Сравнительная эффективность ЭЭГ и МРТ в диагностике детских эпилептических синдромов

Аннотация

В данном обзоре сравнивается диагностическая эффективность электроэнцефалографии (ЭЭГ) и магнитно-резонансной томографии (МРТ) при оценке детских эпилептических синдромов, в частности синдрома Веста, синдрома Леннокса-Гасто и доброкачественной роландической эпилепсии. ЭЭГ выявляет специфические для синдромов электрические паттерны, которые часто имеют диагностическое значение, в то время как МРТ определяет структурные аномалии головного мозга, влияющие на прогноз и выбор лечения. Оба метода обладают уникальными преимуществами и ограничениями, и их совместное применение играет ключевую роль в современном ведении детей с эпилепсией. Технологические достижения, такие как использование искусственного интеллекта в анализе ЭЭГ и функциональная МРТ, повысили точность диагностики. Современная литература и международные рекомендации подтверждают взаимодополняющий характер ЭЭГ и МРТ в диагностике эпилепсии у детей.

Тип источника: Журналы
Годы охвата с 2020
inLibrary
Google Scholar
Выпуск:
CC BY f
728-733
34

Скачивания

Данные скачивания пока недоступны.
Поделиться
Эминов R., & Гуломов K. (2025). Сравнительная эффективность ЭЭГ и МРТ в диагностике детских эпилептических синдромов. in Library, 1(2), 728–733. извлечено от https://inlibrary.uz/index.php/archive/article/view/93069
Crossref
Сrossref
Scopus
Scopus

Аннотация

В данном обзоре сравнивается диагностическая эффективность электроэнцефалографии (ЭЭГ) и магнитно-резонансной томографии (МРТ) при оценке детских эпилептических синдромов, в частности синдрома Веста, синдрома Леннокса-Гасто и доброкачественной роландической эпилепсии. ЭЭГ выявляет специфические для синдромов электрические паттерны, которые часто имеют диагностическое значение, в то время как МРТ определяет структурные аномалии головного мозга, влияющие на прогноз и выбор лечения. Оба метода обладают уникальными преимуществами и ограничениями, и их совместное применение играет ключевую роль в современном ведении детей с эпилепсией. Технологические достижения, такие как использование искусственного интеллекта в анализе ЭЭГ и функциональная МРТ, повысили точность диагностики. Современная литература и международные рекомендации подтверждают взаимодополняющий характер ЭЭГ и МРТ в диагностике эпилепсии у детей.


background image

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR

RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 12, issue 05 (2025)

728

COMPARATIVE EFFECTIVENESS OF EEG AND MRI IN DIAGNOSING PEDIATRIC

EPILEPTIC SYNDROMES

Eminov R.I.,

Gulomov

K

.

K

.

Fergana

Medical

Institute

of

Public

Health,

Fergana,

Uzbekistan

talaba00719941995

@gmail.com

Abstract:

This narrative review compares the diagnostic effectiveness of electroencephalography

(EEG) and magnetic resonance imaging (MRI) in evaluating pediatric epileptic syndromes,

particularly West syndrome, Lennox–Gastaut syndrome, and benign rolandic epilepsy. EEG

offers syndrome-specific electrical patterns that are often diagnostic, while MRI identifies

structural brain abnormalities influencing prognosis and treatment decisions. Both modalities

present unique advantages and limitations, and their combined use is central to modern pediatric

epilepsy care. Technological advances such as artificial intelligence in EEG analysis and

functional MRI have enhanced diagnostic accuracy. Current literature and international guidelines

affirm the complementary nature of EEG and MRI in pediatric epilepsy diagnosis.

Keywords:

EEG, MRI, pediatric epilepsy, diagnostic imaging.

Introduction

Epilepsy is a common neurological disorder in children, and specific syndromes require distinct

evaluation. West syndrome (WS), Lennox–Gastaut syndrome (LGS), and benign childhood

epilepsy with centrotemporal spikes (BECTS, also called benign rolandic epilepsy) are key

pediatric epileptic encephalopathies or genetic epilepsies with differing prognoses. WS (infantile

spasms) has peak onset 4–7 months and is associated with severe developmental disability[1]. Its

incidence is roughly 2–5 per 10,000 live births[1]. LGS typically begins between ages 2–5 years

and comprises about 3–8% of childhood epilepsy; incidence is about 1.9 per 100,000 children[5].

