Оценка взаимосвязи показателей липидного и углеводного профиля с уровнем обеспеченности организма витамином D у детей в зависимости от индекса массы тела

CC BY f
75-80
39
8
Поделиться
Белых , Н., & Булохова , Е. (2022). Оценка взаимосвязи показателей липидного и углеводного профиля с уровнем обеспеченности организма витамином D у детей в зависимости от индекса массы тела. Журнал гепато-гастроэнтерологических исследований, 2(3.2), 75–80. извлечено от https://inlibrary.uz/index.php/hepato-gastroenterological/article/view/2446
Н Белых , Рязанский государственный медицинский университет

доктор медицинских наук, доктор медицинских наук, доцент, Заведующий кафедрой факультетской и поликлинической педиатрии с курсом педиатрии последипломного образования 

Е Булохова , Рязанский государственный медицинский университет

доцент кафедры детских болезней и госпитальной педиатрии 

Crossref
Сrossref
Scopus
Scopus

Аннотация

Дети с избыточной массой тела (МТ) представляют особо уязвимую группу по гиповитаминозу D. Поперечное (одномоментное) исследование проведено на выборке 154 детей с разными весоростовыми показателями в возрасте 8-10 лет (девочек - 74, мальчиков - 80). Выделено 3 группы участников исследования: 1 группа - 44 ребенка с ожирением, 2 группа – 58 детей с избыточной массой тела, 3 группа – 52 человека с нормальной массой тела. Всем детям определяли в сыворотке крови уровень 25(ОН)D, паратгормона (ПТГ), кальция (Са), фосфора (Р), общего холестерина (ХС), триглицеридов (ТГ), бета-липопротеидов (ß-ЛП), глюкозы, инсулина, активность АЛТ, АСТ, а также рассчитывали индекс инсулинорезистентности (HOMA-IR). Дефицит витамина D у детей с ожирением встречался почти в 2,3 раза чаще, чем у детей с избыточной массой тела (р=0,002) и в 2,8 раза чаще, чем у детей с нормальной массой тела (р=0,001). Показатели липидного и углеводного обменов находились в физиологических пределах. Однако у детей с ожирением они значимо превышали показатель здоровых детей (р<0,05). Дети с дефицитом VD имели статистически значимо более высокие медианы ПТГ, ХС, ТГ, глюкозы, инсулина, активности АЛТ, АСТ, НОМА-IR и более низкую концентрацию Р и Са по сравнению с детьми, имеющими оптимальный VD статус (р<0,05). Медианы АЛТ, АСТ, ХС, ß-ЛП, ТГ, глюкозы и HOMA-IR у детей с ожирением и дефицитом VD были статистически значимо выше, чем у здоровых детей с дефицитом VD и с оптимальной концентрацией 25(ОН)D в сыворотке крови. Дефицит витамина D является важным предиктором формирования осложнений ожирения и усугубляет риск развития кардиометаболических расстройств у детей, страдающих ожирением в младшем школьном возрасте.

Похожие статьи


background image

JOURNAL OF HEPATO-GASTROENTEROLOGY RESEARCH | ЖУРНАЛ ГЕПАТО-ГАСТРОЭНТЕРОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

№3,2 (том II) 2021

75

Belyх N. A,

MD, PhD, Dr Med Sci, Associate Professor,

Head of the Department of Faculty and Polyclinic Pediatrics with the Course of Pediatric of Postgraduate

Education

Ryazan State Medical University, Ryazan, Russian Federation

Buloхova E,

Professor of the Department of Child Diseases and Hospital Pediatrics

Ryazan State Medical University, Ryazan, Russian Federation

ASSESSMENT OF THE RELATIONSHIP BETWEEN LIPID AND CARBOHYDRATE METABOLISM

INDICATORS AND VITAMIN D STATUS IN CHILDREN WITH DIFFERENT BODY MASS INDEX

ANNOTATION

Overweight children represent a particularly vulnerable group for vitamin D deficiency. was to study the

relationship between lipid and carbohydrate metabolism indicators and VD status in children, depending on the div
mass index (BMI). A cross-sectional (one-step) study carried out on a sample of 154 children with different weight of 8-
10 years old (girls - 74, boys - 80). There were identified three groups of research participants: group 1 - 44 obese, 2
group - 58 overweight, 3 group - 52 children with normal div weight. For all children, the serum 25(OH)D,
parathyroid hormone (PTH), calcium (Ca), phosphorus (P), alanine aminotransferase (ALT), aspartate aminotransferase
(AST), cholesterol (CS), triglycerides (TG), beta-lipoproteins (ß-LP), glucose, insulin determined, and Homeostasis
Model Assessment of Insulin Resistance (HOMA-IR) calculated.

VD deficiency in obese children was found almost 2.3

times more often than in overweight (p = 0.002) and 2.8 times more often than in children with normal div weight (p
= 0.001). Indicators of lipid and carbohydrate metabolism were within physiological limits. However, in obese children
they significantly exceeded the indicator of healthy children (p <0.05). Children with VD deficiency (25(OH)D<20
ng/ml) had statistically significantly higher medians of serum PTH, TC, TG, ALT, AST, glucose, insulin, HOMA-IR and
lower serum P and Ca compared with children with optimal VD status (p <0.05). The medians of serum ALT, AST, TC,
ß-LP, TG, glucose, insulin and HOMA-IR in obese children with VD deficiency was statistically significantly higher
compared in healthy children with VD deficiency and optimal VD status.

VD deficiency is an important predictor of

obesity complications and it exacerbates the risk of cardiometabolic disorders in children who are obese in the early
school years.

Key words:

children, obesity, vitamin D, vitamin D status, cardiometabolic disorders.

