SCALAR, VECTOR AND MIXED PRODUCT OF VECTORS

Аннотация

This article provides insights into the scalar product of vectors,the vector product,and the mixed product, showing the ways in which the problems involved are solved.Methods for solving several problems using properties of vectors have been recommended.

Тип источника: Журналы
Годы охвата с 2014
inLibrary
Google Scholar
Выпуск:
Отрасль знаний
CC BY f
290-293
29

Скачивания

Данные скачивания пока недоступны.
Поделиться
Мадримова E. (2025). SCALAR, VECTOR AND MIXED PRODUCT OF VECTORS. Международный мультидисциплинарный журнал исследований и разработок, 1(1), 290–293. извлечено от https://inlibrary.uz/index.php/imjrd/article/view/69873
Crossref
Сrossref
Scopus
Scopus

Аннотация

This article provides insights into the scalar product of vectors,the vector product,and the mixed product, showing the ways in which the problems involved are solved.Methods for solving several problems using properties of vectors have been recommended.


background image

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR

RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 12, issue 02 (2025)

290

SCALAR, VECTOR AND MIXED PRODUCT OF VECTORS

Madrimova Erkinoy Sabirovna

head teacher of Mathematics at Urgench State University academic Lyceum

Annotation:

This article provides insights into the scalar product of vectors,the vector

product,and the mixed product, showing the ways in which the problems involved are

solved.Methods for solving several problems using properties of vectors have been recommended.

Keywords:

vector, scalar product,vector product,mixed product, formula.

VEKTORLARNING SKALYAR,VEKTOR VA ARALASH KO`PAYTMASI

Annotatsiya:

Ushbu maqolada vektorlarning skalyar ko`paytmasi,vektor ko`paytmasi va aralash

ko`paytmasi haqida tushunchalar berilib,ularga doir masalalarning yechilish usullari ko`rsatib

berilgan.Bir necha masalalarni vektorlarning xossalaridan foydalangan holda yechish metodlari

tavsiya qilingan.

Kalit so’zlar:

vektor,skalyar ko`paytma, vektor ko`paytma,aralash ko`paytma,formula.

KIRISH

Vektorga oid masalalar o`quvchilarning bilimlarini oshirish bilan birgalikda algebraik,geometrik

masalalarni qulay usuldagi yechimlarini topishga yordam beradi.Jumladan vektorlar yordamida

trigonometrik va boshqa ko`rinishdagi funksiyalarning qiymatlar to`plamini topish, geometrik

jismlarning hajmlarini topish kabi masalalarni yechishda qulaylik yaratadi.Shu bilan birga

o`quvchilarning mantiqiy fikrlashlarini rivojlantiradi,o`quvchilarning qiziqishlarini oshiradi.

I.Vektorlarning skalyar ko`paytmasi.

vektorning koordinatasi

1

; �

1

; �

1

va

vektorning

koordinatasi

2

; �

2

; �

2

bo`lsin.U holda

va

vektorlarning skalyar ko`paytmasi deb

� ∙ � = �

1

2

+

1

2

+ �

1

2

songa aytiladi.

1-misol.

� 2; − 3; 9

va

� 7; − 8; − 10

vektorlarning skalyar ko`paytmasini toping.

Yechish.

� ∙ � = �

1

2

+

1

2

+ �

1

2

= 14 + 24 − 90 =− 52

.

Demak,

� 2; − 3; 9

va

� 7; − 8; − 10

vektorlarning skalyar ko`paytmasi

−52

ga teng.

2-misol.

� 4; − 6; 9

va

� 2; − 2; �

vektorlarning skalyar ko`paytmasi 47 ga teng bo`lsa,m ni

toping.

Yechish.

� ∙ � = �

1

2

+

1

2

+ �

1

2

= 8 + 12 + 9� =

47.

Bu tenglikdan

� =

3 ekanligi kelib chiqadi.

Agar

va

vektorlar perpendikulyar bo`lsa,skalyar ko`paytma nolga teng

bo`ladi.

3-misol.

