PLANE ELECTROMAGNETIC WAVE PARAMETERS.

HAC
Google Scholar
To share
Islomov , M. . (2024). PLANE ELECTROMAGNETIC WAVE PARAMETERS. Modern Science and Research, 3(1), 88–91. Retrieved from https://inlibrary.uz/index.php/science-research/article/view/28946
Crossref
Сrossref
Scopus
Scopus

Keywords:

Abstract

Nowadays, in practice, when it is required to calculate electromagnetic fields, the use of some mathematical model is of great importance. Because, with the help of this model, it is possible to express the propagation of electromagnetic waves in real conditions. One of them is the plane electromagnetic wave model, which can be used to calculate many wave processes. Let's first understand a little bit about the plane electromagnetic wave. In this, first of all, it is necessary to learn the concept of wave front or wavy surface.


background image

ISSN:

2181-3906

2024

International scientific journal

«MODERN

SCIENCE

АND RESEARCH»

VOLUME 3 / ISSUE 2 / UIF:8.2 / MODERNSCIENCE.UZ

88

PLANE ELECTROMAGNETIC WAVE PARAMETERS.

Muhammad Islomov

Assistant

Jizzakh Polytechnic Institute, Republic of Uzbekistan, Jizzakh.

muhammadjon040497@gmail.com

https://doi.org/10.5281/zenodo.10629568

Abstract. Nowadays, in practice, when it is required to calculate electromagnetic fields,

the use of some mathematical model is of great importance. Because, with the help of this model,
it is possible to express the propagation of electromagnetic waves in real conditions. One of them
is the plane electromagnetic wave model, which can be used to calculate many wave processes.
Let's first understand a little bit about the plane electromagnetic wave. In this, first of all, it is
necessary to learn the concept of wave front or wavy surface.

Keywords: Signal, wave, electromagnetic field, plane waves, homogeneous medium, Plane

electromagnetic wave, amplitude, Vacuum.

ПАРАМЕТРЫ ПЛОСКОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ.

Аннотация. В настоящее время на практике, когда требуется расчет

электромагнитных полей, большое значение имеет использование той или иной
математической модели. Потому что с помощью этой модели можно выразить
распространение электромагнитных волн в реальных условиях. Одной из них является
модель плоской электромагнитной волны, которую можно использовать для расчета
многих волновых процессов. Давайте сначала немного разберемся с плоской
электромагнитной волной. При этом, прежде всего, необходимо усвоить понятие
волнового фронта или волнистой поверхности.

Ключевые слова: Сигнал, волна, электромагнитное поле, плоские волны, однородная

среда, Плоская электромагнитная волна, амплитуда, Вакуум.

In practice, when the calculation of electromagnetic fields is required, the use of a

mathematical model is of great importance. Because, with the help of this model, it is possible to
express the propagation of electromagnetic waves in real conditions. One of them is the plane
electromagnetic wave model, which can be used to calculate many wave processes. Let's first
understand a little bit about the plane electromagnetic wave. In this, first of all, it is necessary to
learn the concept of wave front or wavy surface. A wavefront is a surface where the phases of the
field intensity vectors at each point have the same value.

Depending on the shape of the irradiator creating the field, the wavefront can be cylindrical,

spherical, or have another shape. It should also be noted that the wavefront generated by the
arbitrary irradiating system acquires a spherical shape at a very large distance from it. If we take a
deeper look at this situation, we can understand the following. In radio communication lines, in
almost all cases, the receiving antenna is located at a great distance. In this case, if the wavelength
of the field is ten times smaller than this distance, this situation can be considered as long-range
propagation. In practice, this condition is almost always fulfilled.

If we take into account the spherical distribution of the wave front, the receiving antenna

receives a very small part of this front equal to its size. We can always consider a very small part


background image

ISSN:

2181-3906

2024

International scientific journal

«MODERN

SCIENCE

АND RESEARCH»

VOLUME 3 / ISSUE 2 / UIF:8.2 / MODERNSCIENCE.UZ

89

of the sphere to be flat. For this reason, the plane electromagnetic wave model is important. The
wave surface of the monochromatic field generated by the vectors is parallel to each other, or they
call the wave lying in the same plane a plane wave. A plane wave in which the values of the field
vectors are the same at all points of the wave front is called a uniform plane wave.

A plane harmonic electromagnetic wave propagating in an infinite homogeneous medium

can be represented by the following equation

z

k

j

ym

xm

m

e

e

E

y

E

x

E

+

=

)

1

1

(


The expression for instantaneous values of the field vector has the following form

( )

)

cos(

)

cos(

,

+

=

z

t

e

E

z

t

e

E

z

t

E

z

ym

z

xm

It is characterized by seven parameters of a plane electromagnetic wave in the state of

propagation in free space. These parameters are written separately for the cases of wave
propagation in mediums with conducting, semiconducting, and dielectric properties. As mentioned
in the previous paragraphs, the classification of the environment according to the conductivity
properties

tg δ

is done through the parameter

а

tg

=

.

