Искусственный интеллект в системах индивидуализации лечения и мониторинга пациентов в здравоохранении

Аннотация

В данной статье рассматривается трансформационное влияние искусственного интеллекта (ИИ) на здравоохранение, с акцентом на индивидуализацию лечения и системы мониторинга пациентов. Технологии ИИ, включая цифровые двойники, машинное обучение и устройства, интегрированные с Интернетом вещей, обеспечивают персонализированные планы лечения и мониторинг здоровья в реальном времени, улучшая результаты для пациентов и снижая затраты. Исследование подчеркивает роль ИИ в прецизионной медицине, особенно в онкологии, и его способность расширять возможности пациентов через индивидуализированные вмешательства. Однако такие проблемы, как конфиденциальность данных, алгоритмическая предвзятость и технические ограничения, должны быть решены для обеспечения этичного и справедливого внедрения ИИ в здравоохранение.

Тип источника: Журналы
Годы охвата с 2020
inLibrary
Google Scholar
Выпуск:
CC BY f
541-556
66

Скачивания

Данные скачивания пока недоступны.
Поделиться
Одилов J., & Эминов R. (2025). Искусственный интеллект в системах индивидуализации лечения и мониторинга пациентов в здравоохранении. in Library, 1(2), 541–556. извлечено от https://inlibrary.uz/index.php/archive/article/view/99501
Crossref
Сrossref
Scopus
Scopus

Аннотация

В данной статье рассматривается трансформационное влияние искусственного интеллекта (ИИ) на здравоохранение, с акцентом на индивидуализацию лечения и системы мониторинга пациентов. Технологии ИИ, включая цифровые двойники, машинное обучение и устройства, интегрированные с Интернетом вещей, обеспечивают персонализированные планы лечения и мониторинг здоровья в реальном времени, улучшая результаты для пациентов и снижая затраты. Исследование подчеркивает роль ИИ в прецизионной медицине, особенно в онкологии, и его способность расширять возможности пациентов через индивидуализированные вмешательства. Однако такие проблемы, как конфиденциальность данных, алгоритмическая предвзятость и технические ограничения, должны быть решены для обеспечения этичного и справедливого внедрения ИИ в здравоохранение.


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

MAY

ANDIJON,2025

546

ARTIFICIAL INTELLIGENCE IN TREATMENT CUSTOMIZATION AND PATIENT

MONITORING SYSTEMS IN HEALTH SYSTEMS

Odilov Jamshidbek Akmaljon ugli

Department of Biomedical Engineering, Biophysics and Information Technologies, FMIOPH,

Fergana, Uzbekistan

jamshidbekodilov29@gmail.com

Eminov Ravshanjon Ikromjon ugli

Department of Faculty and hospital surgery, FMIOPH, Fergana, Uzbekistan

Abstract:

This article examines the transformative impact of Artificial Intelligence (AI) in

healthcare, focusing on treatment customization and patient monitoring systems. AI

technologies, including digital twins, machine learning, and IoT-integrated devices, enable

personalized treatment plans and real-time health monitoring, enhancing patient outcomes and

reducing costs. The study emphasizes AI's role in precision medicine, particularly in oncology,

and its ability to empower patients through tailored interventions. However, challenges such as

data privacy, algorithmic bias, and technical limitations must be addressed to ensure ethical and

equitable AI implementation in healthcare.

Keywords:

artificial intelligence, precision medicine, patient monitoring, digital twins

Аннотация:

В данной статье рассматривается трансформационное влияние

искусственного интеллекта (ИИ) на здравоохранение, с акцентом на индивидуализацию

лечения и системы мониторинга пациентов. Технологии ИИ, включая цифровые

двойники, машинное обучение и устройства, интегрированные с Интернетом вещей,

обеспечивают персонализированные планы лечения и мониторинг здоровья в реальном

времени, улучшая результаты для пациентов и снижая затраты. Исследование

подчеркивает роль ИИ в прецизионной медицине, особенно в онкологии, и его

способность расширять возможности пациентов через индивидуализированные

вмешательства. Однако такие проблемы, как конфиденциальность данных,

алгоритмическая предвзятость и технические ограничения, должны быть решены для

обеспечения этичного и справедливого внедрения ИИ в здравоохранение.

