SOLUTION OF BIOLOGICAL POPULATION TASK BY TAKING INTO ACCOUNT THE REACTION-DIFFUSION

HAC
Google Scholar
To share
Melikuziev, R., & Melikoziev, M. . (2024). SOLUTION OF BIOLOGICAL POPULATION TASK BY TAKING INTO ACCOUNT THE REACTION-DIFFUSION. Modern Science and Research, 3(1), 1–5. Retrieved from https://inlibrary.uz/index.php/science-research/article/view/28232
Crossref
Сrossref
Scopus
Scopus

Abstract

The work examines the solution of problems of a biological population taking into account reaction-diffusion. This research work uses a method for analyzing the qualitative characteristics of solutions to a system of differential equations in order to solve the problem of choosing the optimal initial approximation for effective iterative convergence to the solution of the Cauchy problem. The effectiveness of this method depends on the numerical parameters and initial data of the system. Researchers use the asymptotic representation of the solution as an initial approximation, which allows them to conduct a numerical experiment and visualize the evolution of the system depending on the parameter values. The results of the study show that the proposed nonlinear mathematical model successfully reflects the process of competing biological populations with double nonlinearity. Analysis of the obtained solution estimates confirms the preservation of localization in a finite range and the size of the source in the system. Thus, this work provides a complete, comprehensive picture of the process and can be a valuable contribution to the study of two-component competing systems in biological populations.


background image

SOLUTION OF BIOLOGICAL POPULATION TASK BY TAKING INTO

ACCOUNT THE REACTION-DIFFUSION

Rustam Sh. Melikuziev

1

, M.Sh. Melikoziev

2

1

University of Tashkent for Applied Sciences, Tashkent, Uzbekistan

2

Tashkent University of Information Technologies named after Muhammad al-Khorazmi

(rustam.timur4323@gmail.com, melikuziyevmurodbek7@gmail.com)

https://doi.org/10.5281/zenodo.10471370

Keywords:

Cross-diffusion, biological population, double nonlinearity, variable density, model, algorithm, Cauchy problem.

Abstract:

The work examines the solution of problems of a biological population taking into account reaction-diffusion. This research
work uses a method for analyzing the qualitative characteristics of solutions to a system of differential equations in order to
solve the problem of choosing the optimal initial approximation for effective iterative convergence to the solution of the
Cauchy problem. The effectiveness of this method depends on the numerical parameters and initial data of the system.
Researchers use the asymptotic representation of the solution as an initial approximation, which allows them to conduct a
numerical experiment and visualize the evolution of the system depending on the parameter values. The results of the study
show that the proposed nonlinear mathematical model successfully reflects the process of competing biological populations
with double nonlinearity. Analysis of the obtained solution estimates confirms the preservation of localization in a finite
range and the size of the source in the system. Thus, this work provides a complete, comprehensive picture of the process
and can be a valuable contribution to the study of two-component competing systems in biological populations.


1 INTRODUCTION

Research on the development and application of
nonlinear mathematical models is carried out in many
developed countries, including the USA, Japan, Spain,
Germany, Great Britain, France, the Russian Federation,
Uzbekistan and many others. Nonlinear mathematical models
play an important role in various fields of science and
industry, such as physics, biology, economics, engineering,
artificial intelligence, climatology and others. These models
are used to analyze complex systems that cannot always be
described by linear equations. For example, in medical
research, nonlinear models can be used to study disease
dynamics, in economics to analyze market trends and forecast
economic development, and in climatology to model changes
in climate. Research in this area may include the development
of new methods and algorithms for analyzing and solving
nonlinear mathematical models, as well as their application to
specific applied problems. It is important to note that with
increasing computing power and data availability, interest in
nonlinear models continues to grow, and they play a key role
in modern research and development [1-5].
Mathematical modeling of nonlinear processes is of
fundamental importance in modern science, and this is also
true in biology and ecology, where it is important to
understand and predict the complex interactions between
biological populations and their environment. Modeling
biological populations using nonlinear models can help in the
study of population dynamics and in the development of
natural resource management and conservation strategies. For
example, nonlinear models can be useful for analyzing the
effects of climate change on the distribution and behavior of