1.

The following formulas are the expressions of plane electromagnetic wave parameters.

2.

γ – complex coefficient of wave propagation. This math parameter is used to simplify and

transform expressions

j

+

=

α – attenuation coefficient. This parameter shows the decay of the energy that occurs when

the wave travels a distance of 1 m.





+

=

м

tg

а

а

1

1

1

*

2

*

*

2

β – phase coefficient. This quantity represents the angle by which the wave changes its

phase when it travels a distance of 1 m.





+

+

=

м

tg

а

а

1

1

1

*

2

*

*

2

v

f

– phase velocity. This parameter represents the speed of movement of the wavy

surface, in other words, it shows the speed of oscillation of the field vector.





=

с

м

ф

v

g

– group speed. This parameter shows the speed of energy propagation


background image

ISSN:

2181-3906

2024

International scientific journal

«MODERN

SCIENCE

АND RESEARCH»

VOLUME 3 / ISSUE 2 / UIF:8.2 / MODERNSCIENCE.UZ

90





=

=

с

м

d

d

Г

0

λ – wavelength. This parameter shows the distance traveled by the wave during one

complete cycle

 

м

2

=

Z

c

– characteristic resistance of the environment. This parameter is determined by the ratio

of the complex amplitudes of the field vectors

 

Ом

H

E

Z

c





=

In the vacuum state, the characteristic resistance of the medium is equal to 120p Ohm.
For real environments, it has a complex character and can be defined as follows

 

Ом

e

Z

Z

j

c

c

=

(

)

 

Ом

Z

а

а

c

cos

=

From the above, it can be understood that a flat electromagnetic wave can be

generated only in a limited part of space. However, in solving many practical problems,
the external field is assumed to be completely flat at all points in space.

This facilitates the solution of electrodynamic problems.


REFERENCES

1.

Islomov, M., & Irisboyev, F. (2023). IOT (INTERNET OF THINGS) TECHNOLOGIES
OF INTERNET DEVICES. Modern Science and Research, 2(9), 220-223.

2.

Islomov, M. (2023). CALCULATION OF SIGNAL DISPERSION IN OPTICAL

FIBER. Modern Science and Research, 2(10), 127–129.

3.

Boymirzayevich,

I.

F.,

&

Husniddin

o'g'li,

I.

M.

(2023).

INTERNET

QURILMALARINING IOT (INTERNET OF THINGS) TEXNOLOGIYALARI.

4.

Isaev R.I., Atametov R.K., Radjapova R.N. Telekommunikatsiya uzatish tizimlari. -«Fan
va texnologiya», 2011. — 520 bet.

5.

Sifrovыe i analogovыe sistemы peredachi: Uchebnik dlya vuzov/ V.I. Ivanov, V.N.
Gordienko, G.N. Popov, R.I. Isaev i dr.; Pod red. V.I. Ivanova.- 2-e izd. –M.: Goryachaya
liniya – Telekom, 2003.

6.

ITU-T Manual, 2009, Malkom Jonson. – Optical fiberes, cables and systems. 293 p.

7.

Sklyarov O. K. Volokonno - opticheskie seti i sistemы svyazi: Uchebnoe posobie. 2e izd.,
ster. — SPb.: Izdatelstvo «Lan», 2010. — 272 s.

8.

Islomov, M. (2023). CALCULATION OF SIGNAL DISPERSION IN OPTICAL
FIBER.

Modern Science and Research

,

2

(10), 127-129.


background image

ISSN:

2181-3906

2024

International scientific journal

«MODERN

SCIENCE

АND RESEARCH»

VOLUME 3 / ISSUE 2 / UIF:8.2 / MODERNSCIENCE.UZ

91

9.

Islomov, M., & Irisboyev, F. (2023). IOT (INTERNET OF THINGS) TECHNOLOGIES
OF INTERNET DEVICES. Modern Science and Research, 2(9), 220–223. Retrieved from

https://inlibrary.uz/index.php/science-research/article/view/24108

10.

Islomov, M. (2023). CALCULATION OF SIGNAL DISPERSION IN OPTICAL
FIBER. Modern

Science

and

Research, 2(10),

127–129.

Retrieved

from

https://inlibrary.uz/index.php/science-research/article/view/25048

11.

Mirzaev, U., Abdullaev, E., Kholdarov, B., Mamatkulov, B., & Mustafoev, A. (2023).
Development of a mathematical model for the analysis of different load modes of operation
of induction motors. In E3S Web of Conferences (Vol. 461, p. 01075). EDP Sciences

12.