Белых Н.А,

доктор медицинских наук, доктор медицинских наук, доцент,

Заведующий кафедрой факультетской и поликлинической педиатрии с курсом педиатрии

последипломного образования

Рязанский государственный медицинский университет, Рязань, Российская Федерация

Булохова Е,

доцент кафедры детских болезней и госпитальной педиатрии

Рязанский государственный медицинский университет, Рязань, Российская Федерация

ОЦЕНКА ВЗАИМОСВЯЗИ ПОКАЗАТЕЛЕЙ ЛИПИДНОГО И УГЛЕВОДНОГО ПРОФИЛЯ С

УРОВНЕМ ОБЕСПЕЧЕННОСТИ ОРГАНИЗМА ВИТАМИНОМ D У ДЕТЕЙ В ЗАВИСИМОСТИ ОТ

ИНДЕКСА МАССЫ ТЕЛА

АННОТАЦИЯ

Дети с избыточной массой тела (МТ) представляют особо уязвимую группу по гиповитаминозу D.

Поперечное (одномоментное) исследование проведено на выборке 154 детей с разными весоростовыми
показателями в возрасте 8-10 лет (девочек - 74, мальчиков - 80). Выделено 3 группы участников исследования: 1


background image

JOURNAL OF HEPATO-GASTROENTEROLOGY RESEARCH | ЖУРНАЛ ГЕПАТО-ГАСТРОЭНТЕРОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

№3,2 (том II) 2021

76

группа - 44 ребенка с ожирением, 2 группа – 58 детей с избыточной массой тела, 3 группа – 52 человека с
нормальной массой тела. Всем детям определяли в сыворотке крови уровень 25(ОН)D, паратгормона (ПТГ),
кальция (Са), фосфора (Р), общего холестерина (ХС), триглицеридов (ТГ), бета-липопротеидов (ß-ЛП), глюкозы,
инсулина, активность АЛТ, АСТ, а также рассчитывали индекс инсулинорезистентности (HOMA-IR). Дефицит
витамина D у детей с ожирением встречался почти в 2,3 раза чаще, чем у детей с избыточной массой тела
(р=0,002) и в 2,8 раза чаще, чем у детей с нормальной массой тела (р=0,001). Показатели липидного и
углеводного обменов находились в физиологических пределах. Однако у детей с ожирением они значимо
превышали показатель здоровых детей (р<0,05). Дети с дефицитом VD имели статистически значимо более
высокие медианы ПТГ, ХС, ТГ, глюкозы, инсулина, активности АЛТ, АСТ, НОМА-IR и более низкую
концентрацию Р и Са по сравнению с детьми, имеющими оптимальный VD статус (р<0,05). Медианы АЛТ,
АСТ, ХС, ß-ЛП, ТГ, глюкозы и HOMA-IR у детей с ожирением и дефицитом VD были статистически значимо
выше, чем у здоровых детей с дефицитом VD и с оптимальной концентрацией 25(ОН)D в сыворотке крови.
Дефицит витамина D является важным предиктором формирования осложнений ожирения и усугубляет риск
развития кардиометаболических расстройств у детей, страдающих ожирением в младшем школьном возрасте.

Ключевые слова:

дети, ожирение, витамин D, дефицит витамина D, кардиометаболические

расстройства.


The growing prevalence of obesity in the child

population is one of the problems of modern health care.
According to World Health Organization (WHO, 2018)
forecasts, the number of obese children by the end of
2025 may exceed 70 million only in the age group from 0
to 5 years old [1]. Childhood obesity has serious lifelong
consequences. In the short term, such children are
accompanied by psychological disorders (depression,
anxiety and low self-esteem, a number of emotional and
behavioral disorders), they are more likely to suffer from
asthma, diseases of the musculoskeletal system [2]. In the
future, they have an increased risk of metabolic disorders
and

cardiovascular

pathology,

such

as

arterial

hypertension, dyslipidemia, atherosclerosis [3]. In the
long term, childhood obesity increases of the risk of
developing cardiovascular diseases, diabetes mellitus,
some types of cancer and diseases of the musculoskeletal
system, which can lead to disability and premature death
[4].

In parallel with obesity, the problem of low

vitamin D (VD) status in child and adolescent population
is becoming more and more urgent. At present,
hypovitaminosis D among the child population recorded
in many countries of the world, including the Russian
Federation [5-7].

For a long time, the regulation of calcium and

phosphorus homeostasis considered the main effect of
VD. However, in recent years, VD viewing as a hormone
that has receptors in most div tissues and performs

many “non-classical” effects. Non-skeleton effects of VD
include of regulation of cell proliferation and cell
differentiation, inhibition of renin and angiogenesis
synthesis, contributing of insulin production, activation of
macrophage formation, etc. [8]. Overweight children
represent a particularly vulnerable group for vitamin D
deficiency, which, in recent years, has been associated
with health risks similar to obesity [9]. Therefore,
according to Mirhosseini N. et al. (2018), VD deficiency
may play an important role in the development of
cardiovascular diseases [10]. There is also an opinion
about of the positive effect of VD subsidy on metabolism
in adults with chronic cardiovascular disease. Schroten N.
et al. (2013) observed a decrease in plasma renin activity
in 101 patients with stable heart failure after 6 weeks of
taking 2000 IU VD [11]. The VINDICATE study group
(Vitamin D treating patients with chronic heart failure)
noted a significant improvement in cardiac function in
229 patients with chronic heart failure after taking VD

4000 IU daily for 1 year [12]. In contrast, several
metaanalyzes and systematic reviews have not found a
positive effect of VD on the course of cardiovascular
disease. Ford J. et al. (2014), for example, expressed
insufficient data to support the use of VD as a supplement
to reduce the incidence of cardiovascular disease [13]. In
their systematic review, Wang L. et al. (2010) noted a
statistically insignificant decrease in the incidence of
cardiovascular diseases when taking moderate doses of
VD. Mao P. et al. (2013) also found that neither VD
supplementation nor calcium supplementation affected
the incidence of myocardial infarction or stroke [14].
However, most modern studies substantiate the negative
effect of low serum 25(OH) D levels on the state of the
cardiovascular system, and associate this primarily with
the role of micronutrients in the regulation of the renin-
angiotensin-aldosterone system (RAAS). Thus, the renin
gene has a VD sensitive element that has a regulatory
effect on the transcription and production of renin, which,
in turn, acting on angiotensin, triggers a number of
processes that promote the formation of angiotensin II,
which acts as a vasoconstrictor [15].