species, studying predator-prey interactions or competition
between species in ecosystems. Cross-diffusion, or
interactions between different species or subpopulations in
biological systems, is one of the key characteristics of
nonlinear biological models. Research into this phenomenon
can be important for understanding ecological processes,
including the spread of disease, species migration, and
population dynamics. The development of methods and
algorithms for solving nonlinear problems in biological
populations is an important area of research. These methods
may include numerical algorithms for solving systems of
differential equations, optimizing model parameters, and
analyzing the sensitivity of models to changes in parameters.
Given the complexity and diversity of biological systems,
further development of nonlinear models and methods for
their solution will be important for science and practical
applications in biology and ecology [6,7].
As a result of research on numerical modeling of cross-
diffusion systems carried out around the world, a number of
scientific results have been obtained and represent important
contributions to the field of mathematical modeling and
understanding of complex processes in nature. The proof of
the Turing bifurcation in a one-dimensional stationary model
is an important result in the theory of nonlinear diffusion
systems. This type of bifurcation can lead to the formation of
structural patterns in a system, such as the formation of
patterns and structures, and has wide applications in biology
and chemistry. The study of the conditions for the existence
and uniqueness of solutions in diffusion systems is of great
importance for substantiating the mathematical correctness of
models and their applicability in real problems. Studying the
stability of stationary solutions and diffusion instability helps


background image

determine which structures and solutions can be stable in the
long term. The Maxwell-Stephan system of equations
describes diffusion processes in multicomponent mixtures. Its
study is important for understanding the transport of
molecules in gases and liquids and has applications in
chemical engineering and physics. Studying the correctness
and existence of both weak and strong solutions helps to
understand the qualitative properties of models and their
ability to predict the behavior of a system. The Shigezada-
Kawasaki-Teramoto model is an example of a nonlinear
diffusion system that can have interesting dynamic properties.
Her research could lead to a better understanding of the
dynamics in complex physical systems. All these results show
how important it is to study mathematical models and their
application in various fields of science. They can be useful for
developing new control strategies and solving complex
problems associated with diffusion and interaction in various
systems [4–8].
The purpose of the study is to analyze the qualitative
properties of nonlinear mathematical models with double
nonlinearity and develop numerical schemes for describing
multicomponent cross-diffusion systems of a biological
population, which is an important direction in mathematical
modeling and has practical significance in biology and
ecology. Studying the qualitative properties of mathematical
models allows us to understand what types of dynamics can
arise in a system. This is important for determining the
stability of populations, the possibility of the existence of
stable stationary solutions and other key characteristics of the
system. Analysis of dual nonlinearity models can be complex,
but can reflect more realistic interactions between different
species or components in a biological system. This may
include competition, predatory relationships, and other types
of interactions. The study of multicomponent systems is
important for understanding complex ecosystems and
biological communities. This may involve the interaction of
several types of populations and analysis of the influence of
some species on others. The development of numerical
schemes and methods for solving complex mathematical
models makes it possible to conduct numerical experiments
and analyze various scenarios of population dynamics under
different conditions [9-14].

The diffusion equation can be used to describe the

distribution of various substances, both in biological systems
(for example, the diffusion of chemicals in tissues or the
migration of populations) and in physical systems (for
example, the diffusion of heat in materials or the diffusion of
matter in liquids). This property of the diffusion equation
allows it to be used in various fields of science and
engineering. Thus, diffusion equations represent a powerful
tool for describing various processes and allow scientists to
transfer knowledge and methods from one field of science to
another, which contributes to a deeper understanding of
nature and the development of scientific and engineering
solutions [15-17].
The numerical parameters that appear in these equations
can have different physical meanings and depend on the
specific conditions of the problem. For example, in the
thermal conductivity equation, the parameters may represent
the thermal conductivity of the material and the initial
temperature, while in the equation for species distribution, the

parameters may correspond to the diffusion rate and the initial
concentration of the species [18-20].

2.Methods

In this paper we investigate the properties of solutions of the
problem of a biological population of the Fisher-Kolmogorov
type in the case of variable density. The main method of
investigation is the self-similar approach. Consider in the
field

Q={(t,x): 0< t <

, x

𝑅

𝑁

}

parabolic system of two

quasilinear reaction-diffusion equations which describes the
process of a biological population of the Kolmogorov-Fisher
type in a nonlinear two-component medium,

{

𝜕𝑢

1

𝜕𝑡

= 𝛻(𝐷

1

𝑢

2

𝑚

1

−1

|𝛻𝑢

1

𝑘

|

𝑝−2

𝛻𝑢

1

) + 𝑘

1

𝑢

1

(1 − 𝑢

1

𝛽

1

),

𝜕𝑢

2

𝜕𝑡

= 𝛻(𝐷

2

𝑢

1

𝑚

2

−1

|𝛻𝑢

1

𝑘

|

𝑝−2

𝛻𝑢

2

) + 𝑘

2

𝑢

2

(1 − 𝑢

2

𝛽

2

),

(1)

𝑢

1

|𝑡 = 0 = 𝑢

10

(𝑥)

,

𝑢

2

|𝑡 = 0 = 𝑢

20

(𝑥)

(2)

the coefficients of mutual diffusion are respectively

equal

𝐷

1

𝑢

2

𝑚

1

−1

|𝛻𝑢

1

𝑘

|

𝑝−2

𝛻𝑢

1

,

𝐷

2

𝑢

1

𝑚

2

−1

|𝛻𝑢

2

𝑘

|

𝑝−2

𝛻𝑢

2

.

