DIABETES IS A METABOLIC DISORDER THAT NEGATIVELY AFFECTS HUMAN HEALTH AND LIFE

HAC
Google Scholar
Branch of knowledge
To share
Atabayeva , O. (2023). DIABETES IS A METABOLIC DISORDER THAT NEGATIVELY AFFECTS HUMAN HEALTH AND LIFE. Modern Science and Research, 2(5), 599–604. Retrieved from https://inlibrary.uz/index.php/science-research/article/view/20320
Crossref
Сrossref
Scopus
Scopus

Keywords:

Abstract

This article discusses and analyzes diabetes mellitus, a metabolic disorder that negatively affects human health and life.

Similar Articles


background image

ISSN:

2181-3906

2023

International scientific journal

«MODERN SCIENCE АND RESEARCH»

VOLUME 2 / ISSUE 5 / UIF:8.2 / MODERNSCIENCE.UZ

599

QANDLI DIABET – BU INSON SALOMATLIGI VA HAYOTIGA SALBIY TA’SIR

KO’RSATADIGAN METOBOLIK BUZILISHDIR

Atabayeva Ozoda Faxriddinovna

Toshkent pediatriya tibbiyot instituti

Anatomiya, patologik anatomiya kafedrasi assistenti

https://doi.org/10.5281/zenodo.7949688

Annotatsiya.

Ushbu maqolada qandli diabet – bu inson salomatligi va hayotiga salbiy

ta’sir ko’rsatadigan metobolik buzilishi haqida so’z yuritilgan va tahlil qilib chiqilgan.

Kalit so’zlar:

qandli diabet, inson salomatligi, kasallik, metobolik, xirurgik model,

kimyoviy model.

DIABETES IS A METABOLIC DISORDER THAT NEGATIVELY AFFECTS

HUMAN HEALTH AND LIFE

Abstract.

This article discusses and analyzes diabetes mellitus, a metabolic disorder that

negatively affects human health and life.

Key words:

diabetes, human health, disease, metabolic, surgical model, chemical model.

САХАРНЫЙ ДИАБЕТ – НАРУШЕНИЕ ОБМЕНА ВЕЩЕСТВ, НЕГАТИВНО

ВЛИЯЮЩЕЕ НА ЗДОРОВЬЕ И ЖИЗНЬ ЧЕЛОВЕКА

Аннотация.

В данной статье рассматривается и анализируется сахарный диабет

– нарушение обмена веществ, негативно влияющее на здоровье и жизнь человека.

Ключевые

слова:

сахарный

диабет,

здоровье

человека,

заболевание,

метаболические процессы, хирургическая модель, химическая модель.

Oxirgi o’n yillik natijalarga ko’ra kasallik uzluksiz o'smoqda, epidemiologik prognozlarga

ko'ra, 2030 yilga kelib kasallik dunyo aholisining 7-8 foizini tashkil qiladi[1].

Qandli diabetning taxminan 10 foizi 1-tip qandli diabetga to’g’ri keladi (QD1) [2],

oshqozon osti bezi betta hujayralarining nobud bo'lishi natijasida rivojlanadi, tanadagi uglevod va
yog’ almashinuvi boshqarilishini buzulishi insulin ishlab chiqarilishini to'xtatishga olib keladi.
Ushbu kasallikni o'rganishga qaratilgan ko'plab tadqiqotlarga qaramay, kasallik rivojlanishda
davom etmoqda. 1-tip qandli diabetning oldini olish va davolash uchun vositalar yetarli emas, bu
esa ushbu kasallik bilan og’rigan bemorlarni asoratlariga ko’ra yuqori xavf guruhiga kirishini va
diabetli odamlar orasida o'limning umumiy xavfi diabet kasalligi bo'lmagan tengdoshlariga
qaraganda ikki baravar yuqori ekanligini ko'rsatadi [3].

Asoratlar ichida shuni takidlash kerakki, ayollarning reproduktiv salomatligiga nojo’ya

ta’siri, hayz siklidagi o’zgarishlar, bepushtlik, homiladorlik va tug’ruq holatlarni patologik
kechuviga va yana ko’plab asoratlarga olib keladi [4, 5].

Yuqoridagi faktlarni hisobga olgan holda, diabet va uning asoratlari asosida yotgan

murakkab mexanizmlarni chuqur tushunish, davolashning yangi usullarini ishlab chiqish va ushbu
kasallik bilan bog'liq oqibatlarni kamaytirish uchun mavjud davolash usullarining yangi
istiqbollarini aniqlash va amaliyotga tadbiq qilish kerak. Biroq tibbiyot muammolarini yechimida
invaziv muolajalar yoki kuzatuvlar, bemorni etik va psixologik holatlarini inobatga olish kerak.