There are few data on the role of VD deficiency

as a risk factor for the onset and progression of
cardiovascular disorders in primary school children. In
this regard, the study of this problem is interesting,
especially among obese children, who form a risk group
for the development of chronic pathology.

Aim

: to study of the relationship between lipid

and carbohydrate metabolism indicators and VD status in
children, depending on the div mass index (BMI).

Materials and methods.

A cross-sectional (one-

step) study carried out on a sample of 154 children with
different weight and height indicators. Among the
surveyed children there were 74 girls (48.0%) and 80
boys (52.0%) of primary school age (the average age –

9.4±0.7 years). All children permanently live in Ryazan.

Study inclusion criteria: absence of acute or

exacerbation of chronic diseases at the time of inclusion
in the study; lack of intake of vitamin and mineral
complexes for at least 6 months. Before inclusion in the
study, the absence of chronic diseases of the kidneys,
liver, gastrointestinal tract, as well as the signed informed
consent of the child's parent to his participation in the
study.

The studies carried out on the bases of the City

Child Polyclinic No. 1, Regional Child Hospital and
Central Research Laboratory of the RyazSMU. The local


background image

JOURNAL OF HEPATO-GASTROENTEROLOGY RESEARCH | ЖУРНАЛ ГЕПАТО-ГАСТРОЭНТЕРОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

№3,2 (том II) 2021

77

ethics committee of the RyazGMU approved the study
protocol. The parents had appropriate information about
their participation in the study and their informed consent
obtained.

Trained health workers in accordance with a

standardized protocol developed by WHO [16] performed
anthropometric measurements during a preventive
medical examination. The physical growth assessed using
the WHO AnthroPlus (2009) [17]. There were calculated
the following parameters: Weight-for-Age Z-score
(WAZ), div mass-to-age index (BMI-for-Age Z-score,
BAZ). The interpretation of the obtained Z-score values
carried out according to the following criteria:
malnutrition - with <–2 SDS, under nutrition from -
2<SDS<-1, norm - -1<SDS<+1, overweight - +1<SDS<+
2, obesity - with SDS> +2 [18].

According to the anthropometry data, there were

formed 3 groups: 1

st

group - obese children (n=44, 22

girls and 22 boys), 2

nd

group - overweight children (n=58,

18 girls, 40 boys), 3

rd

group – healthy children (n=52, 34

girls, 18 boys).

Serum 25(OH)D level, parathyroid hormone

(PTH), glucose, insulin, triglycerides (TG), transaminase
activity (alanine aminotransferase, ALT and aspartate
aminotransferase, AST), β-lipoprotein (β-LP) level,
cholesterol (CS), calcium (Ca), phosphorus (P) were
tested in all children. A procedural nurse in a
manipulation room located in the Regional Child
Hospital carried out blood sampling on an empty
stomach, from the ulnar vein. Serum 25(OH)D was
evaluated by the enzyme-linked immunoabsorbent assay
(DIAsource 25OH Vitamin D Total ELISA Kit,
Diasource, Spain) and values <20 ng/ml were considered
deficient, 20-30 ng/ml insufficient, and >30 ng/ml -

sufficient [19]. The PTH content by the method of
immunoradiometric

analysis

(IRMA

PTH

kits,

IMMUNOTECH, Czech Republic) and insulin by the
immunochemiluminescent method on a Roche Cobas
e8000 602 analyzer (Roche Cobas, Switzerland) was

determined. The serum Ca, P, β-LP, TG, CS, glucose,
ALT, AST on a Mindray BS-400 biochemical analyzer
(Mindray, China) was measured. The insulin resistance
index (HOMA-IR) was calculated (normally below 3.2
U) [20].

The STATISTICA 12 software package used for

statistical analysis. Continuous variables presented as
medians with an interquartile range (25-75 percentiles).
The analysis of the normal distribution of the values of
the studied features performed using the Shapiro-Wilk
test. When comparing continuous variables across
groups, the Kruskal-Wallis test used (for paired
comparisons, the Mann-Whitney test). The degree of
relationships assessed by calculating the pairwise
Spearman correlation coefficients (r). The χ

2

test used to

determine the relationship between the two categorical
variables. p< 0.05 was considered significant

.

Results.

VD deficiency occurred in 76 (49.4%)

of the examined children, deficiency - in 30 (19.5%), and
normal provision was found only in 48 (31.1%) children.
Obese children have VD deficiency in 2.3 times more
often than overweight (p=0.002) and in 2.8 times more
often than healthy (p=0.001) (Fig.1). The normal
provision of VD in overweight children detected almost 2
times less often than in healthy children. Among the
surveyed group 1, normal concentration of 25 (OH) D in
the blood serum not detected in any child. There were no
statistically significant gender differences among the
assessed groups (p> 0.05).

Figure 1. Vitamin D status in participants depending on BMI (%)

The median values of mineral, lipid and

carbohydrate metabolism compared depending on BMI in
the compared groups (Table 1). Serum PTH level was
within the reference values; statistically significant
differences between the groups were no found (p>0.05).
The median of serum Ca in was normal - 2.46 [2.36;
2.54] mmol/L. Me Ca in obesity child was statistically

significantly lower than in 2

nd

and 3

rd

groups (p<0.05).