Numeric parameters

𝑚

1

, 𝑚

2

, 𝑛, 𝑝, 𝛽

1

, 𝛽

2

,

D

1

,

𝐷

2

- positive real

numbers,

𝛻(. ) − 𝑔𝑟𝑎𝑑(. )

𝑥

,

𝛽

1

, 𝛽

2

≥ 1

,

𝑥 ∈ 𝑅

𝑁

𝑙 > 0

;

𝑢

1

= 𝑢

1

(𝑡, 𝑥) ≥ 0

,

𝑢

2

= 𝑢

2

(𝑡, 𝑥) ≥ 0

- sought solutions.

We will study the properties of solutions of problem (1),
(2) on the basis of a self-similar analysis of solutions of the
system of equations constructed by the method of nonlinear
splitting and standard equations.
We note that the substitution in (1)

𝑢

1

(𝑡, 𝑥) = 𝑒

−𝑘

1

𝑡

𝑣

1

(𝜏(𝑡), 𝑥)

,

𝑢

2

(𝑡, 𝑥) = 𝑒

−𝑘

2

𝑡

𝑣

2

(𝜏(𝑡), 𝑥)

will bring it to mind:

{

𝜕𝑣

1

𝜕𝜏

= 𝛻(𝐷

1

𝑣

2

𝑚

1

−1

|𝛻𝑣

1

𝑘

|

𝑝−2

𝛻𝑣

1

) + 𝑎

1

(𝑡)𝑣

1

𝛽

1

+1

,

𝜕𝑣

2

𝜕𝜏

= 𝛻(𝐷

2

𝑣

1

𝑚

2

−1

|𝛻𝑣

2

𝑘

|

𝑝−2

𝛻𝑣

2

) + 𝑎

2

(𝑡)𝑣

2

𝛽

2

+1

,

(3)

where

𝑎

1

= 𝑘

1

((𝑝 − 2)𝑘𝑘

1

+ (𝑚

1

− 1)𝑘

2

)

𝑏

1

,

𝑏

1

=

(𝛽

1

−(𝑝−2)𝑘)𝑘

1

−(𝑚

1

−1)𝑘

2

(𝑝−2)𝑘𝑘

1

+(𝑚

1

−1)𝑘

2

,

𝑎

2

= 𝑘

2

((𝑚

2

− 1)𝑘

1

+ (𝑝 − 2)𝑘𝑘

2

)

𝑏

2

,

𝑏

2

=

(𝛽

2

−(𝑝−2)𝑘)𝑘

2

−(𝑚

2

−1)𝑘

1

(𝑚

2

−1)𝑘

1

+(𝑝−2)𝑘𝑘

2

.

If

𝑏

𝑖

= 0

,

and

𝑎

𝑖

(𝑡) = 𝑐𝑜𝑛𝑠𝑡

,

𝑖 = 1,2

, then the system has the

form:

{

𝜕𝑣

1

𝜕𝜏

= 𝛻(𝐷

1

𝑣

2

𝑚

1

−1

|𝛻𝑣

1

𝑘

|

𝑝−2

𝛻𝑣

1

) + 𝑎

1

𝑣

1

𝛽

1

+1

,

𝜕𝑣

2

𝜕𝜏

= 𝛻(𝐷

2

𝑣

1

𝑚

2

−1

|𝛻𝑣

2

𝑘

|

𝑝−2

𝛻𝑣

2

) + 𝑎

2

𝑣

2

𝛽

2

+1

,

(4)

𝑣̄

2

(𝜏) = (𝜏(𝑡))

−𝛾

1

, 𝛾

1

=

𝑏

1

+1

𝛽

1

,

𝑣̄

2

(𝜏) = (𝜏(𝑡))

−𝛾

2

, 𝛾

2

=

𝑏

2

+1

𝛽

2

,

Then the solution of system (3) is sought in the form

𝑣

1

(𝑡, 𝑥) = 𝑣̄

1

(𝜏)𝑤

1

(𝜏(𝑡), 𝑥),

𝑣

2

(𝑡, 𝑥) = 𝑣̄

2

(𝜏)𝑤

2

(𝜏(𝑡), 𝑥),

(5)