J.T., M., & F.B., I. (2023). VOLATILE AND NON-VOLATILE MEMORY DEVICES.
Modern Science and Research, 2(10), 116–119.

13.

Ж.

Метинкулов

ИСПОЛЬЗОВАНИЕ

МИКРОКОНТРОЛЛЕРОВ

ДЛЯ

УПРАВЛЕНИЯ НАПРЯЖЕНИЕМ Vol. SCIENTIFIC APPROACH TO THE
MODERN EDUCATION SYSTEM 2 No. 20 (2023):

14.

Ирисбоев, Ф. Б., Эшонкулов, А. А. У., & Исломов, М. Х. У. (2022). ПОКАЗАТЕЛИ
МНОГОКАСКАДНЫХ УСИЛИТЕЛЕЙ.

Universum: технические науки

, (11-3 (104)),

5-8.

15.

Islomov, M., & Irisboyev, F. (2023). IOT (INTERNET OF THINGS) TECHNOLOGIES
OF INTERNET DEVICES.

Modern Science and Research

,

2

(9), 220-223.

16.

Irisboyev, F. (2022). ELEKTR SIGNALLAR KUCHAYTIRGICHLARI VA ULARNING
ASOSIY PARAMETRLARI VA TAVSIFLARI.

Евразийский журнал академических

исследований

,

2

(11), 190-193.

17.

Irisboyev,

F.

(2022).

YARIMO

‘TKAZGICHLI

MODDALARDAN

TAYYORLANADIGAN

KUCHAYTIRGICHLARNING

PARAMETRLARI

VA

XARAKTERISTIKALARI.

Science and innovation

,

1

(A6), 374-377.

18.

Irisboyev, F. B. (2022). ELEKTRON ZANJIRLAR VA MIKROSXEMOTEXNIKA
QURILMALARINING ASOSLARI.

Academic research in educational sciences

,

3

(10),

15-19.

19.

Irisboyev, F. (2024). CLUSTERS OF SELENIUM ATOMS IN THE SILICON
LATTICE.

Ilm-fan va ta'lim

,

2

(1 (16)).

20.

Irisboyev, F. (2024). ASYNCHRONOUS MACHINE TYPES, STRUCTURE AND
PRINCIPLE OF OPERATION.

Ilm-fan va ta'lim

,

2

(1 (16)).

21.

Irisboyev, F. (2023). THE INPUTS ARE ON INSERTED SILICON NON-BALANCED
PROCESSES.

Modern Science and Research

,

2

(10), 120-122.

22.

Boymirzayevich, I. F. (2023). THE INPUTS ARE ON INSERTED SILICON NON-
BALANCED PROCESSES.

23.

Islomov, M., & Nasriddinov, A. (2024). INTERNET NARSALAR OLDIDA BIZNI
NIMA KUTMOQDA.

Ilm-fan va ta'lim

,

2

(1 (16)).

24.

Irisboyev, F. (2022). PARAMETERS AND CHARACTERISTICS OF AMPLIFIERS
MADE OF SEMICONDUCTOR MATERIALS.

Science and Innovation

,

1

(6), 374-377.

References

Islomov, M., & Irisboyev, F. (2023). IOT (INTERNET OF THINGS) TECHNOLOGIES OF INTERNET DEVICES. Modern Science and Research, 2(9), 220-223.

Islomov, M. (2023). CALCULATION OF SIGNAL DISPERSION IN OPTICAL FIBER. Modern Science and Research, 2(10), 127–129.

Boymirzayevich, I. F., & Husniddin o'g'li, I. M. (2023). INTERNET QURILMALARINING IOT (INTERNET OF THINGS) TEXNOLOGIYALARI.

Isaev R.I., Atametov R.K., Radjapova R.N. Telekommunikatsiya uzatish tizimlari. -«Fan va texnologiya», 2011. — 520 bet.

Sifrovыe i analogovыe sistemы peredachi: Uchebnik dlya vuzov/ V.I. Ivanov, V.N. Gordienko, G.N. Popov, R.I. Isaev i dr.; Pod red. V.I. Ivanova.- 2-e izd. –M.: Goryachaya liniya – Telekom, 2003.

ITU-T Manual, 2009, Malkom Jonson. – Optical fiberes, cables and systems. 293 p.

Sklyarov O. K. Volokonno - opticheskie seti i sistemы svyazi: Uchebnoe posobie. 2e izd., ster. — SPb.: Izdatelstvo «Lan», 2010. — 272 s.

Islomov, M. (2023). CALCULATION OF SIGNAL DISPERSION IN OPTICAL FIBER. Modern Science and Research, 2(10), 127-129.