Was revealed that with an increase of BMI, the serum Ca
level significantly decreased (r=0.51, p<0.05), and in 7
(32.0%) participants with the highest BMI was found of
hypocalcaemia (p=0.014). Serum P in all children was
within the physiological norm. However, in the 1

st

and 2

nd

group the serum P was statistically significantly lower


background image

JOURNAL OF HEPATO-GASTROENTEROLOGY RESEARCH | ЖУРНАЛ ГЕПАТО-ГАСТРОЭНТЕРОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

№3,2 (том II) 2021

78

than in 3

rd

group (p<0.05). A negative correlation

between BMI and P level was found (r=-0.51, p<0.05).
Serum ALT, AST, CHS, TG, β-LP, glucose and insulin
was within physiological limits. However, the median
ALT activity in children in 1

st

group was 1.8 times higher

than in 2

nd

group (p<0.001) and was more than 2.5 times

lower than in healthy children (p<0.001). Moreover, in
obese boys, this indicator was higher compared to girls in

this group (p = 0.003). The median serum AST activity in
obese children also exceeded the value in the overweight
children (p<0.001) and normal BMI (p<0.001). Serum
CS, TG and β-LP had a direct moderate correlation with
BMI (p<0.05), and the medians of these indicators in
obese children significantly exceeded the values in
overweight

and

healthy

children

(p<0.005).

Table 1.

Indicators of mineral, lipid and carbohydrate metabolism depending on the div mass index of children

Indicator

Reference

values

Group 1

BMI-for-Age Z-

score

>+2 SDS

(n=22)

Group 2

BMI-for-Age

+1< Z-score<+2

SDS

(n=29)

Group 3

BMI-for-Age

-1<Z-score<+1

SDS

(n=26)

Р

k-w

1-2

Р

k-w

1-3

Р

k-w

2-3

25(ОН)D,

ng/ml

>30 ng/ml

12,5 [5,7; 19,1]

23,6 [11,3; 34,5] 32,6 [15,9; 44,4]

0,014

0,001

0,080

PTH,

pg/ml

10,0–65,0

28,3 [23,2; 38,3] 25,1 [20,9; 32,6] 27,2 [19,9; 33,5]

0,210

0,562

0,227

Са,

mmol/l

2,3–2,8

2,3 [2,2; 2,4]

2,5 [2,4; 2,5]

2,5 [2,5; 2,7]

0,031

0,000

0,021

Р, mmol/l

1,1–2,0

1,2 [1,1; 1,2]

1,2 [1,2; 1,3]

1,3 [1,2; 1,5]

0,011

0,001

0,362

ALT, U/l

< 40,0

35,0 [32,0; 38,0] 20,0 [18,0; 24,0] 13,0 [11,0; 16,0]

0,000

0,000

0,000

AST, U/l

< 40,0

34,0 [32,0; 36,0] 22,0 [20,0; 26,0] 21,0 [17,0; 25,0]

0,000

0,000

0,851

CS,

mmol/l

2,8-5,5

4,8 [4,4; 5,2]

4,4 [4,0; 4,5]

3,9 [3,8; 4,4]

0,003

0,001

0,018

ß-LP, U/l

35,0-55,0

45,0 [40,0; 50,0] 40,0 [37,0; 42,0] 35,0 [32,0; 36,0]

0,021

0,000

0,000

TG,

mmol/l

0,3-1,5

1,4 [1,3; 1,5]

0,7 [0,5; 0,9]

0,5 [0,5; 0,7]

0,000

0,000

0,020

Glucose,

mmol/l

3,4-6,1

4,3 [4,1; 4,5]

4,1 [3,8; 4,4]

3,6 [3,4; 3,7]

0,152

0,000

0,000

Insulin,

μU / ml

3,0-20,0

15,5 [14,9; 16,0]

10,8 [9,0; 13,3]

7,8 [5,0; 9,9]

0,000

0,000

0,010

HOMA-IR

<3,2

2,9 [2,8; 3,2]

2,0 [1,7; 2,5]

1,3 [0,8; 1,5]

0,000

0,000

0,000

Note: BMI - div mass index;
HOMA-IR increased with increasing BMI. At

the same time, in 5 (23.0%) obese children HOMA-IR
exceeded the permissible normal values (p=0.057),
despite the normal isolated levels of glucose and insulin.

Children with VD deficiency had a higher BMI.

PTH, CS, TG, glucose, insulin, the activity of ALT and
AST, as well as HOMA-IR in them exceeded those in
children with normal VD status (p<0.05), but the serum P
and Ca was lower (p<0.05) (Table 2).

Children with insufficient VD status have

statistically significantly higher BMI, TG, ALT, AST,
HOMA-IR and a reduced level of Ca compared with
children optimally provided with vitamin D (p <0.05).
There were no statistically significant differences in the
level of β-LP between the groups (p> 0.05). PTH and TG
in children with VD deficiency was 1.3 times (p<0.05)
higher than in children with insufficient VD status. At
decrease serum 25(OH)D increase PTH, Ca, P, β-LP, TG,
glucose, insulin, activity ALT, AST and HOMA-IR (Table
3). Thus, these changes indicate that vitamin D deficiency
in children 8-10 years old is a risk factor for
cardiometabolic disorders at an older age.

The medians of ALT, AST, CS, ß-LP, TG,

glucose, insulin, and HOMA-IR in obese children with
VD deficiency were statistically significantly higher than
in healthy children with VD deficiency and a sufficient
VD status.

The discussion.