Then we obtain a system of equations:

{

𝜕𝑤

1

𝜕𝜏

= 𝛻(𝐷

1

𝑤

2

𝑚

1

−1

|𝛻𝑤

1

𝑘

|

𝑝−2

𝛻𝑤

1

) + 𝜓

1

(𝑤

1

− 𝑤

1

𝛽

1

+1

),

𝜕𝑤

2

𝜕𝜏

= 𝛻(𝐷

2

𝑤

1

𝑚

2

−1

|𝛻𝑤

2

𝑘

|

𝑝−2

𝛻𝑤

2

) + 𝜓

2

(𝑤

2

− 𝑤

2

𝛽

2

+1

),

(6)

If

1 − [𝛾

1

(𝑝 − 2)𝑘 + 𝛾

2

(𝑚

1

− 1) = 0

,

self-similar solution of

system (9) has the form

𝑤

𝑖

(𝜏(𝑡), 𝑥) = 𝑓

𝑖

(𝜉), 𝑖 = 1,2, 𝜉 = 𝑥/[𝜏(𝑡)]

1/𝑝

. (7)

Then substituting (7) in (6) with respect to

𝑓

𝑖

(𝜉)

we

obtain a system of self-similar equations

{

𝜉

1−𝑁 𝑑

𝑑𝜉

(𝜉

𝑁−1

𝑓

2

𝑚

1

−1

|

𝑑𝑓

1

𝑘

𝑑𝜉

|

𝑝−2

𝑑𝑓

1

𝑑𝜉

) +

𝜉

𝑝

𝑑𝑓

1

𝑑𝜉

+ 𝜇

1

𝑓

1

(1 − 𝑓

1

𝛽

1

) = 0,

𝜉

1−𝑁 𝑑

𝑑𝜉

(𝜉

𝑁−1

𝑓

1

𝑚

2

−1

|

𝑑𝑓

2

𝑘

𝑑𝜉

|

𝑝−2

𝑑𝑓

2

𝑑𝜉

) +

𝜉

𝑝

𝑑𝑓

2

𝑑𝜉

+ 𝜇

2

𝑓

2

(1 − 𝑓

2

𝛽

2

) = 0.

(8)

where

𝜇

1

=

1

(1−[𝛾

1

𝑘(𝑝−2)+𝛾

2

(𝑚

1

−1)])

and

𝜇

2

=

1

(1−[𝛾

2

𝑘(𝑝−2)+𝛾

1

(𝑚

2

−1)])

.

The system (8) has an approximate solution of the form

𝑓̄

1

= 𝐴(𝑎 − 𝜉

𝛾

)

𝑛

1

, 𝛾 = 𝑝/(𝑝 − 1)

,

𝑓̄

2

= 𝐵(𝑎 − 𝜉

𝛾

)

𝑛

2

,


background image

where А and В constant and

𝑛

1

=

(𝑘(𝑝−2)+1)(𝑘(𝑝−2)−(𝑚

1

+1))

𝑘

2

(𝑝−2)

2

−(𝑚

1

−1)(𝑚

2

−1)

,

𝑛

2

=

(𝑘(𝑝−2)+1)(𝑘(𝑝−2)−(𝑚

2

+1))

𝑘

2

(𝑝−2)

2

−(𝑚

1

−1)(𝑚

2

−1)

.

Let us construct an upper solution for system (1).

Note that the functions

𝑓̄

1

(𝜉), 𝑓̄

2

(𝜉)

have properties

𝑓̄

2

𝑚

1

−1

|

𝑑𝑓̄

1

𝑘

𝑑𝜉

|

𝑝−2

𝑑𝑓̄

1

𝑑𝜉

− 𝐴

𝑘(𝑝−2)+1

𝐵

𝑚

1

−1

(𝛾𝑛

1

𝑘)

(𝑝−2)

𝛾𝑛

1

𝜉𝑓̄

1

∈ 𝐶(0,

)

𝑓̄

1

𝑚

2

−1

|

𝑑𝑓̄

2

𝑘

𝑑𝜉

|

𝑝−2

𝑑𝑓̄

2

𝑑𝜉

− 𝐴

𝑚

2

−1

𝐵

𝑘(𝑝−2)+1

(𝛾𝑛

2

𝑘)

(𝑝−2)

