РЕЗУЛЬТАТЫ БИОКЛИМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ДЛЯ INULA GRANDIS

Аннотация

РЕЗУЛЬТАТЫ БИОКЛИМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ДЛЯ INULA GRANDIS

Тип источника: Журналы
Годы охвата с 2024
inLibrary
Google Scholar
Выпуск:
CC BY f
321-323
5

Скачивания

Данные скачивания пока недоступны.
Поделиться
Ermatova , G. (2025). РЕЗУЛЬТАТЫ БИОКЛИМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ДЛЯ INULA GRANDIS. Универсал международный научный журнал, 2(4.4), 321–323. извлечено от https://inlibrary.uz/index.php/universaljurnal/article/view/111071
Crossref
Сrossref
Scopus
Scopus

Аннотация

РЕЗУЛЬТАТЫ БИОКЛИМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ДЛЯ INULA GRANDIS


background image

“ZAMONAVIY BIOLOGIYANING DOLZARB MUAMMOLARI VA

RIVOJLANISH ISTIQBOLLARI”

xalqaro ilmiy-amaliy anjuman materiallari

adu.uz

universaljurnal.uz

321

BIOCLIMATIC MODELING RESULTS FOR INULA GRANDIS

Ermatova Gulzoda Zakirdjanovna

PhD student Andijan state university.

gulzoda1712@mail.ru

https://doi.org/10.5281/zenodo.15572670

Abstract.

In this article Based on

MaxEnt

modeling, a species bioclimatic model for the

Inula

grandis

Schrenk ex Fisch. & C.A.Mey. was developed for the using random algorithms with 19

bioclimatic variables.

Key words

.

Inula grandis,

area, climate factors, MaxEnt modeling, plantation.

Аннотация

.

В

данной

статье

на

основе

моделирования

MaxEnt

была

разработана

биоклиматическая

модель

вида

Inula grandis

Schrenk ex Fisch. & C.A.Mey.

с

использованием

случайных

алгоритмов

с

19

биоклиматическими

переменными

.

Ключевые

слова

. Inula grandis

,

площадь

,

климатические

факторы

,

моделирование

MaxEnt,

плантация

.

Аннотация

. Ushbu maqolada MaxEnt modellashtirish asosida

Inula grandis

Schrenk ex Fisch

& C.A.Mey. turi uchun bioiqlim modeli va 19 ta bioiqlim o‘zgaruvchi parametrlar bilan tasodifiy
algoritmlar yordamida ishlab chiqilgan.

Kalit so‘zlar

.

Inula grandis

, hudud, iqlim omillari, MaxEnt modellashtirish, plantatsiya, qulay

ekologik muhit.

I. grandis

are multifaceted and comprehensive. They include various aspects of assessing the

species' distribution, understanding its ecological requirements, and developing strategies for its
sustainable management.

This research geoforensic data reflecting the distribution of

I. grandis

species in the preparation

of the work, field research an), Plants and lichens of Russia and neighboring countries: open online
galleries and plant identification guide (https:/ /www.plantarium.ru ) online databases were used.

In general 20 geoforensics data of

I. grandis

(Yellow elecampane) have been downloaded.

Bioclimatic data downloaded from the World Clim database ( http://www.worldclim.org ) for species
distribution modeling included nineteen climate factors ( Table 1 ). Data from the World Soil
Database (82 soil parameters) were combined with bioclimatic data (19 climate factors) to better
represent the potential distribution of

I. grandis.

ArcGIS 10.8 software using the layer tool was used

to crop and extract the climate data data, maintain the desired data range, and finally convert it to
ASCII format. Geoforensic data were loaded into MaxEnt 3.4.4 [1,2] and evaluated using the
Jackknife test with bioclimate, soil and elevation data. T

he resulting models were calibrated using 75% of the available data for each species as training

(calibration) data, and the remaining 25% were used for model validation as test data. The bootstrap
method was performed with 10 replicates, a maximum of 5000 replicates, and default selected
parameters. Model performance was evaluated by calculating the area under the receiver operator
curve (AUC), where models with an AUC value greater than 0.7 were considered satisfactory for our
study [1,2].

MaxEnt is a multivariate approach that evaluates species distribution by finding the probability

distribution of maximum entropy, taking into account the constraints that represent our incomplete
information about distribution. In general, AUC < 0.7 indicates low accuracy of the model, the
prediction results are acceptable when AUC is 0.7-0.9, and AUC > 0.9 indicates that the prediction
results are very accurate, for further analysis can be used.

