Visual DSP++. – М.: Горячая линия-Телеком, 2007. – 270 с

Воеводин, В.В. Параллельные вычисления. СПб.: БХВ-Петербург. 2002. - 608 с.

Гергель В.П. Высокопроизводительные вычисления дл многоядерных многопроцессорных систем. Учебное пособие – Нижний Новгород; Изд-во ННГУ им. Н.И.Лобачевского, 2010 – 420с.

Зайнидинов Х.Н, Усмонов Б.Ш. Архитектура компьютеров и компьютерных систем. // Ташкентский университет информационных технологий им. Мухаммада Ал-Хоразмий. –Т., 2020. -640с. ISBN 987-9943-5805-5-8

ADSP-BF561 Blackfin® Processor Hardware Reference, Analog Devices, Inc. 2013.

Deergha Rao K., Swamy M.N.S. Digital Signal Processing Theory and Practice // Springer Nature Singapore Pte Ltd. 2018 – 799 p.

Zaynidinov H.N., Ibragimov S.S., Tojiboyev G‘.O. Comparative Analysis of the Architecture of Dual-Core Blackfin Digital Signal Processors. International Conference On Information Science And Communications Technologies: Applications, Trends And Opportunities http://www.icisct2021.org/ ICISCT 2021, November 3-5, 2021. https://ieeexplore.ieee.org/document/9670135 (SCOPUS). p.1-5

Zaynidinov H.N., Ibragimov S.S., Tojiboyev G‘.O., Nurmurodov J.N. Efficiency of Parallelization of Xaar Fast Transform Algorithm in Dual-Core Digital Signal Processors. 2021 8th International Conference on Computer and Communication Engineering (ICCCE). 22-23 June 2021, Kuala Lumpur, Malaysia (SCOPUS). p. 7-12