𝛾𝑛

2

𝜉𝑓̄

2

∈ 𝐶(0,

)

due to the fact that

(𝛾 − 1)(𝑝 − 1) = 1,

𝛾 =

𝑝

𝑝−1

,

and

Let us choose A and B from the system of nonlinear algebraic
equations

Then functions

𝑓̄

1

, 𝑓̄

2

are Zeldovich-Kompaneyets type

solutions for system (3.1) and in the region

|𝜉| < (𝑎)

(𝑝−1)/𝑝

,

which satisfy the system of equations

{

𝜉

1−𝑁 𝑑

𝑑𝜉

(𝜉

𝑁−1

𝑓̄

2

𝑚

1

−1

|

𝑑𝑓̄

1

𝑘

𝑑𝜉

|

𝑝−2

𝑑𝑓̄

1

𝑑𝜉

) +

𝜉

𝑝

𝑑𝑓̄

1

𝑑𝜉

+

𝑁

𝑝

𝑓̄

1

= 0

𝜉

1−𝑁 𝑑

𝑑𝜉

(𝜉

𝑁−1

𝑓̄

1

𝑚

2

−1

|

𝑑𝑓̄

2

𝑘

𝑑𝜉

|

𝑝−2

𝑑𝑓̄

2

𝑑𝜉

) +

𝜉

𝑝

𝑑𝑓̄

2

𝑑𝜉

+

𝑁

𝑝

𝑓̄

2

= 0

(9)

in classic sence.
Thus,

let

𝑢

𝑖

(0, 𝑥) ≤ 𝑢

𝑖±

(0, 𝑥), 𝑥 ∈ 𝑅.

Then in the domain Q the

following estimate holds for solving system (9):

𝑢

1

(𝑡, 𝑥) ≤ 𝑢

1+

(𝑡, 𝑥) = 𝑒

𝑘

1

𝑡

𝑓̄

1

(𝜉),

𝑢

2

(𝑡, 𝑥) ≤ 𝑢

2+

(𝑡, 𝑥) = 𝑒

𝑘

2

𝑡

𝑓̄

2

(𝜉),

𝜉 = 𝑥/[𝜏(𝑡)]

1/𝑝

.

Here functions

𝑓̄

1

(𝜉), 𝑓̄

2

(𝜉)

и

𝜏(𝑡)

- defined above.

3.Result.

Table 1 looked at fast diffusion. As an initial

approximation we took:

Table 1

Fast diffusion process analysis results.

𝑢

1

(𝑥, 𝑡) = (𝑇 + 𝜏(𝑡))

−𝛾

1

(𝑎 + 𝜉

𝛾

)

𝑛

1

,

𝑢

2

(𝑥, 𝑡) = (𝑇 + 𝜏(𝑡))

−𝛾

2

(𝑎 +

𝜉

𝛾

)

𝑛

2

,

𝛾

1

=

1

𝛽

1

,

𝛾

2

=

1

𝛽

2

,

𝛾 =

𝑝

𝑝−1

,

𝑛

𝑖

=

(𝑝−1)[𝑘(𝑝−2)−(𝑚

𝑖

−1)]

𝑞

,

𝑖 = 1,2

,

𝑞 = 𝑘

2

(𝑝 − 2)

2

− (𝑚

1

− 1)(𝑚

2

− 1)

.

Parameter values must be

𝑛

1

> 0, 𝑛

2

> 0, 𝑞 < 0

,

1 − [𝛾

1

(𝑝 − 2)𝑘 + 𝛾

2

(𝑚

1

− 1)] = 0

:

𝜏(𝑡) = 𝑙𝑛( 𝑡)

.

Table 2.

Speed diffusion process analysis results.

Table 3 looked at slow diffusion. The initial approximation should be:

𝑢

1

(𝑥, 𝑡) = (𝑇 + 𝜏(𝑡))

−𝛾

1

(𝑎 − 𝜉

𝛾

)

+

𝑛

1

,

𝑢

2

(𝑥, 𝑡) = (𝑇 + 𝜏(𝑡))

−𝛾

2

(𝑎 −

𝜉

𝛾

)

+

𝑛

2

,

𝛾

1

=

1

𝛽

1

,

𝛾

2

=

1

𝛽

2

,

𝛾 =

𝑝

𝑝−1

,

𝑛

𝑖

=

(𝑝−1)[𝑘(𝑝−2)−(𝑚

𝑖

−1)]

𝑞

,

𝑖 = 1,2

,

𝑞 =

𝑘

2

(𝑝 − 2)

2

− (𝑚

1

− 1)(𝑚

2

− 1)

.