BECTS manifests with infrequent nocturnal focal seizures in school-aged children and is often

outgrown by adolescence; it accounts for ≈15% of pediatric epilepsy cases[1]. Accurate diagnosis

is critical: WS and LGS are medically refractory and often need aggressive therapy, while BECTS

is benign and may require no treatment. Electroencephalography (EEG) and magnetic resonance

imaging (MRI) are central to the diagnostic workup. EEG provides real-time recording of cortical

electrical activity and typically establishes syndrome classification (e.g. WS hypsarrhythmia, LGS

slow spike-wave). MRI reveals structural brain abnormalities that underlie many cases of WS and

LGS, informing etiology and guiding management (e.g. resective surgery). We review and

compare the effectiveness of EEG vs MRI in these syndromes, noting each modality’s advantages,

limitations, and new technologies (AI and functional MRI). We also place EEG/MRI in

epidemiological and guideline context, drawing on recent literature (post-2020) for the latest

consensus and evidence.

Methods

We performed a narrative literature review of studies, reviews, and guidelines published since

2020, focusing on EEG and MRI in childhood epilepsy syndromes (West syndrome, LGS,

BECTS). Databases searched included PubMed, MEDLINE, and Epilepsy-specific sources, using

terms such as “EEG pediatric epilepsy”, “West syndrome MRI”, “Lennox-Gastaut EEG imaging”,

“rolandic epilepsy MRI”, and “AI EEG deep learning”. We included consensus guidelines from

ILAE and related bodies, and prevalence data from epidemiological studies. The review

emphasizes diagnostic value, accessibility, interpretation challenges, and emerging EEG/MRI

technologies. (This is a narrative – not a formal systematic – review; no formal PRISMA flow is

provided.)


background image

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR

RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 12, issue 05 (2025)

729

Findings

Electroencephalography (EEG) in Pediatric Epilepsy

EEG is the cornerstone of epilepsy diagnosis, especially in children[6]. It is relatively inexpensive,

can be done at the bedside or in the home (ambulatory EEG), and is non-invasive. For all three

syndromes, EEG yields definitive features:

West Syndrome (Infantile Spasms): The classic EEG finding is

hypsarrhythmia

, a chaotic,

high-amplitude, asynchronous background with multifocal spikes. This pattern – along with

clusters of flexor/extensor spasms – characterizes WS[1]. In practice, visual recognition of

hypsarrhythmia can be challenging due to variability, and up to 30–50% of infants with spasms

may not show classical hypsarrhythmia initially. Recent computational studies are addressing this:

for example, automated EEG biomarker research has quantified signal entropy, power spectra,

and connectivity to detect hypsarrhythmia and epileptic spikes with machine assistance[1].

Nonetheless, identification of any hypsarrhythmia-like pattern on EEG effectively establishes a

diagnosis of infantile epileptic spasms syndrome[1]. Early EEG confirmation is emphasized by

guidelines, as prompt treatment improves outcomes.

Lennox–Gastaut Syndrome (LGS): LGS is defined in part by a diffuse slow (≤2.5 Hz)

spike-and-wave (SSW) pattern on EEG[4]. In a systematic review, 92% of LGS patients had SSW

bursts, and about 46% had generalized paroxysmal fast activity (GPFA)[4]. Thus, EEG almost

universally shows characteristic abnormalities in LGS. EEG also captures the mixed seizure types

(tonic, atonic, atypical absences, etc.) that typify LGS. Importantly, these EEG features aid not

only diagnosis but prognosis: longer, more disorganized discharges correlate with poorer

outcome[4]. EEG interpretation in LGS is complex – the diffuse slowing and polyspike

complexes require an experienced epileptologist to distinguish from other encephalopathies.

However, a routine EEG (with activation maneuvers) will detect the signature patterns in the

majority of cases[4].

Benign Rolandic Epilepsy (BECTS): EEG in BECTS shows centrotemporal (rolandic)

spikes, often activated by sleep. These spikes are typically unilateral or bitemporal with a negative

sharp wave in the rolandic area and positive spike over the ipsilateral frontal region[6]. In contrast

to WS and LGS, BECTS EEG does

not

show widespread encephalopathic features – the interictal

background is normal, and seizures are focal. As per the ILAE pediatric imaging guidelines,

BECTS is an idiopathic epilepsy, so EEG findings are almost entirely focal and benign[6]. The

EEG diagnosis of BECTS is straightforward when centrotemporal spikes are seen in the

appropriate clinical context. Notably, EEG can distinguish BECTS from more severe syndromes:

for example, the absence of generalized slow spike-wave and the presence of primarily focal

spikes help differentiate BECTS from atypical syndromes like LGS.

