Экспериментальные исследования сейсмостойкости зданий

  • Ташкентский архитектурно-строительный университет
  • Ташкентский архитектурно-строительный университет
CC BY f
271-274
4
2
Поделиться
Самиева , Ш., & Махмудов, С. (2023). Экспериментальные исследования сейсмостойкости зданий. Сейсмическая безопасность зданий и сооружений, 1(1), 271–274. извлечено от https://inlibrary.uz/index.php/seismic-safety-buildings/article/view/27518
Ш Самиева , Ташкентский архитектурно-строительный университет
докторант (PhD)
С Махмудов, Ташкентский архитектурно-строительный университет
research advisor: candidate of technical sciences, professor. Tashkent University of Architecture and Construction (Construction engineering technology)
Crossref
Сrossref
Scopus
Scopus

Аннотация

The seismic protection measures currently used are ineffective, and the calculation and design of buildings and structures. According to current standards, it does not at all exclude their destruction. Critical analysis provided seismic protection of buildings and proposes basic principles for their improvement. (The measures of seismic protection applied nowadays are ineffective, calculation and design of buildings and constructions for existing rules doesn't exclude their destruction at all. The critical analysis of seismic protection of buildings is provided and the basic principles of their improvement are offered.)

Похожие статьи


background image

271

ФОЙДАЛАНИШ ИСТИҚБОЛЛАРИ.

Talqin va tadqiqotlar

,

1

(19).

2.

Миралимов, М. М., & Туляганов, З. С. (2023, January). ГЛОБАЛНЫЕ

ПРОБЛЕМЫ

ИССЛЕДОВАНИЯ

ТЕМПЕРАТУРНЫХ

И

ВЛАЖНОСТНЫХ

ПАРАМЕТРОВ

ОГРАЖДАЮЩИХ

КОНСТРУКЦИЙ.

In

INTERNATIONAL

CONFERENCES

(Vol. 1, No. 1,pp. 518-523).

3.

Tulyaganov, Z. S. (2023). TO’SIQ KONSTRUKSIYALARINING HARORAT

VA

NAMLIK

PARAMETRELARI

TADQIQOTINING

GLOBAL

MUAMMOLARI. GOLDEN BRAIN, 1(1), 68-69.

4.

Xushvaqtovich, B. S. (2022). COMPARISONS OF RESISTANCE TO HEAT

TRANSFER OF MODERN ENERGY-SAVING WINDOW STRUCTURES. Web of
Scientist: International Scientific Research Journal, 3(12), 396-401.

5.

Щипачева, Е. В., Пирматов, Р. Х., & Шарипова, Д. Т. (2019).

ИССЛЕДОВАНИЕ ТЕПЛОВЫХ ПОТОКОВ НА НАРУЖНОЙ ПОВЕРХНОСТИ СТЕН
ЗДАНИЙ ПОД ВОЗДЕЙСТВИЕМ СОЛНЕЧНОЙ РАДИАЦИИ. In Функция,
конструкция, среда в архитектуре зданий (pp. 121-122).

6.

Kh, B. S., Kambarov, M. M., Tulyaganov, Z. S., Kh, S. S., & Babaev, D. R. (2023).

PERMISSIBLE LOAD ON THE BASE OF GROUND DAMS AT SEISMIC
IMPACTS. Horizon: Journal of Humanity and Artificial Intelligence, 2(5), 251-255.

7.

Нуримбетов Р.И. Энергия самарадолигига эга уйларни қуришда инновацион

технологиялардан

фойдаланиш

истиқболлари.“Иқтисодиёт

ва

инновацион

технологиялар”илмий электрон журнали, №4, июль-августь, Тошкент , 2017 йил.

8.

Табунщиков, Ю.А. Энергоэффективные здания /Ю.А.Табунщиков, М.М.

Бродач, Н.В.Шилкин. –М.: АВОК-ПРЕСС, 2003. -200 с.

9.

Вольфганг Ф.Основные положения по проектированию пассивных домов. -

М.: Издательство Ассоциации строительных вузов, 2008. -144 с.

10.

M.M.Miralimov, S.Sayfiddinov, U.S.Akhamadiyorov, G.A.Khakimov.G.A.

Principles of Regulation of thermal Protektion of Enclosing Structures and Their Impact on the
Energy efficiency Of Buildings. Design Engineering. ISSN:0011-9342, Issue:4, 2021(04),
pages: 496-510.

11.

Ehsan Asadia, Manuel Gameiro da Silva, Carlos Henggeler Antunesc Luhs Diasc.

Multi-objective optimizative optimization for bulding retrofit strategies: A model and an
application // Energy and Buildings.2012. № 44.p.81-87.

12.

