The role of artificial intelligence in enhancing the performance of shell and tube heat exchangers in the chemical industry

inLibrary
Google Scholar
doi
 
Выпуск:
CC BY f
70-72
5
2
Поделиться
Давронбеков, А., & Абдуназаров, А. (2023). The role of artificial intelligence in enhancing the performance of shell and tube heat exchangers in the chemical industry . Информатика и инженерные технологии, 1(2), 70–72. извлечено от https://inlibrary.uz/index.php/computer-engineering/article/view/24992
Crossref
Сrossref
Scopus
Scopus

Аннотация

Shell and tube heat exchangers are fundamental components in the chemical industry, responsible for efficient heat transfer processes critical for various manufacturing operations. As the chemical industry continues to evolve and strive for increased efficiency and sustainability, the integration of artificial intelligence (AI) technologies has emerged as a promising avenue to optimize the operation and performance of these heat exchangers. This paper explores the current state of shell and tube heat exchangers in the chemical industry and investigates the pivotal role that AI plays in improving their efficiency, reliability, and overall effectiveness. We delve into the applications of AI in the design, monitoring, and control of heat exchangers, highlighting key benefits and challenges associated with its implementation.

Похожие статьи


background image

70

16.

Nizomiddin N. et al. TA’LIMDA DASTURLASH JARAYONINI

BAHOLASHGA ASOSLANGAN AVTOMATLASHTIRILGAN TIZIMNI TADBIQ
ETISH //International Journal of Contemporary Scientific and Technical Research. –
2023. – С. 24-28.

THE ROLE OF ARTIFICIAL INTELLIGENCE IN ENHANCING THE

PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGERS IN THE

CHEMICAL INDUSTRY

Davronbekov Abdurasul Abdumajidovich,

Abdunazzarov Asliddin Toxir ugli

Fergana Polytechnic Institute, Uzbekistan

abdunazzarov@gmail.com

Annotation:

Shell and tube heat exchangers are fundamental components in the

chemical industry, responsible for efficient heat transfer processes critical for various
manufacturing operations. As the chemical industry continues to evolve and strive for
increased efficiency and sustainability, the integration of artificial intelligence (AI)
technologies has emerged as a promising avenue to optimize the operation and
performance of these heat exchangers. This paper explores the current state of shell
and tube heat exchangers in the chemical industry and investigates the pivotal role that
AI plays in improving their efficiency, reliability, and overall effectiveness. We delve
into the applications of AI in the design, monitoring, and control of heat exchangers,
highlighting key benefits and challenges associated with its implementation.

Keywords:

Artificial Intelligence (AI), Shell and Tube Heat Exchangers,

Chemical Industry, Heat Exchanger Design, Heat Exchanger Optimization, Machine
Learning, Energy Efficiency, Monitoring and Control, Process Optimization, Data
Analytics, Predictive Maintenance, Computational Fluid Dynamics (CFD), Heat
Transfer Efficiency, Sustainability, Industrial Automation, Fault Detection and
Diagnosis, Thermal Performance, Materials Selection, Energy Savings, Operational
Efficiency

Introduction.

The chemical industry is characterized by its energy-intensive

processes, where heat exchangers play a vital role in heat recovery and temperature
control. Shell and tube heat exchangers are widely used due to their versatility, high
heat transfer efficiency, and robust design. However, traditional approaches to the
design and operation of these heat exchangers often rely on simplified models and
manual adjustments, leaving room for improvement in terms of energy efficiency,
sustainability, and cost-effectiveness.
Artificial intelligence, particularly machine learning and data analytics, has
gained significant attention in recent years for its potential to optimize various
industrial processes, including those involving heat exchangers. This paper explores
the applications of AI in enhancing the performance of shell and tube heat exchangers
in the chemical industry, addressing both theoretical and practical aspects.


background image

71

The Role of Shell and Tube Heat Exchangers in the Chemical Industry
Shell and tube heat exchangers are used in a wide range of chemical processes,
including distillation, condensation, evaporation, and heat recovery. Their robust
construction and ability to handle high-pressure and high-temperature fluids make
them a preferred choice for many applications. However, the efficiency of these heat
exchangers depends on several factors, including design, operation, maintenance, and
the properties of the fluids being exchanged.
AI in the Design of Shell and Tube Heat Exchangers
The design phase of a shell and tube heat exchanger is critical in determining its long-
term performance. AI technologies can assist in the optimization of heat exchanger
design by:

a. Generating efficient geometries: AI algorithms can explore a vast design space

to identify configurations that maximize heat transfer efficiency while minimizing
pressure drop and material usage.

b. Material selection: AI can assist in selecting the most suitable materials for

specific operating conditions, considering factors such as corrosion resistance, thermal
conductivity, and cost.

c. Performance prediction: Machine learning models can predict the expected

performance of a heat exchanger design under different scenarios, enabling engineers
to make informed decisions.
AI for Monitoring and Control. Real-time monitoring and control are crucial for
maintaining the efficiency and reliability of shell and tube heat exchangers. AI can
enhance these aspects by:

a. Predictive maintenance: Machine learning models can analyze sensor data to

predict when maintenance is needed, reducing downtime and preventing costly
failures.

b. Fault detection and diagnosis: AI algorithms can identify and diagnose faults

in heat exchangers, helping operators take corrective actions promptly.

c. Adaptive control: AI-based control systems can optimize heat exchanger

operation by adjusting parameters in response to changing conditions, such as
variations in fluid flow rates and temperatures.
Challenges and Considerations. While the integration of AI into shell and tube
heat exchangers offers numerous benefits, several challenges and considerations must
be addressed:

a. Data availability: High-quality data is essential for training AI models, and

acquiring such data can be challenging in some industrial settings.

b. Model interpretability: The "black-box" nature of some AI algorithms can

make it difficult to understand and trust their decisions.

c. Implementation costs: Integrating AI systems may require initial investments

in hardware, software, and expertise.
Conclusion: In the chemical industry, the adoption of artificial intelligence has
the potential to revolutionize the design, monitoring, and control of shell and tube heat
exchangers. By leveraging AI's capabilities, chemical manufacturers can achieve
higher energy efficiency, reduced operational costs, and improved sustainability.
While challenges exist, ongoing research and development efforts in this field are


background image

72

likely to overcome these obstacles and pave the way for a smarter, more efficient
chemical industry.