EEG Interpretation Complexity: All these patterns require expert review. Infant EEG (as in WS)

can be especially difficult to interpret due to immature background rhythms. Moreover, artefacts

(movement, muscle, etc.) can obscure infant EEG. Interpretation generally demands a pediatric

neurologist or neurophysiologist. Emerging AI tools are promising: deep learning algorithms have

demonstrated >90% accuracy in detecting pediatric seizures from EEG[3], and quantitative EEG

analysis (entropy, high-frequency oscillations) is under study[1]. Such tools may in future reduce

diagnostic delay or inter-rater variability.

Magnetic Resonance Imaging (MRI) in Pediatric Epilepsy

MRI provides high-resolution anatomical images and is the test of choice for identifying structural

lesions in epilepsy[6]. Modern epilepsy protocols (with epilepsy-tailored sequences on 3T

scanners) can reveal subtle malformations. However, MRI is more resource-intensive: it is

typically done in radiology suites, may require sedation in infants/young children, and costs more


background image

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR

RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 12, issue 05 (2025)

730

than EEG. Guidelines emphasize MRI over CT in pediatric epilepsy due to no radiation and

superior soft-tissue detail[6]. We examine MRI findings syndrome-by-syndrome:

West Syndrome: In WS, identifying an underlying cause is crucial. About 30% of children

with infantile spasms have a causative lesion on MRI[3]. These include tuberous sclerosis,

cortical dysplasias, hypoxic-ischemic injury, and other malformations. In one series, 29% of WS

patients had definite structural abnormalities, and another 42% had nonspecific MRI changes[3].

Thus, while WS is primarily diagnosed by EEG/clinical criteria, MRI frequently provides

etiologic information. In practice, an MRI (preferably 3T) is recommended in all cases of infantile

spasms. The diagnostic yield justifies the effort: when a lesion is found (e.g. unilateral cortical

dysplasia), it may indicate a surgical target. Recent advances include 7T MRI and improved

epilepsy sequences, which increase sensitivity to subtle lesions. Functional MRI is not routine for

initial diagnosis of WS, but in refractory cases, simultaneous video-EEG-fMRI can be used in

research to localize spasms onset.

Lennox–Gastaut Syndrome: MRI abnormalities are common in LGS. In the EEG

systematic review, 42.6% of LGS cases had identifiable structural etiologies[4]. Other sources

estimate that up to 70% of LGS cases have known causes[5]. Common MRI findings include

diffuse cortical malformations (e.g. dysplasia), post-infectious encephalomalacia, infarcts, or

injury. Conversely, about 30% of LGS cases remain cryptogenic (normal MRI and no clear

genetic finding)[4]. Thus, MRI is strongly indicated in LGS workup. Neuroimaging will often

show bilateral or multifocal lesions, explaining the generalized EEG. Pre-surgical MRI (with

optional functional techniques) can be pursued if focal resection (e.g. cortical tuber) is considered.

Advanced MRI modalities (diffusion imaging, susceptibility imaging) may reveal abnormalities

missed on routine scans. Overall, MRI and EEG together increase diagnostic certainty: EEG

confirms the LGS phenotype, and MRI yields etiology in the majority of cases.

BECTS (Benign Rolandic Epilepsy): MRI in typical BECTS is almost invariably

normal[6]. Because BECTS is considered idiopathic, routine MRI is not strictly required unless

atypical features are present (e.g. daytime seizures, cognitive delay, abnormal neurologic exam).

The 2009 ILAE pediatric neuroimaging guidelines noted that childhood absence and benign focal

epilepsies (like BECTS) “do not identify significant structural abnormalities”[6]. Therefore, in a

child with classic centrotemporal spikes and no red flags, MRI usually adds little diagnostic value.

When MRI is obtained, only incidental or nonspecific findings (e.g. benign cysts) are seen in most

cases. Hence, EEG remains the primary diagnostic tool for BECTS, and MRI’s role is limited to

ruling out pathology in atypical presentations.