The parameter values satisfy the inequalities

𝑛

1

> 0, 𝑛

2

> 0, 𝑞 > 0

,

1 − [𝛾

1

(𝑝 − 2)𝑘 + 𝛾

2

(𝑚

1

− 1)] ≠ 0

:

𝜏(𝑡) =

(𝑇+𝜏)

1−[𝛾1(𝑝−2)𝑘+𝛾2(𝑚1−1)]

1−[𝛾

1

(𝑝−2)𝑘+𝛾

2

(𝑚

1

−1)]

.

Table 3.

Slow diffusion

process analysis results.

Значения

параметров

max

1max

2 max

0.5,

1.229,

1.229

t

x

x

=

=

=

max

1max

1max

10,

2.972,

2.972

t

x

x

=

=

=

max

1max

2 max

15,

3.488,

3.488

t

x

x

=

=

=

1

2

4.1,

4.0,

4.4

m

m

p

=

=

=

3

10

eps

=

1

0.822

0

n

=

2

0.779

0

n

=

7.86

0

q

= −

1

2

1,

1

=

=

0.5

k

=

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)

1

2

5.7,

5.4,

3

m

m

p

=

=

=

3

10

eps

=

1

0.291 0

n

=

2

0.24

0

n

=

11.68

0

q

= −

1

2

2,

2

=

=

3

k

=

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)

1

2

3.7,

3.3,

4

m

m

p

=

=

=

3

10

eps

=

1

1.216

0

n

=

2

1.021 0

n

=

6.17

0

q

= −

1

2

2,

0.5

=

=

0.1

k

=

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)


background image

Table 4 shows the slow diffusion results. Initial

approximation receiving

:

Table 4.

Slow diffusion process analysis results.

𝑢

1

(𝑥, 𝑡) = (𝑇 + 𝜏(𝑡))

−𝛾

1

(𝑎 − 𝜉

𝛾

)

+

𝑛

1

,

𝑢

2

(𝑥, 𝑡) = (𝑇 +

𝜏(𝑡))

−𝛾

2

(𝑎 − 𝜉

𝛾

)

+

𝑛

2

,

𝛾

1

=

1

𝛽

1

,

𝛾

2

=

1

𝛽

2

,

𝛾 =

𝑝

𝑝−1

,

𝑛

𝑖

=

(𝑝−1)[𝑘(𝑝−2)−(𝑚

𝑖

−1)]

𝑞

,

𝑖 = 1,2

,

𝑞 = 𝑘

2

(𝑝 − 2)

2

− (𝑚

1

1)(𝑚

2

− 1)

.

The parameter values satisfy the inequalities

𝑛

1

>

0, 𝑛

2

> 0, 𝑞 > 0

.

Here

1 − [𝛾

1

(𝑝 − 2)𝑘 + 𝛾

2

(𝑚

1

− 1)] = 0

:

𝜏(𝑡) = 𝑙𝑛( 𝑡)

.

CONCLUSIONS

4.

Thus, on the basis of the above described

methodology, the qualitative properties of solutions to system

(1) were studied, on its basis the problem of choosing an

initial approximation for the iterative one was solved, leading

to rapid convergence to the solution of the Cauchy problem,

depending on the values of the numerical parameters and

initial data. For this purpose, the asymptotic representations

of the solution we found were used as an initial

approximation. This made it possible to perform a numerical

experiment and visualize the process described by system (1),

depending on the values included in the system of numerical

parameters.

In this paper, based on the method described above, the

qualitative properties of the solutions of the system (1) are

investigated, and on this basis the problem of choosing the

initial approximation for the iterative solution is solved,

leading to rapid convergence to the solution of the Cauchy

problem (1), (2), depending on the value of the numerical

parameters and initial data. For this purpose, the asymptotic

representation of the solution found by us was used as the

initial approximation. This allowed us to perform a numerical

experiment and visualization of the process, described by the

system (1), depending on the values entering into the system

of numerical parameters.

Thus, the proposed nonlinear mathematical model of a

biological population with a double nonlinearity correctly

reflects the process under study. Carrying out the analysis of

the results on the basis of the obtained estimates of the

solutions gives an exhaustive picture of the process in two-

component competing systems of the biological population

with preservation of the localization properties in the final

range and the size of the outbreak. It makes it possible to

estimate the propagation velocity of diffusion waves.

REFERENCES

1.

Aripov M. Method of Reference Equations for Solving

Nonlinear Boundary-Value Problems Tashkent, Fan,

1988, 137 p.

2.

Belotelov N.V, Lobanov A.I Population models with

nonlinear diffusion. // Math modeling. -M .; 1997, No.

12, pp. 43-56.

3.

Lin X. and Wang M. The critical exponent of doubly

singular parabolic equations. // J. Math. Anal. Appl.,

257:1, 2001, pp.170-188.