Ключевые слова:

искусственный интеллект, прецизионная медицина, мониторинг

пациентов, цифровые двойники

Annotatsiya:

Ushbu maqola sun'iy intellektning (SI) sog‘liqni saqlash sohasidagi

o‘zgartiruvchi ta’sirini o‘rganadi, bunda davolashni individuallashtirish va bemorlarni kuzatish

tizimlariga e’tibor qaratiladi. Raqamli egizaklar, mashinaviy o‘qitish va narsalar interneti bilan

integratsiyalashgan qurilmalar kabi SI texnologiyalari shaxsiy davolash rejalarini tuzish va real

vaqtda salomatlikni kuzatish imkonini beradi, bu esa bemorlar natijalarini yaxshilaydi va

xarajatlarni kamaytiradi. Tadqiqot SI ning aniq tibbiyotdagi, xususan, onkologiyadagi rolini va

bemorlarni individual yondashuvlar orqali qo‘llab-quvvatlash qobiliyatini ta’kidlaydi. Biroq,

ma’lumotlar maxfiyligi, algoritmik noxolislik va texnik cheklovlar kabi muammolar SI ni

sog‘liqni saqlashda axloqiy va adolatli joriy etishni ta’minlash uchun hal qilinishi kerak.

Kalit so‘zlar:

sun'iy intellekt, aniq tibbiyot, bemorlarni kuzatish, raqamli egizaklar


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

MAY

ANDIJON,2025

547

Introduction

Artificial Intelligence (AI) is significantly transforming healthcare by enhancing treatment

customization and patient monitoring systems, leading to improved patient outcomes and more

efficient healthcare delivery. AI's integration into patient monitoring systems allows for real-

time tracking and analysis of health data, which is crucial for timely interventions and

improved patient safety. Techniques such as deep learning and machine learning are employed

to enhance the accuracy and responsiveness of these systems, both in hospital and home

settings, despite existing limitations and challenges in technology implementation[1]. AI's role

in personalized medicine is particularly noteworthy, as it enables the tailoring of treatments to

individual patient profiles by analyzing genetic, environmental, and lifestyle factors. This

approach not only improves treatment efficacy but also minimizes adverse effects, as AI-driven

algorithms can predict treatment responses and optimize therapy selection[6]. Furthermore, AI-

powered predictive analytics and decision support systems facilitate early disease detection and

proactive healthcare interventions by identifying patterns and risk factors, thus contributing to

cost-effective healthcare and reduced hospital readmissions[5] [8]. The integration of AI with

the Internet of Things (IoT) further enhances patient monitoring through continuous health data

transmission from wearables and smart medical devices, enabling remote monitoring and

reducing the need for hospital admissions[3]. Despite the promising advancements, challenges

such as data privacy, algorithmic bias, and the need for regulatory frameworks remain critical

considerations for the responsible deployment of AI in healthcare[4] [7]. Overall, AI's ability to

analyze complex datasets and provide actionable insights is revolutionizing patient care,

making healthcare more personalized, proactive, and efficient[10].

AI in Treatment Customization

1.1 Digital Twins for Personalized Care

AI-powered digital twins, such as Patient Medical Digital Twins (PMDTs), are emerging as a

groundbreaking tool for personalized care. These digital replicas simulate patient-specific

health scenarios, allowing healthcare providers to predict treatment outcomes and optimize

drug dosages [1]. By integrating data from various sources, including genetic, biometric, and

cognitive information, PMDTs create a comprehensive digital footprint of a patient. This

enables clinicians to run simulations and implement preventive interventions, shifting the

paradigm from reactive to proactive care [1].

1.2 AI and Machine Learning in Precision Medicine

The application of advanced AI and machine learning (ML) algorithms has been instrumental

in developing precision-based treatment plans. These algorithms analyze complex medical data

to identify patterns that traditional methods might miss, enabling tailored interventions for

patients with chronic and multi-faceted conditions [2] [3]. For instance, AI models can predict

treatment responses and stratify patients for targeted therapies, enhancing the efficacy of care

while minimizing adverse effects [2] [3].