MRI Interpretation Complexity: Pediatric MRI demands a skilled neuroradiologist, especially for

subtle cortical dysplasias or hippocampal abnormalities. Factors like patient motion (necessitating

sedation) and age-related myelination changes can complicate reading. Several software tools and

AI techniques are emerging to assist MRI interpretation. For example, machine-learning

algorithms for automated lesion detection (especially focal cortical dysplasia) have shown

promise in improving sensitivity. Functional MRI (fMRI) and advanced methods (e.g.

magnetoencephalography) are increasingly integrated in comprehensive epilepsy centers, though

mostly for presurgical mapping. Notably, resting-state fMRI can be performed under sedation

with minimal patient cooperation, making it suitable for children[7]. This allows mapping of

language or motor networks and sometimes epileptic networks, complementing EEG data.

Comparative and Complementary Role of EEG and MRI

EEG and MRI serve complementary roles in pediatric epilepsy diagnosis and management. EEG’s

strength is in capturing epileptiform activity and seizure dynamics. It is the gold-standard for

classifying epilepsy syndromes. For WS and LGS, EEG patterns (hypsarrhythmia and SSW,

respectively) are so characteristic that diagnosis is often EEG-driven[1][4]. MRI’s strength lies in


background image

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR

RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 12, issue 05 (2025)

731

etiological evaluation: it can identify lesions that neither EEG nor clinical exam can detect. In WS

and LGS, finding a structural lesion on MRI can alter treatment (e.g. consideration of epilepsy

surgery) and prognosis. By contrast, in BECTS, the lack of MRI findings aligns with the benign

prognosis; EEG suffices for diagnosis.

Accessibility and Cost: EEG machines are ubiquitous in pediatric neurology centers, often

available for outpatient or portable monitoring. Ambulatory and video-EEG options further

increase accessibility. MRI requires specialized equipment and often scheduling; a facility with

pediatric MRI capability (and anesthesia support) is needed. Consequently, in resource-limited

settings, EEG may be used as the primary tool, with MRI reserved for unclear or refractory cases.

Consensus Guidelines: International consensus supports combined use. Current ILAE guidelines

state that new-onset focal seizures or epileptic encephalopathies should prompt MRI[6]. They

note that benign focal syndromes (e.g. BECTS) rarely have imaging abnormalities, whereas

symptomatic syndromes like infantile spasms usually merit imaging[6]. EEG is universally

recommended as first-line in any suspected epilepsy, especially infantile spasms (where EEG may

be diagnostic even if spasms are subtle). Pediatric epilepsy consensus emphasizes timely EEG to

avoid diagnostic delay, and MRI to pursue etiology when seizures are complex or syndromic.

Emerging Technologies: AI is enhancing both modalities. In EEG, deep neural networks have

achieved high sensitivity/specificity for seizure detection in children[3], and may help classify

EEG patterns (e.g. automated hypsarrhythmia detectors). MRI benefits from improved hardware

(higher Tesla scanners) and AI-based image analysis for lesion detection. Functional imaging

(resting-state fMRI, simultaneous EEG-fMRI) bridges EEG and MRI by showing the

hemodynamic correlates of epileptic networks. For instance, recent work shows that resting-state

fMRI can identify motor or language networks in epilepsy patients without active task

participation[7]. Over time, such tools may allow better integration of EEG and MRI information.

Discussion

In diagnosing pediatric epileptic syndromes, EEG and MRI are not alternative but allied

modalities. EEG excels in identifying and classifying epileptic activity with millisecond accuracy,

while MRI elucidates underlying brain structure. Their limitations offset each other: EEG’s spatial

resolution is poor (it cannot localize deep foci precisely), whereas MRI provides no direct

information on electrical activity or seizure focus. A thoughtful combination is therefore standard:

an EEG is typically obtained at first presentation to confirm epilepsy and hint at a syndrome; MRI

is done to search for causes and plan treatment.

Our review underscores that in WS and LGS, EEG abnormalities are near-universal and often

guide immediate therapy (e.g. starting ACTH or steroids for spasms on seeing hypsarrhythmia).

MRI in these conditions is indicated not for diagnosis but for etiological workup. By contrast, in

BECTS, a normal MRI helps reassure that the case is truly idiopathic, but absence of findings is

expected rather than startling. From an accessibility standpoint, EEG’s portability is advantageous:

ambulatory EEG can capture intermittent seizures not seen in clinic, and ICU/epilepsy unit EEG

is available for critically ill infants. MRI demand sedation but gives a definitive anatomical

snapshot. Current consensus reflects this: in a febrile seizure with normal exam, one might defer

MRI, but in a child with WS or LGS, guidelines call for prompt brain MRI[6].