4.

Гаузе Г.Ф. О процессах уничтожения одного вида
другим в популяциях инфузорий // Зоологический
журнал,1934, т.13, №1.

5.

Shigesada N., Kawasaki K., Biological Invasions:

Theory and Practice (Oxford University Press, Oxford,

1997)

6.

С. П. Курдюмов, Е. С. Куркина, “Спектр
собственных функций автомодельной задачи для
нелинейного уравнения теплопроводимости с
источником”, Ж. вычисл. матем. и матем. физ., 44:9

Значения

параметров

max

1max

2 max

0.5,

1.229,

1.229

t

x

x

=

=

=

max

1max

1max

10,

2.972,

2.972

t

x

x

=

=
=

max

1max

2 max

15,

3.488,

3.488

t

x

x

=

=

=

1

2

3,

3.5,

5

m

m

p

=

=

=

3

10

eps

=

1

1 0

n

= 

,

2

0.5

0

n

=

4

0

q

= 

,

1

2

5,

5

=

=

,

1

k

=

time1 FRAME

0

+

(

) time2 FRAME

0

+

(

)

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)

1

2

3,

3.5,

7

m

m

p

=

=

=

3

10

eps

=

,

1

0.505

0

n

=

,

2

0.474

0

n

=

95

0

q

=

1

2

14,

7

=

=

,

2

k

=

time1 FRAME

0

+

(

) time2 FRAME

0

+

(

)

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)

t ime1 FRAME

0

+

(

) t ime2 FRAME

0

+

(

)


background image

(2004), 1619–1637; Comput. Math. Math. Phys., 44:9

(2004), 1539–1556.

7.

Самарский А.А., Галактионов В.А., Курдюмов С.П.,
Михайлов А.П. Режимы с обострением в задачах для
квазилинейных параболических уравнений. – М.:
Наука, 1987, 480с.

8.

Galaktionov V. A., Vazquez J. L. The problem of blow-

up in nonlinear parabolic equations. //J. Discrete and
continuous dynamical systems. 2002. V.8. № 2. P. 399-

433.

9.

Mittal R. C. and Arora G. Quintic B-spline collocation

method for numerical solution of the extended Fisher-

Kolmogorov equation. // Int. J. of Appl. Math and Mech.

6 (1): 74-85, 2010.

10. Трифонов А.Ю., А.В. Шаповалов Одномерное

уравнение

Фишера

Колмогорова

с

нелокальнойнелинейностью в квазиклассическом
приближении. // Известия высших учебных
заведений. 2009. № 9. C. 14-23

11. Kombe Ismail. Doubly nonlinear parabolic equations

with singular lower order term. // Nonlinear Anal., 56,
2004, №2, pp.185-199.

12. Jong-Sheng Guo, Bei Hu. Quenching profile for a

quasilinear parabolic equation // Quarterly of applied
mathematics. v. LVIII, № 4, 2000, pp.613-626.

13. Afanas’eva N.V., Tedeev A.F. Fujita type theorems for

quasilinear parabolic equations with initial data slowly

decaying to zero. //Sbornik Mathematics. 195:4 (2004),

pp.459-478.

14. Мухидинов

Н.

Газогидродинамическое

исследование нелинейной фильтрации жидкости и
газа. Ташкент: Фан, 1977, 152с.

15. Usmanov R.N., Khamidov V.S. To the Question of

Fuzzy Evalution of Quality of Trainees Knowledge in

the System of Distance Learning // Computer Science

and

Information

Technology1(2),2013.

DOI:10.13189/csit.2013.010209. – Р 42-45.

16. Рахмонов З.Р. О повеление решений одной задачи

нелинейной фильтрации с переменной плотностью и
с нелокальным граничным условием. Узб. Матем.
Журнал, №1, 2015, 75-85.

17. Садуллаева Ш. О неограниченных решениях одного

параболического

уравнения

с

двумя

нелинейностями. Ўзбекистон математика журнали,
№3, 2015, 121-128.

18. Aripov M. 1988 Methods of reference equations for

solving nonlinear boundary value problems. 137

19. Muhamediyeva D. K. 2019 IOP Conf.Journal of

Physics: Conf. Series 1210

20. Muhamediyeva D K 2019 International Journal of

Mechanical and Production Engineering Research and

Development 9 1095

References

Aripov M. Method of Reference Equations for Solving Nonlinear Boundary-Value Problems Tashkent, Fan, 1988, 137 p.

Belotelov N.V, Lobanov A.I Population models with nonlinear diffusion. // Math modeling. -M .; 1997, No. 12, pp. 43-56.