1.3 AI-Driven Frameworks for Cancer Treatment

In oncology, AI-driven frameworks are being used to customize cancer treatment plans by

analyzing multi-omics data, electronic health records (EHRs), and empirical evidence.

Techniques such as Random Forests, Support Vector Machines, and Convolutional Neural

Networks (CNNs) are employed to predict the best course of treatment for each patient [4].


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

MAY

ANDIJON,2025

548

Additionally, Generative Adversarial Networks (GANs) are used to create synthetic data,

improving model resilience and identifying biomarkers for therapy response [4].

1.4 Empowering Patients with Personalized Medicine

AI-driven personalized medicine is empowering patients by adapting therapeutic strategies to

individual characteristics, such as genetic, environmental, and lifestyle factors. This approach

maximizes treatment efficacy while reducing side effects, particularly in chronic disease

management [5]. Patients are no longer passive recipients of care but active participants, armed

with personalized insights for informed decision-making [5].

AI in Patient Monitoring Systems

2.1 Remote Patient Monitoring with AI

AI-powered remote patient monitoring systems are transforming healthcare by enabling

continuous, real-time tracking of patients' vital signs and health conditions. These systems

leverage wearable devices, IoT sensors, and AI algorithms to detect early signs of

abnormalities, facilitating timely interventions [6] [9] [10]. For example, AI algorithms can

predict health risks such as heart attacks or diabetic crises, reducing the need for hospital

readmissions [10].

2.2 Digital Twin Technology for Real-Time Monitoring

The integration of AI with digital twin technology is revolutionizing remote patient monitoring.

Digital twins provide real-time insights into patient health, enabling personalized care and

improving diagnostic accuracy [6]. These systems are particularly beneficial for managing

chronic diseases, as they allow healthcare providers to intervene early and adjust treatment

plans based on real-time data [6].

2.3 AI and IoT for Smart Health Monitoring

The combination of AI and the Internet of Things (IoT) has given rise to smart health

monitoring systems. IoT devices collect physiological data, which is analyzed by AI algorithms

to detect patterns and irregularities, enabling proactive healthcare interventions [11] [15]. This

approach is especially effective in managing chronic diseases, as it allows for early detection of

health issues and personalized treatment plans [11] [15].

2.4 Video-Based Monitoring in Hospital Settings

AI-driven platforms are also being used for continuous and passive patient monitoring in

hospital settings. These systems leverage computer vision to analyze video data, detecting key

indicators such as patient behavior and interactions. For example, AI systems can detect fall

risks or unsupervised movements, enhancing patient safety and care quality [13].

2.5 Service-Oriented Architectures for Health Monitoring

Service-oriented architectures (SOA) integrated with AI are being used to develop

comprehensive health monitoring systems. These systems aggregate data from various sources,

including medical devices, wearables, and EHRs, providing a holistic view of patient

health [14]. AI algorithms analyze this data to detect deviations in health indicators, enabling

early diagnosis and personalized interventions [14].

Table: AI models and their applications in healthcare

AI Model

Application in Treatment

Customization

Application in Patient

Monitoring

Citation


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

MAY

ANDIJON,2025

549

Patient

Medical

Digital Twins

(PMDTs)

Simulate treatment outcomes

and optimize drug dosages

Provide

real-time

monitoring

and

predictive analytics for

patient health

[1]

Random

Forests

Predict treatment responses

and stratify patients for

targeted therapies

Analyze

complex

medical data to identify

patterns

and

predict

health risks

[2] [3] [4]

Generative

Adversarial

Networks

(GANs)

Create synthetic data to

improve model resilience and

identify

biomarkers

for

therapy response

Detect anomalies and

predict potential health

issues

[4]

Convolutional

Neural

Networks

(CNNs)

Analyze medical images and

predict treatment outcomes

Enable

real-time

monitoring of patient

behavior and interactions

[4] [13]

Recurrent

Neural

Networks

(RNNs)