Vitamin D deficiency is quite

common in childhood and is more common among obese
children. The data obtained coincide with the results of
studies of previous years [21, 22]. It is believed that the
relationship of anthropometric and biochemical markers
of cardiovascular risks with the high prevalence of
vitamin D deficiency is indirect, because this is a
consequence of a sedentary lifestyle, decreased activity,
stay indoors and poor nutrition, which lead to the
progressive accumulation of fat mass. So, in the works of
Skinner A. et al. (2015) and Durá-Travé T. et al. (2017) it
was obesity rather than insufficient VD provision that
positively correlated with dyslipidemia [23, 24].
Nevertheless, various authors describe the existence of
strong correlations between low VD-status and various
components of the lipid metabolism [25, 26].


background image

JOURNAL OF HEPATO-GASTROENTEROLOGY RESEARCH | ЖУРНАЛ ГЕПАТО-ГАСТРОЭНТЕРОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

№3,2 (том II) 2021

79

Table 2.

Anthropometric and biochemical parameters depending on vitamin D status

Indicator

Serum 25(OH)D

Р

k-w

1-2

Р

k-w

1-3

Р

k-w

2-3

< 20 ng/ml

(n=76)

20–29 ng/ml

(n=30)

> 30 ng/ml

(n=48)

BMI z-score

2,0 [1,01; 2,9]

1,4 [1,0; 1,9]

0,8 [-0,3; 1,0]

0,150

0,000

0,001

PTH, pg/ml

32,1

[25,5; 39,3]

24,5

[20,1; 36,2]

23,2

[18,3; 29,0]

0,041

0,009

0,649

Са, mmol/l

2,4 [2,3; 2,5]

2,5 [2,4; 2,6]

2,7 [2,5; 2,7]

0,001

0,000

0,129

Р, mmol/l

1,2 [1,1; 1,2]

1,3 [1,2; 1,3]

1,7 [1,7; 1,8]

0,006

0,000

0,000

ALT, U/l

28 [19; 36]

24 [18; 30]

14 [11,5; 18]

0,407

0,000

0,001

AST, U/l

29 [22; 34]

25 [22; 31]

20 [18; 24]

0,272

0,000

0,007

TC, mmol/l

4,4 [3,7; 4,8]

4,3 [3,9; 4,6]

4,1 [3,8; 4,4]

0,963

0,035

0,035

ß-LP, U/l

40 [36; 46]

39 [36; 42]

36 [33; 40]

0,296

0,059

0,217

TG, mmol/l

1,2 [0,5 1,4]

0,9 [0,5; 1,1]

0,6 [0,5; 0,8]

0,041

0,017

0,015

Glucose,

mmol/l

4,1 [3,7; 4,4]

4,2 [4; 4,4]

3,6 [3,45; 3,8]

0,696

0,001

0,001

Insulin, μU/ml

14,5 [8,1; 15,6]

13,1 [9,5;

15,0]

9,0 [7,3; 10,4]

0,150

0,000

0,015

HOMA-IR

2,6 [1,5; 2,9]

2,6 [1,8; 2,7]

1,4 [1,2; 1,7]

0,827

0,000

0,002

Note: BMI - div mass index;

Table 3.

Spearman's correlation coefficients between 25(OH)D level and z-score BMI/age and biochemical parameters

Indicator

z-score BMI / age

25(ОН)D, ng/ml

r

р

r

р

z-score BMI / age

1,000

≥0,05

-0,480

<0,05

25(ОН)D, ng/ml

-0,480

<0,05

1,000

≥0,05

PTH, pg/ml

0,122

≥0,05

-0,441

<0,05

Са, mmol/l

-0,512

<0,05

0,799

<0,05

Р, mmol/l

-0,512

<0,05

0,873

<0,05

ALT, U/l

0,816

<0,05

-0,471

<0,05

AST, U/l

0,626

<0,05

-0,427

<0,05

TC, mmol/l

0,448

<0,05

-0,216

≥0,05

ß-LP, U/l

0,616

<0,05

-0,234

<0,05

TG, mmol/l

0,717

<0,05

-0,332

<0,05

Glucose, mmol/l

0,817

<0,05

-0,365

<0,05

Insulin, μU/ml

0,740

<0,05

-0,341

<0,05

HOMA-IR

0,850

<0,05

-0,400

<0,05


Ertugrul D. et al. (2011) suggested that in adults

it is dyslipidemia that negatively affects the level of
25(OH)D, and not vice versa, since the use of statins
improves the lipid profile and the concentration of
25(OH) D simultaneously [27]. Studies by Song Y. et al.
(2013) and Durá-Travé T. et al. (2020) show that low
25(OH)D level are associated with a high prevalence of
intolerance glucose and the development of type 2
diabetes [28, 29]. Since VD receptors also founded in the
tissue of the pancreas, and Ca plays an important role in
the secretion of insulin by ß-cells, it is very likely that
VD deficiency increases the risk of carbohydrate
metabolic disorders.

Conclusions.

Obesity is more associated with

the risks of impaired lipid and carbohydrate metabolism
than VD deficiency. However, insufficient VD status is an
important predictor of comorbid pathology and
aggravates the risk of cardiometabolic disorders in obese
children already at primary school age. Medical
professionals,

including

pediatricians,

pediatric

endocrinologists, cardiologists, should be aware of the
possible consequences of VD deficiency in obese
children, as well as timely adjust the VD status when the
level of the div's supply with this micronutrient
decreases.

References/ Список литературы

1.

World Health Organization (WHO). Nutrition: Global Targets 2025. Geneva: WHO; 2018.

http://www.who.int/nutrition/global-target-2025. Accessed 2 Mar 2021

2.

Kansra A., Lakkunarajah S., Jay M. Childhood and Adolescent Obesity: A Review. Front. Pediatr. 2021;

Vol. 8 (581461): 1-16. doi: 10.3389/fped.2020.581461

3.

Chung S., Onuzuruike A, Magge S. Cardiometabolic risk in obese children. Ann N Y Acad Sci. 2018; Vol.

1411 (1): 166–183. doi: 10.1111/nyas.13602

4.