Recent literature (post-2020) reinforces these themes. Large series confirm that roughly one-third

of infantile spasms have an MRI lesion[3] and that 40–60% of LGS have structural

etiologies[4][5]. Studies on AI indicate that automated EEG analysis is maturing, potentially

speeding up diagnosis and long-term monitoring[3]. Functional imaging reviews highlight resting-

state fMRI as a research tool in pediatric epilepsy[7], though it is not yet standard of care.

Limitations remain: even with both EEG and MRI, about half of LGS and ~30% of WS cases


background image

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR

RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 12, issue 05 (2025)

732

remain “cryptogenic” (no clear cause identified)[4][5]. Genetic testing now plays an increasing

role in those cases, but that is beyond the scope of this comparison.

Conclusion

EEG and MRI are complementary and indispensable in evaluating pediatric epileptic syndromes.

EEG provides syndrome-defining electrophysiological signatures (e.g. hypsarrhythmia in WS,

slow spike-wave in LGS) with high sensitivity and is accessible, though dependent on expert

interpretation. MRI uncovers structural causes in a significant fraction of WS and LGS patients,

guiding further management, although it is less available and requires sedation in young children.

Emerging technologies – notably AI in EEG and advanced MRI/fMRI techniques – promise to

improve sensitivity and interpretation in the future. Clinicians rely on both tools: an EEG first

clarifies the syndrome, and an MRI follows to identify etiology. Current guidelines reflect this

synergy. Continued research and technological advances will further integrate EEG and MRI,

enhancing diagnosis and care of children with epilepsy.

References

1.

Alpersovna, M. Y., & Erkinjon o‘g‘li, L. A. (2025). ALKOGOLLI PANKREATIT:

SABABLARI, BELGILARI VA DAVOLASH USULLARI.

ZAMONAVIY TA'LIMDA FAN VA

INNOVATSION TADQIQOTLAR JURNALI

,

3

(2), 17-22.

2.

Karabaev Jasurbek Mavlyanjanovich. (2025). CURRENT CHALLENGES AND

ADVANCES IN PEDIATRIC TRAUMATOLOGY.

International Multidisciplinary Journal for

Research

&

Development

,

12

(05),

157–160.

Retrieved

from

https://www.ijmrd.in/index.php/imjrd/article/view/3051

3.

Meliboev, R. A., & Eminov, R. I. (2025). EXPLORING METHODS TO IMPROVE THE

TREATMENT OF COMPLICATIONS ARISING FROM ENDOUROLOGICAL OPERATIONS

FOR URINARY STONE DISEASE (LITERATURE REVIEW).

mortality

,

4

, 13.

4.

Qoraboyev Jasurbek Mavlonjon O‘G‘Li, & Raximova Ruxshona Shavkat Qizi (2024).

KATTALARDAGI OG‘IR MIYA SHIKASTLANISHI. Eurasian Journal of Medical and Natural

Sciences, 4 (2), 156-162. doi: 10.5281/zenodo.10776140

5.

Ravshan o'g'li, K. S., & Mavlonjon o’g’li, Q. J. (2024). Review Of The Use Of

Tomosynthesis For The Diagnosis Of Injuries And Diseases Of The Musculoskeletal

System.

Frontiers in Health Informatics

,

13

(6).

6.

Saidazizova,

S.,

&

Inomov,

F.

(2024).

SUBACUTE

SCLEROSING

PANENCEPHALITIS:

EPIDEMIOLOGY,

CLINICAL

PRESENTATION

AND

DIAGNOSIS.

Science and innovation

,

3

(D5), 254-259.

7.

Xamedxuja o‘g‘li, N. E. (2023). Pathogenetic Mechanisms of the Development of Severe

Functional Disorders in Injuries of the Calf-Acorn Joint.

SCIENTIFIC JOURNAL OF APPLIED

AND

MEDICAL

SCIENCES

,

2

(11),

427–429.

Retrieved

from

https://sciencebox.uz/index.php/amaltibbiyot/article/view/8628

8.

Xamedxuja o‘g‘li, N. E. IMPROVEMENT OF TREATMENT METHODS FOR CALF-

ASIK JOINT INJURIES.

9.

Ёкубов, Д. (2025). Роль анатомических и гормональных факторов в патогенезе

варикоцеле у детей и методы его профилактики (обзор литературы).

in Library

,

1

(1), 26-30.

10.

Ёкубов, Д., & Мазалова, А. (2024). On differential diagnostics of spinal cord pathology

of organic and functional genesis.

Актуальные вопросы фундаментальной медицины: сегодня

и в будущем

,

1

(1), 36-36.

11.