Predict treatment responses

and optimize drug dosages

Monitor

physiological

parameters and detect

early

signs

of

abnormalities

[12] [18]

Long Short-

Term

Memory

(LSTM)

Analyze time-series data for

predictive analytics

Enable

continuous

monitoring of patient

health

and

predict

potential health risks

[7] [12] [18]

Bidirectional

LSTM

(BiLSTM)

Predict treatment outcomes

and optimize drug dosages

Monitor patient health

and detect early signs of

abnormalities

[18]

Benefits of AI in Healthcare

3.1 Improved Patient Outcomes

AI-driven systems have been shown to improve patient outcomes by enabling personalized

treatment plans and proactive monitoring. For instance, AI-powered wearables have been

shown to reduce hospital readmissions and improve disease management for conditions such as

diabetes and hypertension [10].

3.2 Cost Reduction

The adoption of AI in healthcare has led to significant cost savings. By avoiding redundant

tests, optimizing resource utilization, and reducing hospitalizations, AI-driven systems have

been shown to lower operational costs by up to 25% [20].

3.3 Enhanced Diagnostic Accuracy

AI algorithms, particularly those integrated with digital twins, have improved diagnostic

accuracy and enabled early detection of diseases. This has been particularly beneficial in

managing chronic conditions, where early intervention can significantly improve

outcomes [6] [14].

3.4 Patient-Centric Care


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

MAY

ANDIJON,2025

550

AI-driven systems are enabling a shift from reactive to proactive care, with a focus on patient-

centric interventions. Patients are empowered with personalized insights, enabling them to take

an active role in their health management [5] [9].

Challenges and Ethical Considerations

4.1 Data Privacy and Security

The integration of AI in healthcare raises significant concerns about data privacy and security.

Ensuring the protection of patient data is critical to building trust in AI-driven

systems [15] [20].

4.2 Ethical Considerations

The use of AI in healthcare also raises ethical concerns, particularly related to bias in

algorithms and the potential for unequal access to AI-driven care. Addressing these issues is

essential to ensuring equitable and ethical use of AI in healthcare [20].

4.3 Technical and Logistical Hurdles

The implementation of AI-driven systems requires overcoming technical and logistical

challenges, such as data integration, interoperability, and scalability. These challenges must be

addressed to realize the full potential of AI in healthcare [2] [3].

Future Directions

5.1 Advancements in AI Algorithms

The development of more advanced AI algorithms, such as generative AI and deep learning

models, is expected to further enhance the capabilities of AI-driven systems in healthcare.

These advancements will enable more accurate predictions, improved diagnostic capabilities,

and personalized interventions [17].

5.2 Integration with Wearable Devices

The integration of AI with wearable devices is expected to play a key role in the future of

patient monitoring. These devices will enable continuous, real-time tracking of patient health,

facilitating early detection of health issues and personalized care [10] [11].

5.3 Patient-Centric Care Models

The future of healthcare is expected to be increasingly patient-centric, with AI-driven systems

enabling personalized interventions and proactive care. This shift will empower patients to take

a more active role in their health management, improving outcomes and quality of life [5] [9].

Conclusion

AI is revolutionizing healthcare by enabling personalized treatment plans and enhancing patient

monitoring systems. From digital twins to AI-powered wearables, these technologies are

transforming the way care is delivered, improving patient outcomes, and reducing costs.

However, realizing the full potential of AI in healthcare requires addressing challenges related

to data privacy, ethical considerations, and technical hurdles. As AI continues to evolve, it is

poised to play an increasingly critical role in shaping the future of healthcare.

References:

1.

Abjalilovna, M. S. (2024). GIPOKSIYA VA GIPOKSIYAGA MOSLASHUV

MEXANIZMLARI. THE THEORY OF RECENT SCIENTIFIC RESEARCH IN THE FIELD

OF PEDAGOGY, 2(21), 329-332.

2.

Eminov, R. I., & Tuychibekov, S. M. MORTALITY RISK OF NSAID USE IN

CHILDREN.


background image

ILM FAN YANGILIKLARI KONFERENSIYASI

MAY

ANDIJON,2025

551

3.