� 3; 6

va

� �; − 3

vektorlar perpendikulyar bo`lsa,

ni toping.


background image

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR

RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 12, issue 02 (2025)

291

Yechish.

� ∙ � = �

1

2

+

1

2

= 3 � − 18 = 0

.

Bundan

� = 6

ekanligi kelib chiqadi.

va

vektorlarning skalyar ko`paytmasi uchun quyidagi formula o`rinli:

� ∙ � = � ∙ � ∙ ����

,bunda

� − �

va

vektorlar orasidagi burchak.

4-misol.Agar

� = 2

,

� = 3

bo`lib,ular orasidagi burchak 60

0

bo`lsa,

2

� − �

va

2

+3

vektorlarning skalyar ko`paytmasini toping.

Yechish.

(2

� − �

)

∙ (

2

+3

�) = 4�

2

+ 4� ∙ � − 3�

2

= 4 ∙ 4 + 4 ∙ � ∙ � ∙ ���60

0

− 3 ∙ 9 = 16 + 12 −

27 = 1

.

Demak, 2

� − �

va 2

+3

vektorlarning skalyar ko`paytmasi 1 ga teng ekan.

II.Vektorlarning vektor ko`paytmasi.

va

vektorlarning vektor ko`paytmasi

X

ko`rinishida yoziladi va quyidagi formula

bo`yicha hisoblanadi.

X

� =

� � �

1

1

1

2

2

2

=

1

1

2

2

−�

1

1

2

2

+ �

1

1

2

2

Bu yerda

� 1; 0; 0

,

� 0; 1; 0

,

� 0; 0; 1

vektorlar mos ravishda koordinata o`qlari

bo`yicha yo`nalgan birlik vektorlar.

5-misol.

� 2; − 1; 3

va

� −2; 4; 1

vektorlarning vektor ko`paytmasini toping.

Yechish.

X

� =

� � �

1

1

1

2

2

2

=

� � �

2 − 1 3

−2 4 1

= � −1 3

4 1 −�

2 3

−2 1 + �

2 − 1

−2 4 =− 13� − 8� + 6�

.

Vektorlarning vektor ko`paytmasi yana vektor kattalikdan iborat bo`ladi.

Ikkita vektorga qurilgan parallelogrammning yuzi shu vektorlarning vektor ko`paytmasidan

iborat bo`lgan vektorning, absolyut qiymatiga teng bo`ladi, ya`ni

� = � X �

, bunda

parallelogrammning yuzi.

6-misol.

� 1; 2; − 2

va

� 2; − 3; 4

vektorlarga qurilgan uchburchakning yuzini toping.

Yechish.


background image

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR

RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 12, issue 02 (2025)

292

X

� =

� � �

1

1

1

2

2

2

=

1

1

2

2

−�

1

1

2

2

+ �

1

1

2

2

formuladan foydalanib berilgan

vektorlarning vektor ko`paytmasini topamiz.

X

� =

� � �

1 2 − 2

2 − 3 4

= 14� − 8� − 7�

.

X

vektorning koordinatasi (14;-8;-7) ga teng. Bu vektorning absolyut qiymati berilgan

vektorlarga qurilgan

parallelogramning yuziga teng bo`ladi.Uchburchakning yuzi esa

parallelogramm yuzining yarmiga teng.

Demak,

� 1; 2; − 2

va

� 2; − 3; 4

vektorlarga qurilgan uchburchakning yuzi:

� =

1
2

14

2

+ 8

2

+ 7

2

= 0,5 309

.

III.Vektorlarning aralash ko`paytmasi.

vektorning koordinatasi

1

; �

1

; �

1

,

vektorning koordinatasi

2

; �

2

; �

2

va

vektorning

koordinatasi

3

; �

3

; �

3

bo`lsin.Bu vektorlarning aralash ko`paytmasini topish uchun,

va

vektorlarning vektor ko`paytmasidan iborat vektorni

vektorga skalyar ko`paytiramiz.

,

,

vektorlarning aralash ko`paytmasi

���

ko`rinishda yoziladi va quyidagi formula bo`yicha

hisoblanadi.

��� =

1

1

1

2

2

2

3

3

3

.Vektorlarning aralash ko`paytmasi son kattalikdan iborat.