Future climate scenarios. In its fifth report (AR5), the Intergovernmental Panel on Climate

Change (IPCC, 2013) presented two Representative Concentration Pathway (RCP) climate scenarios
(RCP 8.5) for 2050, downloaded from the WorldClim online database ( www .worldclim.org ).


background image

“ZAMONAVIY BIOLOGIYANING DOLZARB MUAMMOLARI VA

RIVOJLANISH ISTIQBOLLARI”

xalqaro ilmiy-amaliy anjuman materiallari

adu.uz

universaljurnal.uz

322

Table 1.

Bioclimatic factors

Code

Trends in bioclimatic variability

Notes

Unity

BIO1

Average annual temperature

°

С

BIO2

Average interval of the day

°

С

BIO3

Isothermal

BIO1 / BIO7 * 100

%

BIO4

Seasonality of temperature

Coefficient of

variation

BIO5

Maximum temperature of the hottest month

°

С

BIO6

The minimum temperature of the coldest
month

°

С

BIO7

Annual temperature range

BIO5 – BIO6

°

С

BIO8

Average temperature of the warm quarter

°

С

BIO9

Average temperature of the dry quarter

°

С

BIO10

Average temperature of the warmest quarter

°

С

BIO11

Average temperature of the cold quarter

°

С

BIO12

Annual precipitation

mm

BIO13

Precipitation in the hottest month .

mm

BIO14

Rainfall in a dry month

mm

BIO15

Seasonality of precipitation

Coefficient of

variation

1

BIO16

Precipitation in the Wet Quarter

mm

BIO17

Precipitation in the dry quarter

mm

BIO18

Precipitation in the warmest quarter

mm

BIO19

Precipitation in the coldest quarter

mm

A species bioclimatic model was conducted for the Yellow Elecampane using random

algorithms with 19 bioclimatic variables . To determine the main climatic factors determining the
range of the yellow elecampane, we used a jackknife test with variable significance in a trained
random model.

The Jackknife test systematically evaluates the contribution of each variable to the predictive

performance of the model by repeatedly training each variable with and without each variable at
random. The results of the Jacknife test, calculated on the predictive performance independent test
data set, revealed four bioclimatic variables with high multivariate significance for the Yellow
Elecampane ( Figure 1 ).

1. Bio5 (maximum temperature of the hottest month)
2. Bio10 (average temperature of the warmest quarter)
3. Bio13 (precipitation in the warmest month)
4. Bio16 (Wet Quarter Precipitation)


background image

“ZAMONAVIY BIOLOGIYANING DOLZARB MUAMMOLARI VA

RIVOJLANISH ISTIQBOLLARI”

xalqaro ilmiy-amaliy anjuman materiallari

adu.uz

universaljurnal.uz

323

Figure 1 .

Jackknife test results significance of bioclimatic factors for the yellow elecampane.

When each of these four variables was excluded from the model individually, the resulting

AUC scores were significantly lower than in models where the other variables were excluded. This
shows that the maximum and average temperatures in the warmest periods, and the precipitation in
the warmest and wettest intervals provide informative signals about the climatic boundaries of the
yellow elecampane. Most notably, these important variables describe temperature and humidity
conditions during the extremes of the warm season. Yellow Elecampane refers to its physiological
tolerance and habitat requirements, which depend on high heat tolerance and sufficient rainfall during
active growth. The identification of these four bioclimatic factors as key drivers of the potential
distribution of the yellow elecampane confirms their ecological importance and provides insight into
the climatic controls that shape its range limits. Further research is planned based on the above results
to understand and potentially project how yellow elecampane will respond to future climate change.

References:

1. Phillips, SJ, RP Anderson, and REJE m. Schapire. Maximum entropy modeling of species

geographic distributions. 2006 . - No. 190(3-4) . - P.231-259.

2. Phillips, SJ and MJE Dudík. Modeling of species distributions with Maxent: new extensions

and a comprehensive evaluation. 2008 . - No. 31(2) . - P. 161-175.

Библиографические ссылки

Phillips, SJ, RP Anderson, and REJE m. Schapire. Maximum entropy modeling of species geographic distributions. 2006 . - No. 190(3-4) . - P.231-259.

Phillips, SJ and MJE Dudík. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. 2008 . - No. 31(2) . - P. 161-175.