Gochadze, A. L., & Irgasheva, M. D. (2016). Using clinical interactive games on

lessons in medical colleges. Актуальные проблемы гуманитарных и естественных наук, (5-

6), 26-28.

4.

Ravshan o'g'li, K. S., & Mavlonjon o’g’li, Q. J. (2024). Review Of The Use Of

Tomosynthesis For The Diagnosis Of Injuries And Diseases Of The Musculoskeletal

System. Frontiers in Health Informatics, 13(6).

5.

Sadriddin, P., Akhtam, R., Mahbuba, A., Sherzod, K., Gulnora, R., Orif, N., ... &

Dilshod, D. (2025). Dual-Ligand Liposomes Nano carrier with Cisplatin and Anti-PD-L1

siRNA in Head and Neck Squamous Cell Carcinoma: A Review. Journal of

Nanostructures, 15(1), 292-300.

6.

USING PRP IN THE TREATMENT OF ORTHOPEDIC DISEASES. (2025).

International Journal of Medical Sciences, 5(05), 209-211.

https://doi.org/10.55640/

7.

Xamedxuja o‘g‘li, N. E. (2023). Pathogenetic Mechanisms of the Development of

Severe Functional Disorders in Injuries of the Calf-Acorn Joint. SCIENTIFIC JOURNAL OF

APPLIED

AND

MEDICAL

SCIENCES,

2(11),

427–429.

Retrieved

from

https://sciencebox.uz/index.php/amaltibbiyot/article/view/8628

8.

Xamedxuja o‘g‘li, N. E. IMPROVEMENT OF TREATMENT METHODS FOR

CALF-ASIK JOINT INJURIES.

9.

Иргашева,

М.

(2025).

Симуляция

в

клиническом

сестринском

образовании. Общество и инновации, 6(2/S), 107-112.

10.

Мирзажонова, C. A., Расулова, М. Т., & Ганижонов, П. Х. ИЗМЕНЕНИЯ

ПРОЦЕССА ГИПОКСИИ ОРГАНИЗМА ПРИ ГЕМИЧЕСКОЙ АНЕМИИ.

11.

Мухаммадиев, С., & Эминов, Р. (2023). Гемиэпифизиодез в детской ортопедии как

метод лечения деформаций коленных суставов. in Library, 4(4), 225-227.

12.

Мухаммадиев, С., & Эминов, Р. (2024). Системы оценки травм. in Library, 1(4),

214-219.

13.

Тйчибеков, Ш., & Нишонов, Е. (2025). Клинические рекомендации, основанные

на доказательствах, по тупой травме живота у детей. in Library, 1(2), 411-414.

14.

Туйчибеков, Ш. (2023). Риск смертности при применении НПВС у детей. in

Library, 1(1), 67-71.

15.

Туйчибеков, Ш., & Нишонов, Е. (2024). Морфологические основы практических

рекомендаций по конфокальным морфометрическим показателям повреждений

хвоста. in Library, 2(2), 14-17.

16.

Тўхтаев, Ж. Т., Ботиров, Н. Т., & Нишонов, Э. Х. (2023). Болдир-ошиқ бўғими

шикастланишларини ташхислаш ва даволаш. Zamonaviy tibbiyot jurnali (Журнал

современной медицины), 1(1), 27-39.

17.

Хомидчонова,

Ш.

Х.

(2022).

АНТИОКСИДАНТНАЯ

АКТИВНОСТЬ

ОТДЕЛЬНЫХ КОМПОНЕНТОВ БАД “Buyrak-shifo”. Scientific Impulse, 1(4), 941-948.

18.

Хомидчонова, Ш. Х., & Абдулхакимов, А. Р. (2023). Морфофункциональные

аспекты влияния стресса на ткани прямой кишки у крыс. yangi o ‘zbekiston, yangi

tadqiqotlar jurnali, 1(1), 156-157.

19.

Хомидчонова, Ш. Х., & Мирзажонова, С. А. (2023). Основные Методы

Определения Состава Тела. Miasto Przyszłości, 36, 181-185.