Baymatov, Sh X., and D. Y. Islamova. "Energiya samarador turar joy va jamoat

binolarining loyiha yechimini ishlab chiqish." Theoretical aspects in the formation of
pedagogical sciences 1.7 (2022): 411-417.

13.

Baymatov, M. S., and A. M. Tibilov. "Evaluation of efficacy of transcutaneous

endobiliary interventions in treatment of mechanical jaundice caused by cancer of proximal
biliary tract." Diagnostic interventional radiology 5 (2011): 14.

EXPERIMENTAL STUDIES OF EARTHQUAKE RESISTANCE OF BUILDINGS

doctoral student (PhD) Sh.Kh. Samieva

research advisor: candidate of technical sciences, professor S.M. Makhmudov

Tashkent University of Architecture and Construction (Construction engineering technology)

Abstract. The seismic protection measures currently used are ineffective, and the

calculation and design of buildings and structures. According to current standards, it does not
at all exclude their destruction. Critical analysis provided seismic protection of buildings and
proposes basic principles for their improvement. (The measures of seismic protection applied
nowadays are ineffective, calculation and design of buildings and constructions for existing
rules doesn't exclude their destruction at all. The critical analysis of seismic protection of
buildings is provided and the basic principles of their improvement are offered.)


background image

272

Keywords: Earthquake, seismic protection, anti-resonance, microcracks, construction,

crushing, destruction, buildings, structures.

Introduction.

Despite the high achievements and development of science in the field of

earthquake-resistant construction, the problem of ensuring the seismic resistance of residential
buildings is still a pressing problem in our life. For construction in rural regions of Uzbekistan,
mud brick, adobe, adobe and soil blocks. As statistics show, buildings made of adobe are mostly
common. Clay buildings are a structure made from unprocessed clay, which has a natural
composition, moisture and no impurities [1]. To construct such buildings, almost no imported
materials are required. These buildings are not built higher than two floors. They are used as
office and residential buildings, stables, warehouses, utility rooms, repair shops, storerooms,
cowsheds, etc. The longitudinal walls of adobe buildings should be tied with transverse walls
at intervals of at least 10-12 cm to prevent wall collapse and ensure the stability of the walls.
Clay buildings are not resistant to seismic vibrations. Based on the above, there is a practical
need to study such houses in order to strengthen them from seismic influences and other natural
phenomena. All seismic isolation systems are structurally implemented in the form of upper
and lower support elements, between which the seismic isolation layer is mineral materials:
sand, clay, etc., or synthetic materials with a low coefficient of friction, for example, ftoroplast
[4]. Currently, there are various technical solutions of friction type support devices. However,
only a few of them are used in research work and experimental construction. At the actual (real)
design stage, all special seismic protection systems undergo significant changes. Additional
devices are included in the construction to limit the work of seismoisolators at a low impact
level, to increase the dispersion of vibration energy, etc. Due to the dry friction forces, the
sliding-type seismic-isolating base structures ensure a single kinematic connection of the
building with the vibrating ground, until the total inertial force in the system exceeds a certain
level - the activation limit, the value of which depends on the coefficient of friction and the
configuration of the sliding surfaces of the foundation. Based on an analysis of many facts of
seismic destruction of buildings, including those officially considered earthquake-resistant,
unfortunately, we are forced to admit that currently used seismic protection measures are
ineffective, and the calculation and design of buildings according to current standards does not
at all exclude their destruction. In this regard, we note that in the building codes of some
countries there is a very new, unusual progressive clause, which provides for the design of
buildings for any other seismic impacts not yet officially provided [2].

Results and its discussion. A distinctive feature of the calculation of buildings with

seismic insulating sliding belts is the reduction of calculated horizontal seismic loads. Until the
seismic force on the ground structures of the building (on the sliding belt) exceeds the frictional
forces on the sliding supports, it acts together with a single kinematic connection between the
foundation of the building and its upper part. If the inertial force is greater than the sliding
frictional force, the building starts to slide relative to the foundation. In order to limit the relative
horizontal displacements of the building and the foundation and increase attenuation, elastic
(for example, rubber-metal) and bikr (for example, reinforced concrete) constraints are
introduced into the seismic protection system. To prevent separation of the building from the
foundation, it is carried out with the help of elastic limiters of vertical displacements [3].