Lin X. and Wang M. The critical exponent of doubly singular parabolic equations. // J. Math. Anal. Appl., 257:1, 2001, pp.170-188.

Гаузе Г.Ф. О процессах уничтожения одного вида другим в популяциях инфузорий // Зоологический журнал,1934, т.13, №1.

Shigesada N., Kawasaki K., Biological Invasions: Theory and Practice (Oxford University Press, Oxford, 1997)

С. П. Курдюмов, Е. С. Куркина, “Спектр собственных функций автомодельной задачи для нелинейного уравнения теплопроводимости с источником”, Ж. вычисл. матем. и матем. физ., 44:9 (2004), 1619–1637; Comput. Math. Math. Phys., 44:9 (2004), 1539–1556.

Самарский А.А., Галактионов В.А., Курдюмов С.П., Михайлов А.П. Режимы с обострением в задачах для квазилинейных параболических уравнений. – М.: Наука, 1987, 480с.

Galaktionov V. A., Vazquez J. L. The problem of blow-up in nonlinear parabolic equations. //J. Discrete and continuous dynamical systems. 2002. V.8. № 2. P. 399-433.

Mittal R. C. and Arora G. Quintic B-spline collocation method for numerical solution of the extended Fisher-Kolmogorov equation. // Int. J. of Appl. Math and Mech. 6 (1): 74-85, 2010.

Трифонов А.Ю., А.В. Шаповалов Одномерное уравнение Фишера – Колмогорова с нелокальнойнелинейностью в квазиклассическом приближении. // Известия высших учебных заведений. 2009. № 9. C. 14-23

Kombe Ismail. Doubly nonlinear parabolic equations with singular lower order term. // Nonlinear Anal., 56, 2004, №2, pp.185-199.

Jong-Sheng Guo, Bei Hu. Quenching profile for a quasilinear parabolic equation // Quarterly of applied mathematics. v. LVIII, № 4, 2000, pp.613-626.

Afanas’eva N.V., Tedeev A.F. Fujita type theorems for quasilinear parabolic equations with initial data slowly decaying to zero. //Sbornik Mathematics. 195:4 (2004), pp.459-478.

Мухидинов Н. Газогидродинамическое исследование нелинейной фильтрации жидкости и газа. Ташкент: Фан, 1977, 152с.

Usmanov R.N., Khamidov V.S. To the Question of Fuzzy Evalution of Quality of Trainees Knowledge in the System of Distance Learning // Computer Science and Information Technology1(2),2013. DOI:10.13189/csit.2013.010209. – Р 42-45.

Рахмонов З.Р. О повеление решений одной задачи нелинейной фильтрации с переменной плотностью и с нелокальным граничным условием. Узб. Матем. Журнал, №1, 2015, 75-85.

Садуллаева Ш. О неограниченных решениях одного параболического уравнения с двумя нелинейностями. Ўзбекистон математика журнали, №3, 2015, 121-128.

Aripov M. 1988 Methods of reference equations for solving nonlinear boundary value problems. 137

Muhamediyeva D. K. 2019 IOP Conf.Journal of Physics: Conf. Series 1210

Muhamediyeva D K 2019 International Journal of Mechanical and Production Engineering Research and Development 9 1095

inLibrary — это научная электронная библиотека inConference - научно-практические конференции inScience - Журнал Общество и инновации UACD - Антикоррупционный дайджест Узбекистана UZDA - Ассоциации стоматологов Узбекистана АСТ - Архитектура, строительство, транспорт Open Journal System - Престиж вашего журнала в международных базах данных inDesigner - Разработка сайта - создание сайтов под ключ в веб студии Iqtisodiy taraqqiyot va tahlil - ilmiy elektron jurnali yuridik va jismoniy shaxslarning in-Academy - Innovative Academy RSC MENC LEGIS - Адвокатское бюро SPORT-SCIENCE - Актуальные проблемы спортивной науки GLOTEC - Внедрение цифровых технологий в организации MuviPoisk - Смотрите фильмы онлайн, большая коллекция, новинки кинопроката Megatorg - Доска объявлений Megatorg.net: сайт бесплатных частных объявлений Skinormil - Космецевтика активного действия Pils - Мультибрендовый онлайн шоп METAMED - Фармацевтическая компания с полным спектром услуг Dexaflu - от симптомов гриппа и простуды SMARTY - Увеличение продаж вашей компании ELECARS - Электромобили в Ташкенте, Узбекистане CHINA MOTORS - Купи автомобиль своей мечты! PROKAT24 - Прокат и аренда строительных инструментов