Библиографические ссылки

Abjalilovna, M. S. (2024). GIPOKSIYA VA GIPOKSIYAGA MOSLASHUV MEXANIZMLARI. THE THEORY OF RECENT SCIENTIFIC RESEARCH IN THE FIELD OF PEDAGOGY, 2(21), 329-332.

Eminov, R. I., & Tuychibekov, S. M. MORTALITY RISK OF NSAID USE IN

Gochadze, A. L., & Irgasheva, M. D. (2016). Using clinical interactive games on lessons in medical colleges. Актуальные проблемы гуманитарных и естественных наук, (5-6), 26-28.

Ravshan o'g'li, K. S., & Mavlonjon o’g’li, Q. J. (2024). Review Of The Use Of Tomosynthesis For The Diagnosis Of Injuries And Diseases Of The Musculoskeletal System. Frontiers in Health Informatics, 13(6).

Sadriddin, P., Akhtam, R., Mahbuba, A., Sherzod, K., Gulnora, R., Orif, N., ... & Dilshod, D. (2025). Dual-Ligand Liposomes Nano carrier with Cisplatin and Anti-PD-L1 siRNA in Head and Neck Squamous Cell Carcinoma: A Review. Journal of Nanostructures, 15(1), 292-300.

USING PRP IN THE TREATMENT OF ORTHOPEDIC DISEASES. (2025). International Journal of Medical Sciences, 5(05), 209-211. https://doi.org/10.55640/

Xamedxuja o‘g‘li, N. E. (2023). Pathogenetic Mechanisms of the Development of Severe Functional Disorders in Injuries of the Calf-Acorn Joint. SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES, 2(11), 427–429. Retrieved from https://sciencebox.uz/index.php/amaltibbiyot/article/view/8628

Xamedxuja o‘g‘li, N. E. IMPROVEMENT OF TREATMENT METHODS FOR CALF-ASIK JOINT INJURIES.

Иргашева, М. (2025). Симуляция в клиническом сестринском образовании. Общество и инновации, 6(2/S), 107-112.

Мирзажонова, C. A., Расулова, М. Т., & Ганижонов, П. Х. ИЗМЕНЕНИЯ ПРОЦЕССА ГИПОКСИИ ОРГАНИЗМА ПРИ ГЕМИЧЕСКОЙ АНЕМИИ.

Мухаммадиев, С., & Эминов, Р. (2023). Гемиэпифизиодез в детской ортопедии как метод лечения деформаций коленных суставов. in Library, 4(4), 225-227.

Мухаммадиев, С., & Эминов, Р. (2024). Системы оценки травм. in Library, 1(4), 214-219.

Тйчибеков, Ш., & Нишонов, Е. (2025). Клинические рекомендации, основанные на доказательствах, по тупой травме живота у детей. in Library, 1(2), 411-414.

Туйчибеков, Ш. (2023). Риск смертности при применении НПВС у детей. in Library, 1(1), 67-71.

Туйчибеков, Ш., & Нишонов, Е. (2024). Морфологические основы практических рекомендаций по конфокальным морфометрическим показателям повреждений хвоста. in Library, 2(2), 14-17.

Тўхтаев, Ж. Т., Ботиров, Н. Т., & Нишонов, Э. Х. (2023). Болдир-ошиқ бўғими шикастланишларини ташхислаш ва даволаш. Zamonaviy tibbiyot jurnali (Журнал современной медицины), 1(1), 27-39.

Хомидчонова, Ш. Х. (2022). АНТИОКСИДАНТНАЯ АКТИВНОСТЬ ОТДЕЛЬНЫХ КОМПОНЕНТОВ БАД “Buyrak-shifo”. Scientific Impulse, 1(4), 941-948.

Хомидчонова, Ш. Х., & Абдулхакимов, А. Р. (2023). Морфофункциональные аспекты влияния стресса на ткани прямой кишки у крыс. yangi o ‘zbekiston, yangi tadqiqotlar jurnali, 1(1), 156-157.

Хомидчонова, Ш. Х., & Мирзажонова, С. А. (2023). Основные Методы Определения Состава Тела. Miasto Przyszłości, 36, 181-185.