Accelerograms - a whole series of time dependence of ground accelerations are analyzed

in the formation of initial data on seismic effects. In the selection of computational effects, the
same was done with domestically censored accelerograms as with overseas instrumental
recordings. Impacts were assessed by two categories (category): intensity and frequency
composition of the earthquake. The impact of an earthquake, measured in points, is determined
using different scales. In Russia, the MSK-64 scale is usually used. Therefore, after digitizing
more than 100 accelerometers, impact options corresponding to 7 - 9 points in intensity
according to the MSK-64 scale were considered. Dynamic calculations of the seismically
isolated building model using Ftoroplast were carried out based on the EBROCOD program.


background image

273

Determination of displacements, velocities, accelerations, ground deformations and shear
forces is done by solving a system of differential equations of vibrations. The program allows
calculation of buildings of various structural systems and large-scale buildings, and data is
entered depending on the number of floors. Complete information on the seismic response of
the building is printed digitally and graphically. To increase the accuracy of calculation results,
the program provides an opportunity to change the integration stage. In this program, the
seismic response of 9-story seismically isolated and non-seismically isolated building models
was studied. At the same time, options for semoisolation with rubber metal and semoisolation
with the proposed ftoroplast material were considered. Seismic vibrations of soils were
established in the form of artificial accelerograms with different vibration periods with
maximum acceleration corresponding to point seismic effects. The seismic
force was defined as:

𝑺

𝒊

= 𝒎

𝒊

(𝒚̈

𝒊

+ 𝒚̈

гр

)

𝒊 = 𝟏 ÷ 𝒏

(1)

The elastic responses of the calculated cantilever model are defined as the product of the

storey deformations with the stiffness coefficients of the system within the storeys.

К

𝒊

= 𝒌

𝒊

(𝒚

𝒊

− 𝒚

𝒊−𝟏

)

𝒊 = 𝟏 ÷ 𝒏

(2)

The figure below shows graphs of top mass movements over time.

1 - picture. Comparison graph of accelerograms of a 9-story building model that is not

seismically isolated and seismically isolated with the help of a sliding belt (experimentally

determined accelerogram).

It can be seen from the graphs that displacements are significantly reduced in the proposed

9-story building models without seismic isolation and seismic isolation using rubber-metal

.

2 - picture. Graphs of the dependence of damage on the walls of a 9-story building on

the duration of seismic impact

Conclusion:

The purpose of the experimental study is to determine the general laws of

seismic vibrations of structures with seismic insulating sliding supports made of low-friction
steel and fluoroplast, depending on the intensity of ground vibrations. In conclusion, the


background image

274

analysis of these results shows that compared to buildings without seismic isolation, seismic
isolation using rubber metal, and seismic isolation using fluoroplast, vibrations, building
distortions, ground inertia forces, and variable shear forces on the building floor are reduced by
1.35 to 2 times.

LITERATURE:

1.

Machmudov S. M., Samieva S. K. Quantitative assessment of the reliability of the

system" foundation-seismic isolation foundation-building" //Central Asian Journal of STEM. –
2021. – Т. 2. – №. 2. – С. 445-452.

2.

Khakimov G. A. et al. COMPACTION OF LOESS BASES OF BUILDINGS AND

STRUCTURES, AS WELL AS BULK SOILS AROUND THE FOUNDATION USING
VIBRATORY ROLLERS IN SEISMIC AREAS //Galaxy International Interdisciplinary
Research Journal. – 2023. – Т. 11. – №. 4. – С. 306-311.

3.

Махмудов С. М., Самиева Ш. Х. КОНСТРУКТИВНЫЕ РЕШЕНИЯ

СЕЙСМОИЗОЛИРУЮЩИХ ФУНДАМЕНТОВ ЗДАНИЙ //НАУЧНЫЕ РЕВОЛЮЦИИ
КАК КЛЮЧЕВОЙ ФАКТОР РАЗВИТИЯ НАУКИ И ТЕХНИКИ. – 2021. – С. 36-38.

4.

Samiyeva S. K., Makhmudov S. M. SEISMIC ISOLATION SYSTEM AND

SEISMIC

DAMPERS.

– 2022. Национальное объединение изыскателей и

проектировщиков

(НОПРИЗ), Национальный

исследовательский

Московский

государственный строительный университет (НИУ МГСУ), Научно-исследовательский
центр "Строительство" (АО "НИЦ "Строительство").

5.