7-misol.

� 5; − 2; 2 , � 4; 2; − 3

va

� 4; − 3; 1

vektorlarning aralash ko`paytmasini

toping.
Yechish.

��� =

1

1

1

2

2

2

3

3

3

=

5 − 2 2

4 2 − 3

4 − 3 1

= 10 + 24 − 24 − 16 − 45 + 8 =− 43

Demak,

� 5; − 2; 2 , � 4; 2; − 3

va

� 4; − 3; 1

vektorlarning aralash ko`paytmasi

−43

ga teng ekan.

8-misol.

� 3; 2; 1 , � 5; 1; − 3

va

� 2; 3; 2

vektorlarga qurilgan parallelepipedning hajmini

toping.
Yechish.Vektorlarning aralash ko`paytmasi formulasiga ko`ra:

��� =

1

1

1

2

2

2

3

3

3

=

3 2 1

5 1 − 3

2 3 2

= 6 − 12 + 15 − 2 + 27 − 20 = 14

.

Demak,

� 3; 2; 1 , � 5; 1; − 3

va

� 2; 3; 2

vektorlarga qurilgan parallelepipedning hajmi

14 ga teng.


background image

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR

RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 12, issue 02 (2025)

293

Mustaqil yechish uchun masalalar

1.

� 5; − 3; 8

va

� 3; − 6; − 1

vektorlarning skalyar ko`paytmasini toping.

2.

� 1; − 4; 4

va

� 6; − 2; �

vektorlarning skalyar ko`paytmasi 47 ga teng bo`lsa,m ni

toping.
3.

� 4; 6

va

� �; − 8

vektorlar perpendikulyar bo`lsa,

ni toping.

4.

� 3; − 4; 3

va

� −2; 5; 12

vektorlarning vektor ko`paytmasini toping.

5.

� 7; − 2; 2

va

� 6; − 5; 4

vektorlarga qurilgan uchburchakning yuzini toping.

6.

� 1; − 3; 2 , � 4; 2; − 1

va

� 5; − 2; 1

vektorlarning aralash ko`paytmasini

toping.
7.

� 4; − 2; 8 , � −4; 1; − 3

va

� 9; − 3; 2

vektorlarga qurilgan parallelepipedning

hajmini toping.
8.

� 5; − 2; 2 , � 4; 2; − 3

va

� 4; − 3; 1

vektorlarning aralash ko`paytmasini toping.

XULOSALAR

Biz yuqorida vektorlarning xossalari va vektorlardan foydalanib vektorlarning skalyar

ko`paytmasi vektor ko`paytmasi va aralash ko`paytmasi va unga oid misollarni yechish

metodlarini ko`rib chiqdik.

Tanishib chiqilgan masalalardan ko`rinib turibdiki,turli masalalarni vektorlar yordamida qulay

va tushunarli usulda hal qilish mumkin ekan.

Tavsiya etilgan masalalarning yechimlari, o`quvchilarimizni yangi bilim bilan

boyitishga,ularni

mantiqiy

fikrlashlarini,tafakkurlarini

va

matematik

tasavvurlarini

rivojlantirishga xizmat qiladi.

FOYDALANILGAN ADABIYOTLAR

1.T.R.To`laganov,A.A.Normatov “Matematikadan praktikum”,Toshkent “o`qituvchi”,1989 yil.
2.I.Isroilov,Z.Pashayev,”Geometriya”, I qism, Toshkent “o`qituvchi”,2010 yil
3.https://uz.wikipedia.org/wiki/Vektor_(matematika)
4.

https://staff.tiiame.uz/storage/users/685/presentations/6t0FAEJd7L079DAmemER9oNUkGONg

piBbzi9KU8K.pdf

5.

https://skysmart.ru/articles/mathematic/vektor

7.

https://staff.tiiame.uz/storage/users/687/presentations/MHJXPlSPQBuL6CwSW8ulamAvrst3sw

tpaJ9Np8NJ.pdf

8.

https://blog.skillfactory.ru/glossary/vektor/

Библиографические ссылки