Cesare M., Sorić M., Bovet P., et al. The epidemiological burden of obesity in childhood: a worldwide


background image

JOURNAL OF HEPATO-GASTROENTEROLOGY RESEARCH | ЖУРНАЛ ГЕПАТО-ГАСТРОЭНТЕРОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

№3,2 (том II) 2021

80

epidemic requiring urgent action. BMC Medicine. 2019; Vol. 17 (212): 1-21. https://doi.org/10.1186/s12916-019-1449-
8

5.

Zakharova I.N., Klimov L.Ya., Maltsev S.V., et al. Security of vitamin d and correction of its

insufficiency in children of early age in the Russian Federation (fragment of the national program). Prakticheskaya
medicina [Practical medicine]. 2017; Vol. 5 (106): 22-8. (In Russian)

6.

Belykh N.A., Blokhova E.E. Obesity and micronutrient disbalance in children. Science of the young

[Eruditio Juvenium]. 2019; Vol. 7 (3): 429-38. (In Russian) doi: 10.23888/HMJ201973429-438

7.

Zakharova I.N., Tvorogova T.M., Gromova O.A., et al. Vitamin D Insufficiency in Adolescents: Results

of Year-Round Screening in Moscow. Pediatricheskaya farmakologiya [Pediatric pharmacology]. 2015; Vol. 12 (5):
528-531. (In Russian).

https://doi.org/10.15690/pf.v12i5.1453

8.

Dreval' A.V., Kryukova I.V., Barsukov I.A., et al. Extra-osseous effects of vitamin D (a review). RMJ.

2017; Vol. 1: 53–6. (In Russian)

9.

Filatova T.E., Nizov A.A., Davydov V.V. Experience of treatment of male hypertension with obesity,

fasting hyperglycemia and deficiency of vitamin D. Rossijskij mediko-biologicheskij vestnik im. akademika I.P.
Pavlova [I.P.Pavlov Russian Medical Biological Herald]. 2017; Vol. 25 (1): 69-75. (In Russian) doi:

10.23888/pavlovj2017169-75

10.

Mirhosseini N., Rainsbury J., Kimball S. Vitamin D Supplementation, Serum 25(OH)D Concentrations

and Cardiovascular Disease Risk Factors: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2018;
Vol. 5 (87): 1-35. doi: 10.3389/fcvm.2018.00087

11.

Schroten N., Ruifrok W., Kleijn L., et al. Short-term vitamin D3 supplementation lowers plasma renin

activity in patients with stable chronic heart failure: An open-label, blinded end point randomized prospective trial
(VitD-CHF trial). Am Heart J. 2013; Vol. 166: 357-64.

12.

Witte K., Byrom R., Gierula J., et al. Effects of vitamin D on cardiac function in patients with chronic

HF: The VINDICATE study. J Am Coll Cardiol. 2016; Vol. 67 (22): 2593-603.

13.

Ford J., MacLennan G., Avenell A., et al. Cardiovascular disease and vitamin D supplementation: trial

analysis, systematic review, and meta-analysis. Am J Clin Nutr. 2014; Vol. 100 (3): 746–55. doi:
10.3945/ajcn.113.082602

14.

Mao P., Zhang C., Tang L., et al. Effect of calcium or vitamin D supplementation on vascular outcomes:

a metaanalysis of randomized controlled trials. Int J Cardiol. 2013; Vol. 169 (2): 106–11. doi:
10.1016/j.ijcard.2013.08.055

15.

Kolesnikov A.N., Dubovaya A.V., Udovitchenko Yu.V. Participation of Vitamin D in Pathogenesis of

Cardiovascular Diseases. Ros Vestn Perinatol i Pediatr. 2018; Vol. 63 (5): 43–50. (In Russian). doi: 10.21508/1027–
4065–2018–63–5–43–50

16.

WHO Regional Office for Europe: Copenhagen, Denmark. WHO European Childhood Obesity

Surveillance

Initiative.

Protocol.

2016.

[Accessed

2021

Mar

1].

Available

from:

http://www.euro.who.int/__data/assets/pdf_file/0018/333900/COSI-protocolen.pdf?ua=1

.

17.

WHO. AnthroPlus for Personal Computers Manual: Software for Assessing Growth of the World’s

Children and Adolescents; WHO: Geneva, Switzerland, 2009. [Accessed 2020 Nov 1]. Available online:

http://www.who.int/entity/growthref/tools/who_anthroplus_manual.pdf

.

18.

Peterkova V.A., Nagaeva E.V., Shiryaeva T.Yo. Assessment of the physical development of children and

adolescents. Normative-methodical and reference materials. Monthly supplement to the journal "Information Bulletin of
Health of the Samara Region". 2018; Vol. 194 (1): 1-75. (in Russian)

19.

Union of Pediatricians of Russia. National program «Vitamin D deficiency in children and adolescents of

the Russian Federation: modern approaches to correction». Moscow: Pediatr", 2018: 96 р. (in Russian)

20.

Zil’berman L.I., Kuraeva T.L., Peterkova V.A., the expert board of the Russian Association of

Endocrinologists. Federal clinical recommendations on diagnostics and treatment of type 2 diabetes mellitus in the
children and adolescents. Problemy endokrinologii [Problems of Endocrinology]. 2014; Vol. 5: 57-68. (in Russian). doi:
10.14341/probl201460557-68

21.

Migliaccio1 S., Nisio A., Mele C., et al. Obesity and hypovitaminosis D: causality or casualty?

International Journal of Obesity Supplements. 2019; Vol. 9 (1): 20–31.

https://doi.org/10.1038/s41367-019-0010-8

22.