GMFN, Dos, Samiyeva Sh Kh, and Master MA Muminov. "DEFORMATION OF

MOISTENED LOESS FOUNDATIONS OF BUILDINGS UNDER STATIC AND
DYNAMIC LOADS." (2022). European Journal of Research Development and Sustainability,
3(12), 44-48. Retrieved from https://scholarzest.com/index.php/ejrds/article/view/3049

ИШЛАБ ЧИҚАРИШ ЖОЙЛАРИДА ШОВҚИН ИФЛОСЛАНИШИНИ

КАМАЙТИРИШНИНГ ОПТИМАЛЛАШТИРИШ МОДЕЛЬ ЯРАТИШ

PhD (tayanch doktarant) Axatova Nasiba Salimovna

Toshkent Arxitektura Qurilish Universiteti, nasibaakhatova@gmail.com

https:orcid.org0009-0006-0077-7284

t.f.n. Prof. Miralimov Mirraxim Mirmaxmudovich

Toshkent Arxitektura Qurilish Universiteti,

Аннотация: Ўтказилган бир нечта тажрибалар таҳлили асосида ишлаб

чиқариш биноларида шовқин ифлосланишини камайтиришга мўлжалланган моделни
ишлаб чиқиш учун иншоотнинг тўғри географик жойлашуви муҳум ҳисобланади, ҳамда
шовқиннинг иш муҳитига таъсирини минималлаштириш ва оптималлаштириш
моделининг самарадорлиги хисобланади.

Калит сўзлар: Шовқин модели, Яшаш жойлари шовқин тасири, ишлаб чиқариш

обектлари, шовқин тасири сўровномаси, шовқин башорат модели.

Abstract: Based on the analysis of several conducted experiments, the correct

geographical location of the facility is important for the development of a model designed to
reduce noise pollution in production buildings, and the effectiveness of the model for
minimizing and optimizing the impact of noise on the working environment is calculated.

Аннотация: На основе анализа нескольких проведенных экспериментов

установлено, что правильное географическое расположение объекта имеет важное
значение для разработки модели, предназначенной для снижения шумового загрязнения
производственных зданий, а также эффективности модели по минимизации и
оптимизации воздействия шума на рабочие места. Окружающая среда рассчитана.

Библиографические ссылки

Machmudov S. M., Samieva S. K. Quantitative assessment of the reliability of the system" foundation-seismic isolation foundation-building" //Central Asian Journal of STEM. – 2021. – Т. 2. – №. 2. – С. 445-452.

Khakimov G. A. et al. COMPACTION OF LOESS BASES OF BUILDINGS AND STRUCTURES, AS WELL AS BULK SOILS AROUND THE FOUNDATION USING VIBRATORY ROLLERS IN SEISMIC AREAS //Galaxy International Interdisciplinary Research Journal. – 2023. – Т. 11. – №. 4. – С. 306-311.

Махмудов С. М., Самиева Ш. Х. КОНСТРУКТИВНЫЕ РЕШЕНИЯ СЕЙСМОИЗОЛИРУЮЩИХ ФУНДАМЕНТОВ ЗДАНИЙ //НАУЧНЫЕ РЕВОЛЮЦИИ КАК КЛЮЧЕВОЙ ФАКТОР РАЗВИТИЯ НАУКИ И ТЕХНИКИ. – 2021. – С. 36-38.

Samiyeva S. K., Makhmudov S. M. SEISMIC ISOLATION SYSTEM AND SEISMIC DAMPERS. – 2022. Национальное объединение изыскателей и проектировщиков (НОПРИЗ), Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), Научно-исследовательский центр "Строительство" (АО "НИЦ "Строительство").

GMFN, Dos, Samiyeva Sh Kh, and Master MA Muminov. "DEFORMATION OF MOISTENED LOESS FOUNDATIONS OF BUILDINGS UNDER STATIC AND DYNAMIC LOADS." (2022). European Journal of Research Development and Sustainability, 3(12), 44-48. Retrieved from https://scholarzest.com/index.php/ejrds/article/view/3049

inLibrary — это научная электронная библиотека inConference - научно-практические конференции inScience - Журнал Общество и инновации UACD - Антикоррупционный дайджест Узбекистана UZDA - Ассоциации стоматологов Узбекистана АСТ - Архитектура, строительство, транспорт Open Journal System - Престиж вашего журнала в международных базах данных inDesigner - Разработка сайта - создание сайтов под ключ в веб студии Iqtisodiy taraqqiyot va tahlil - ilmiy elektron jurnali yuridik va jismoniy shaxslarning in-Academy - Innovative Academy RSC MENC LEGIS - Адвокатское бюро SPORT-SCIENCE - Актуальные проблемы спортивной науки GLOTEC - Внедрение цифровых технологий в организации MuviPoisk - Смотрите фильмы онлайн, большая коллекция, новинки кинопроката Megatorg - Доска объявлений Megatorg.net: сайт бесплатных частных объявлений Skinormil - Космецевтика активного действия Pils - Мультибрендовый онлайн шоп METAMED - Фармацевтическая компания с полным спектром услуг Dexaflu - от симптомов гриппа и простуды SMARTY - Увеличение продаж вашей компании ELECARS - Электромобили в Ташкенте, Узбекистане CHINA MOTORS - Купи автомобиль своей мечты! PROKAT24 - Прокат и аренда строительных инструментов