Латибжонов, А., & Умарова, С. (2023). Технологии искусственного интеллекта в

медицине.

in Library

,

1

(1).


background image

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR

RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 12, issue 05 (2025)

733

12.

Мусаева,

Ю.

А.

(2025).

АЛКОГОЛЛИ

ПАНКРЕАТИТДА

ЛИМФА

ТУГУНЛАРИНИНГ ГИСТОКИМЁВИЙ ЎЗГАРИШЛАРИ.

MODERN EDUCATIONAL

SYSTEM AND INNOVATIVE TEACHING SOLUTIONS

,

1

(7), 29-31.

13.

Тўхтаев, Ж. Т., Ботиров, Н. Т., & Нишонов, Э. Х. (2023). Болдир-ошиқ бўғими

шикастланишларини ташхислаш ва даволаш.

Zamonaviy tibbiyot jurnali (Журнал

современной медицины)

,

1

(1), 27-39.

Библиографические ссылки

Alpersovna, M. Y., & Erkinjon o‘g‘li, L. A. (2025). ALKOGOLL1 PANKREATIT: SABABLARI. BELGILARI VA DA VOLASH USULLARI. ZAMONAVIY TA'LIMDA FAN YA INNOVATSION TADQIQOTLARJURNALI, 5(2), 17-22.

Karabaev Jasurbek Mavlyanjanovich. (2025). CURRENT CHALLENGES AND ADVANCES IN PEDIATRIC TRAUMATOLOGY. International Multidisciplinary Journal for Research & Development, 12(05), 157-160. Retrieved from https://www.iimrd.in/index.php/imird''ariicle/vicw/3O51

Meliboev. R. A.. & Eminov, R. I. (2025). EXPLORING METHODS TO IMPROVE THE TREATMENT OF COMPLICATIONS ARISING FROM ENDOUROLOG1CAL OPERATIONS FOR URINARY STONE DISEASE (LITERATURE REVIEW), mortality, 4, 13.

Qoraboyev Jasurbek Mavlonjon O‘G‘Li, & Raximova Ruxshona Shavkat Qizi (2024). KATTALARDAGI OG4R MIYA SHIKASTLANISHI. Eurasian Journal of Medical and Natural Sciences, 4 (2), 156-162. doi: 10.5281/zenodo. 10776140

Ravshan o'g’li, K. S., & Mavlonjon o’g’li, Q. J. (2024). Review Of The Use Of Tomosynthesis For The Diagnosis Of Injuries And Diseases Of The Musculoskeletal System. Frontiers in Health Informatics, 13(6).

Saidazizova, S., & Inomov, F. (2024). SUBACUTE SCLEROSING PANENCEPHALITIS: EPIDEMIOLOGY, CLINICAL PRESENTATION AND DIAGNOSIS. Science and innovation, 3(D5), 254-259.

Xamedxuja o‘g‘li, N. E. (2023). Pathogenetic Mechanisms of the Development of Severe Functional Disorders in Injuries of the Calf-Acorn Joint. SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES, 2(11), 427-429. Retrieved from https://sciencebox.uz/index.php/amaltibbiyot/article/view/8628

Xamedxuja o‘g‘li, N. E. IMPROVEMENT OF TREATMENT METHODS FOR CALF-ASIK JOINT INJURIES.

Ёкубов. Д. (2025). Роль анатомических и гормональных факторов в патогенезе варикоцеле у детей и методы его профилактики (обзор литературы), in Library, /(1), 26-30.

Ёкубов. Д., & Мазалова, А. (2024). On differential diagnostics of spinal cord pathology of organic and functional genesis. Актуальные вопросы фундаментальной медицины: сегодня и в будущем, l( 1), 36-36.

Латибжонов, А., & Умарова. С. (2023). Технологии искусственного интеллекта в медицине, in Library-. /(1).

Мусаева, Ю. А. (2025). АЛКОГОЛЛИ ПАНКРЕАТИТДА ЛИМФА ТУГУНЛАРИНИНГ ГИСТОКИМЁВИЙ ЎЗГАРИШЛАРИ. MODERN EDUCATIONAL SYSTEM AND INNOVATIVE TEACHING SOLUTIONS, 1(7), 29-31.

Тўхтаев, Ж. Т., Ботиров, Н. Т., & Нишонов, Э. Х. (2023). Болдир-ошиқ бўғими шикастланишларини ташхислаш ва даволаш. Zamonaviy tibbiyot jurnali (Журнал современной медицины), 1(1), 27-39.