Beketova N.A., Pavlovskaya E.V., Kodentsova V.M., Vrzhesinskaya O.A., Kosheleva O.V., Sokolnikov

A.A., Strokova T.V. Biomarkers of vitamin status in obese school children. Voprosy pitaniia [Problems of Nutrition].
2019; 88 (4): 66–74. doi: 10.24411/0042-8833-2019-10043 (in Russian)

23.

Skinner A., Perrin E., Moss L., et al. Cardiometabolic Risks and Severity of Obesity in Children and

Young Adults. N. Engl. J. Med. 2015; Vol. 373 (14): 1307–1317.

24.

Durá-Travé

T., Gallinas-Victoriano F., Chueca-Guindulain M., et al. Prevalence of hypovitaminosis D

and associated factors in obese Spanish children. Nutr. Diabetes. 2017; Vol. 7 (3): 248. doi:

10.1038/nutd.2016.50

25.

Okbay Güneş A., Alikaşifoğlu M., Erginoz E., et al. The relationship between cardiometabolic risks and

vitamin D levels with the degree of obesity. Turk Pediatri Ars. 2019; Vol.54 (4): 256–263.

26.

Mellati A., Sharifi F., Faghihzadeh S., et al. Vitamin D status and its associations with components of

metabolic syndrome in healthy children. J. Pediatr. Endocrinol. Metab. 2015; Vol. 28, (5-6): 641–48. doi:
10.1515/jpem-2013-0495

27.

Ertugrul D., Yavuz B., Cil H., et al. STATIN-D Study: Comparison of the Influences of Rosuvastatin and

Fluvastatin Treatment on the Levels of 25 Hydroxyvitamin D. Cardiovasc. Ther. 2011; Vol. 29, (2): 146–52. doi:
10.1111/j.1755-5922.2010.00141.x

28.

Song Y., Wang L., Pittas A., et al. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: A

metaanalysis of prospective studies. Diabetes Care. 2013; Vol. 36, (5): 1422–28. doi: 10.2337/dc12-0962

29.

Durá-Travé T., Gallinas-Victoriano F., Peñafiel Freire D., et al. Hypovitaminosis D and Cardiometabolic

Risk Factors in Adolescents with Severe Obesity. Children. 2020; Vol. 7, (2): 1-11. doi:10.3390/children7020010/

Библиографические ссылки

World Health Organization (WHO). Nutrition: Global Targets 2025. Geneva: WHO: 2018. http://www.who.int/nutrition/global-target-2025. Accessed 2 Mar 2021

Kansra A.. Lakkunarajah S.. Jay M. Childhood and Adolescent Obesity: A Review. Front. Pediatr. 2021; Vol. 8 (581461): 1-16. doi: 10.3389/fped.2020.581461

Chung S.. Onuzuruike A. Magge S. Cardiometabolic risk in obese children. AimN YAcad Sci. 2018: Vol.

(1): 166-183. doi: 10.11U/nyas.l3602

Cesare M.. Soric M.. Bovet P.. et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Medicine. 2019; Vol. 17 (212): 1-21. https://doi.org/10.1186/sl2916-019-1449-8

Zakharova I.N.. Klimov L.Ya.. Maltsev S.V., et al. Seciuity of vitamin d and correction of its insufficiency in children of early age in the Russian Federation (fragment of the national program). Prakticheskaya medicina [Practical medicine]. 2017: Vol. 5 (106): 22-8. (hi Russian)

Belykh N.A.. Blokhova E.E. Obesity and micronutrient disbalance in children. Science of the young [Eruditio Juveniuml. 2019: Vol. 7 (3): 429-38. (hi Russian) doi: 10.23888/HMJ201973429-438

Zakharova I.N.. Tvorogova T.M.. Gromova O.A.. et al. Vitamin D Insufficiency in Adolescents: Results of Year-Round Screening in Moscow. Pediatricheskaya farmakologiya [Pediatric pharmacology]. 2015: Vol. 12 (5): 528-531. (hi Russian), https://doi.org/10.15690/pf.vl2i5.1453

Dreval' A.V.. Kryukova I.V.. Barsukov LA., et al. Extra-osseous effects of vitamin D (a review). RMJ. 2017; Vol. 1: 53-6. (hi Russian)

Filatova T.E.. Nizov A.A.. Davydov V.V. Experience of treatment of male hypertension with obesity, fasting hyperglycemia and deficiency of vitamin D. Rossiiskii mediko-biologicheskii vestnik im. akademika I P. Pavlova [I.P.Pavlov Russian Medical Biological Herald]. 2017; Vol. 25 (1): 69-75. (hi Russian) doi: 10.23888/pavlovj2017169-75

Mirhosseini N.. Rainsbury J.. Kimball S. Vitamin D Supplementation. Serum 25(OH)D Concentrations and Cardiovascular- Disease Risk Factors: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2018: Vol. 5 (87): 1-35. doi: 10.3389/fcvm.2018.00087

Scliroten N.. Ruifrok W.. Kleijn L.. et al. Short-term vitamin D3 supplementation lowers plasma renin activity in patients with stable chronic heart failure: An open-label, blinded end point randomized prospective trial (VitD-CHF trial). Am Heart J. 2013; Vol. 166: 357-64.

Witte K. Byrom R.. Gienila J., et al. Effects of vitamin D on cardiac function in patients with chronic HF: The VINDICATE study. J Am Coll Cardiol. 2016: Vol. 67 (22): 2593-603.