References:

1.

Chen, L., Zhang, S., & Ji, J. (2020). A review on the application of artificial

intelligence in heat exchanger design and operation. Energy Procedia, 173, 246-252.

2.

Dogan, I., Guo, Y., & Cui, Z. (2019). Artificial intelligence applications in

heat exchanger network synthesis and retrofit. Chemical Engineering Research and
Design, 144, 96-110.

3.

García, S., & Cabeza, L. F. (2021). Artificial intelligence and machine

learning for the optimization of heat exchanger networks. Renewable and Sustainable
Energy Reviews, 138, 110506.

4.

Koupaei, J. A., & Pourfayaz, F. (2021). A comprehensive review on heat

exchanger optimization using artificial intelligence. Energy Conversion and
Management, 227, 113649.

5.

Lee, J. C., Kim, H., & Kim, H. M. (2019). A survey of machine learning

applications for the oil and gas industry. Energies, 12(13), 2577.

6.

Li, Y., Gao, H., & Wang, F. (2018). A survey of deep neural network

architectures and their applications. Neurocomputing, 234, 11-26.

7.

Sánchez, C. A., & Martin, E. (2019). Artificial intelligence for improving

energy efficiency: A review. Energy and Buildings, 202, 109374.

ОБ ОДНОМ ПОДХОДЕ ОЦЕНКИ ПЛАТЕЖНЫХ ТРАНЗАКЦИЙ НА

ПРЕДМЕТ МОШЕННИЧЕСТВА

доц. Х.К. Самаров

Ташкентский университет информационных технологий

husnutdinsamarov@gmail.com

Аннотация:

В данной статье предлагается алгоритм предсказания

мошеннических транзакций. В алгоритме используется методы анализа,
статистики, скоринга и классификации.

Ключевые слова:

Мошенничество, транзакция, аккаунт, скоринг, фрод

мониторинг, антифрод системы, риск, алгоритм, метод.


В настоящее время увеличивается количество финансовых транзакций, что

приводит к росту финансового мошенничества и, как следствие, возникновению
потерь в мировой экономике от кибератак. Выявление девиантных транзакций
является актуальной темой современных исследований, поскольку для всех
участников банковской системы важно минимизировать риски, которые могут
возникать из-за наличия уязвимостей при совершении онлайн-операций. Рост
финансовых

потерь

из-за

увеличения

финансового

мошенничества

актуализирует значимость применения математических методов для анализа

Библиографические ссылки

Chen, L., Zhang, S., & Ji, J. (2020). A review on the application of artificial intelligence in heat exchanger design and operation. Energy Procedia, 173, 246-252.

Dogan, I., Guo, Y., & Cui, Z. (2019). Artificial intelligence applications in heat exchanger network synthesis and retrofit. Chemical Engineering Research and Design, 144, 96-110.

García, S., & Cabeza, L. F. (2021). Artificial intelligence and machine learning for the optimization of heat exchanger networks. Renewable and Sustainable Energy Reviews, 138, 110506.

Koupaei, J. A., & Pourfayaz, F. (2021). A comprehensive review on heat exchanger optimization using artificial intelligence. Energy Conversion and Management, 227, 113649.

Lee, J. C., Kim, H., & Kim, H. M. (2019). A survey of machine learning applications for the oil and gas industry. Energies, 12(13), 2577.

Li, Y., Gao, H., & Wang, F. (2018). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11-26.

Sánchez, C. A., & Martin, E. (2019). Artificial intelligence for improving energy efficiency: A review. Energy and Buildings, 202, 109374.

inLibrary — это научная электронная библиотека inConference - научно-практические конференции inScience - Журнал Общество и инновации UACD - Антикоррупционный дайджест Узбекистана UZDA - Ассоциации стоматологов Узбекистана АСТ - Архитектура, строительство, транспорт Open Journal System - Престиж вашего журнала в международных базах данных inDesigner - Разработка сайта - создание сайтов под ключ в веб студии Iqtisodiy taraqqiyot va tahlil - ilmiy elektron jurnali yuridik va jismoniy shaxslarning in-Academy - Innovative Academy RSC MENC LEGIS - Адвокатское бюро SPORT-SCIENCE - Актуальные проблемы спортивной науки GLOTEC - Внедрение цифровых технологий в организации MuviPoisk - Смотрите фильмы онлайн, большая коллекция, новинки кинопроката Megatorg - Доска объявлений Megatorg.net: сайт бесплатных частных объявлений Skinormil - Космецевтика активного действия Pils - Мультибрендовый онлайн шоп METAMED - Фармацевтическая компания с полным спектром услуг Dexaflu - от симптомов гриппа и простуды SMARTY - Увеличение продаж вашей компании ELECARS - Электромобили в Ташкенте, Узбекистане CHINA MOTORS - Купи автомобиль своей мечты! PROKAT24 - Прокат и аренда строительных инструментов