Islomov, M., & Irisboyev, F. (2023). IOT (INTERNET OF THINGS) TECHNOLOGIES OF INTERNET DEVICES. Modern Science and Research, 2(9), 220–223. Retrieved from https://inlibrary.uz/index.php/science-research/article/view/24108

Islomov, M. (2023). CALCULATION OF SIGNAL DISPERSION IN OPTICAL FIBER. Modern Science and Research, 2(10), 127–129. Retrieved from https://inlibrary.uz/index.php/science-research/article/view/25048

Mirzaev, U., Abdullaev, E., Kholdarov, B., Mamatkulov, B., & Mustafoev, A. (2023). Development of a mathematical model for the analysis of different load modes of operation of induction motors. In E3S Web of Conferences (Vol. 461, p. 01075). EDP Sciences

J.T., M., & F.B., I. (2023). VOLATILE AND NON-VOLATILE MEMORY DEVICES. Modern Science and Research, 2(10), 116–119.

Ж. Метинкулов ИСПОЛЬЗОВАНИЕ МИКРОКОНТРОЛЛЕРОВ ДЛЯ УПРАВЛЕНИЯ НАПРЯЖЕНИЕМ Vol. SCIENTIFIC APPROACH TO THE MODERN EDUCATION SYSTEM 2 No. 20 (2023):

Ирисбоев, Ф. Б., Эшонкулов, А. А. У., & Исломов, М. Х. У. (2022). ПОКАЗАТЕЛИ МНОГОКАСКАДНЫХ УСИЛИТЕЛЕЙ. Universum: технические науки, (11-3 (104)), 5-8.

Islomov, M., & Irisboyev, F. (2023). IOT (INTERNET OF THINGS) TECHNOLOGIES OF INTERNET DEVICES. Modern Science and Research, 2(9), 220-223.

Irisboyev, F. (2022). ELEKTR SIGNALLAR KUCHAYTIRGICHLARI VA ULARNING ASOSIY PARAMETRLARI VA TAVSIFLARI. Евразийский журнал академических исследований, 2(11), 190-193.

Irisboyev, F. (2022). YARIMO ‘TKAZGICHLI MODDALARDAN TAYYORLANADIGAN KUCHAYTIRGICHLARNING PARAMETRLARI VA XARAKTERISTIKALARI. Science and innovation, 1(A6), 374-377.

Irisboyev, F. B. (2022). ELEKTRON ZANJIRLAR VA MIKROSXEMOTEXNIKA QURILMALARINING ASOSLARI. Academic research in educational sciences, 3(10), 15-19.

Irisboyev, F. (2024). CLUSTERS OF SELENIUM ATOMS IN THE SILICON LATTICE. Ilm-fan va ta'lim, 2(1 (16)).

Irisboyev, F. (2024). ASYNCHRONOUS MACHINE TYPES, STRUCTURE AND PRINCIPLE OF OPERATION. Ilm-fan va ta'lim, 2(1 (16)).

Irisboyev, F. (2023). THE INPUTS ARE ON INSERTED SILICON NON-BALANCED PROCESSES. Modern Science and Research, 2(10), 120-122.

Boymirzayevich, I. F. (2023). THE INPUTS ARE ON INSERTED SILICON NON-BALANCED PROCESSES.

Islomov, M., & Nasriddinov, A. (2024). INTERNET NARSALAR OLDIDA BIZNI NIMA KUTMOQDA. Ilm-fan va ta'lim, 2(1 (16)).

Irisboyev, F. (2022). PARAMETERS AND CHARACTERISTICS OF AMPLIFIERS MADE OF SEMICONDUCTOR MATERIALS. Science and Innovation, 1(6), 374-377.

inLibrary — это научная электронная библиотека inConference - научно-практические конференции inScience - Журнал Общество и инновации UACD - Антикоррупционный дайджест Узбекистана UZDA - Ассоциации стоматологов Узбекистана АСТ - Архитектура, строительство, транспорт Open Journal System - Престиж вашего журнала в международных базах данных inDesigner - Разработка сайта - создание сайтов под ключ в веб студии Iqtisodiy taraqqiyot va tahlil - ilmiy elektron jurnali yuridik va jismoniy shaxslarning in-Academy - Innovative Academy RSC MENC LEGIS - Адвокатское бюро SPORT-SCIENCE - Актуальные проблемы спортивной науки GLOTEC - Внедрение цифровых технологий в организации MuviPoisk - Смотрите фильмы онлайн, большая коллекция, новинки кинопроката Megatorg - Доска объявлений Megatorg.net: сайт бесплатных частных объявлений Skinormil - Космецевтика активного действия Pils - Мультибрендовый онлайн шоп METAMED - Фармацевтическая компания с полным спектром услуг Dexaflu - от симптомов гриппа и простуды SMARTY - Увеличение продаж вашей компании ELECARS - Электромобили в Ташкенте, Узбекистане CHINA MOTORS - Купи автомобиль своей мечты! PROKAT24 - Прокат и аренда строительных инструментов