Ford J.. MacLennan G.. Avenel! A., et al. Cardiovascular disease and vitamin D supplementation: trial analysis, systematic review, and meta-analysis. Am J Clin Nutr. 2014; Vol. 100 (3): 746-55. doi: 10.3945/ajcn.l 13.082602

Mao P.. Zhang C.. Tang L.. et al. Effect of calcium or vitamin D supplementation on vascular outcomes: a metaanalysis of randomized controlled trials. hit J Cardiol. 2013; Vol. 169 (2): 106-11. doi: 10.1016/j.ijcard.2013.08.055

Kolesnikov A.N.. Dubovaya A.V.. Udovitchenko Yu.V. Participation of Vitamin D in Pathogenesis of Cardiovascular Diseases. Ros Vestn Perinatal i Pediatr. 2018; Vol. 63 (5): 43-50. (In Russian), doi: 10.21508/1027-4065-2018-63-5-43-50

WHO Regional Office for Europe: Copenhagen. Denmark. WHO European Childhood Obesity Surveillance Initiative. Protocol. 2016. [Accessed 2021 Mar 1]. Available from: http://www.euro.who.int/ data/assets/pdf file/0018/333900/CQSI-protocolen.pdf?ua=l.

WHO. AnthroPhis for Personal Computers Manual: Software for Assessing Growth of the World’s Children and Adolescents; WHO: Geneva. Switzerland. 2009. [Accessed 2020 Nov 1]. Available online: http://www.who.int/entitv/growtluef7tools/who anthroplus manual.pdf.

Peterkova V.A.. Nagaeva E.V.. Shiryaeva T.Yo. Assessment of the physical development of children and adolescents. Nonnative-methodical and reference materials. Monthly supplement to the journal "Information Bulletin of Health of the Samara Region". 2018: Vol. 194 (1): 1-75. (in Russian)

Union of Pediatricians of Russia. National program «Vitamin D deficiency in children and adolescents of the Russian Federation: modem approaches to correction». Moscow: Pediatr". 2018: 96 p. (in Russian)

Zil'berman L.I.. Kuraeva T.L.. Peterkova V.A.. the expert board of the Russian Association of Endocrinologists. Federal clinical recommendations on diagnostics and treatment of type 2 diabetes mellitus in the children and adolescents. Problemy endokrinologii [Problems of Endocrinology]. 2014; Vol. 5: 57-68. (in Russian), doi: 10.14341/probl201460557-68

Migliacciol S., Nisio A.. Mele C., et al. Obesity and hypovitaminosis D: causality or casualty? International Journal of Obesity Supplements. 2019; Vol. 9 (1): 20-31. https://doi.org/10.1038/s41367-019-001Q-8

Beketova N.A.. Pavlovskaya E.V.. Kodentsova V.M.. Vrzhesmskaya O.A.. Kosheleva O.V.. Sokolnikov A. A.. Strokova T.V. Biomarkers of vitamin status in obese school children. Voprosy pitaniia [Problems of Nutrition], 2019; 88 (4): 66-74. doi: 10.24411/0042-8833-2019-10043 (in Russian)

Skinner A.. Perrin E.. Moss L.. et al. Cardiometabolic Risks and Severity of Obesity in Children and Yotuig Adults. N. Engl. J. Med. 2015; Vol. 373 (14): 1307-1317.

Dura-Trave T.. Gallinas-Victoriano F.. Chueca-Guindulain M., et al. Prevalence of hypovitaminosis D and associated factors in obese Spanish children. Nutr. Diabetes. 2017; Vol. 7 (3): 248. doi: 10.1038/nutd.2016.50

Okbay Giines A.. Alikasifoghi M.. Erginoz E.. et al. The relationship between cardiometabolic risks and vitamin D levels with the degree of obesity. Turk Pediatri Ars. 2019; Vol.54 (4): 256-263.

Mellati A.. Sharifi F.. Faghihzadeh S.. et al. Vitamin D status and its associations with components of metabolic svndrome in healthy children. J. Pediatr. Endocrinol. Metab. 2015; Vol. 28. (5-6): 641-48. doi: 10.1515/jpem-2013-0495

Ertugrul D.. Yavuz B.. Cil H.. et al. STATIN-D Study: Comparison of the Influences of Rosuvastatin and Fluvastatin Treatment on the Levels of 25 Hydroxyvitainin D. Cardiovasc. Ther. 2011; Vol. 29. (2): 146-52. doi: 10.1111/j.l755-5922.2010.00141.x

Song Y.. Wang L.. Pittas A., et al. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: A metaanalysis of prospective studies. Diabetes Care. 2013; Vol. 36, (5): 1422-28. doi: 10.2337/dcl2-0962

Dura-Trave T.. Gallinas-Victoriano F.. Penafiel Freire D.. et al. Hypovitaminosis D and Cardiometabolic Risk Factors in Adolescents with Severe Obesity. Children. 2020: Vol. 7, (2): 1-11. doi: 10.3390/children7020010/

inLibrary — это научная электронная библиотека inConference - научно-практические конференции inScience - Журнал Общество и инновации UACD - Антикоррупционный дайджест Узбекистана UZDA - Ассоциации стоматологов Узбекистана АСТ - Архитектура, строительство, транспорт Open Journal System - Престиж вашего журнала в международных базах данных inDesigner - Разработка сайта - создание сайтов под ключ в веб студии Iqtisodiy taraqqiyot va tahlil - ilmiy elektron jurnali yuridik va jismoniy shaxslarning in-Academy - Innovative Academy RSC MENC LEGIS - Адвокатское бюро SPORT-SCIENCE - Актуальные проблемы спортивной науки GLOTEC - Внедрение цифровых технологий в организации MuviPoisk - Смотрите фильмы онлайн, большая коллекция, новинки кинопроката Megatorg - Доска объявлений Megatorg.net: сайт бесплатных частных объявлений Skinormil - Космецевтика активного действия Pils - Мультибрендовый онлайн шоп METAMED - Фармацевтическая компания с полным спектром услуг Dexaflu - от симптомов гриппа и простуды SMARTY - Увеличение продаж вашей компании ELECARS - Электромобили в Ташкенте, Узбекистане CHINA MOTORS - Купи автомобиль своей мечты! PROKAT24 - Прокат и аренда строительных инструментов