Eksperimental modellar har qanday kasallikning patofiziologiyasini o'rganish uchun eng

qulaydir. Tadqiqotda hayvonlardan foydalanish jiddiy muammoga aylanishi mumkin, chunki
hayvonlarda fizik va psixologik zo’riqish kuzatilishi mumkin. [6]. Bu boradagi eng muhim


background image

ISSN:

2181-3906

2023

International scientific journal

«MODERN SCIENCE АND RESEARCH»

VOLUME 2 / ISSUE 5 / UIF:8.2 / MODERNSCIENCE.UZ

600

tushunchalardan biri 1959 yilda Rassel va Birch tomonidan ishlab chiqilgan 3R konseptsiyasidir
(qisqartirish, takomillashtirish va almashtirish) [7]. Ushbu konseptsiyaga rioya qilish,
eksperimentda ishlatiladigan hayvonlarning sonini ularning azob-uqubatlarini kamaytiradi.
So'nggi o'n yilliklarda qandli diabetni o'rganish va diabetga qarshi dori-darmonlarni sinab ko'rish
uchun ko'plab hayvonlar modellari yaratilgan, ular orasida kimyoviy, jarrohlik, gormonal, virusli
va genetik aralashuvlar mavjud. Qandli diabetni modellashtirish metodologiyasiga yondashuvlar
uzoq vaqtdan beri ma'lum bo'lishiga qaramay, eksperimental usullar bir xil modelda ham farq
qiladi. Ushbu maqolada biz ulardan eng ommabop va arzonlarini ko'rib chiqamiz.

Xirurgik model

Hayvonlarda giperglikemiya ta'sirini o'rganishning eng aniq usullaridan biri bu oshqozon

osti bezini qisman yoki to'liq olib tashlash. Bu modelda foydalanadigan hayvon turi tadqiqot
maqsadiga bog’liq. Umuman olganda, hayvon qanchalik kichik bo'lsa, model turli xil sharoitlarga
moslashtirilgan va shunga mos ravishda eksperimentning narxi arzonroq bo’ladi, shuning uchun
ko’proq kalamush va sichqonlardan foydalaniladi. Shunga qaramasdan kemiruvchilardan
foydalanishning asosiy kamchiligi shundan iboratki, olingan ma'lumotlar odamlarga nisbatan
kasallikni yetarli darajada aks ettirmasligi mumkin, shuning uchun bu holatlarda yirikroq
hayvonlardan quyonlar, mushuklar, itlar, cho'chqalardan foydalaniladi[8].

Tadqiqotlar moliyaviy holatlarga qaramasdan, total pankreatektomiya operatsiyadan

keyingi birinchi kunlarda gipoinsulinemiya va giperglikemiya rivojlanishida ushbu modelda
quyidagi omillarni cheklashga olib keladi:

-tehnik jihozlar va xirurgik mahoratning yuqori darajadaligi;
-oshqozon osti bezining ekskretor yetishmovchiligida o’rnini bosuvchi terapiya talab

qilinishi;

-80% subtotal pankreatektomiyada diabetning 9 oydan keyin rivojlanish holatlari;
-letal holatlar darajasi yuqori bo’lishi;
-operatsiyadan keyingi holatlarda infeksion asoratlanish darajasining yuqoriligi va yana

ko’plab omillarga sabab bo’ladi. [10]

Kimyoviy model

Qandli diabet modelini yaratish uchun kimyoviy agentdan foydalaniladi, tasir qilish

mehanizmi oshqozon osti bezidagi betta hujayralarni zararlashi natijasida qandli diabet
rivojlanadi. Bu modelni qo’llashda har xil diabetogen aktivlikga ega bo’lgan moddalardan
qo’llaniladi: alloksan, streptozototsin, dialuron kislota [11], ditizon [12], pirinuron [13]va
boshqalar qo’llaniladi. Ushbu moddalarga qo'shimcha ravishda, boshqa birikmalar mavjud,
maxsus simulyatsiya qilish natijasida namoyon bo'lgan diabet hayvonda florizin kabi asoratlarni
beradi. Ko’proq glukozani sitotoksik analogi hisoblangan alloksan va streptozototsin qo’llaniladi.
Farmakodinamikadagi o’zgarishlarga qaramay, preparatlarni ta’sir qilish mexanizmlari betta
hujayralar uchun bir xil.

Alloksanli diabet modeli

1838 yilda Wöhler va Liebig pirimidin hosilasini sintez qilishgan va u alloksan deb

nomlangan [14]. Bu nom ikkita tushunchadan ya’ni “allantoin” va “oksalurin kislota” kelib
chiqgan.


background image

ISSN:

2181-3906

2023

International scientific journal

«MODERN SCIENCE АND RESEARCH»

VOLUME 2 / ISSUE 5 / UIF:8.2 / MODERNSCIENCE.UZ

601

1943 yilda alloksan diabetologlarning qiziqish ob'ektiga aylandi, bu preparatlarni qabul

qilish natijasida oshqozon osti bezining betta hujayralarining spetsifik nekrozi kuzatilishini Dunn,
Sheehan va McLetchie lar takidlashgan[15,16].

Dori preparatlari bilan chaqirilgan insulinopeniya eksperimental qandli diabet holatini

aniqlashi alloksanli qandli diabet deb nomlanadi[17]. Alloksan suvli eritmada bir necha daqiqa
ichida o'z-o'zidan nodiabetogen alloksan kislotasiga parchalanadi [18]. Tana haroratida (37 C) va
pH 7,4 da alloksanning yarimparchalanish davri 1,5 daqiqaga to’g’ri keladi[19].

Pastroq haroratlarda alloksanning yarimparchalanish davri uzoqroq bo'ladi va alloksan

kuchsiz kislota hisoblanadi, stabil holatda pH past boladi. Alloksan -glyukozaga o'xshash
tuzilishga ega gidrofilik beqaror birikma. Bu holatlar diabet rivojlanish uchun muhim omil bo’ladi.
Olimlarning fikriga ko'ra, alloksan transporter funksiyasini ingibirlamaydi, shuning uchun cheksiz
miqdorda betta hujayralariga kirishi mumkin [20]. Glyukozaning ingibirlanishi preparatni qabul
qilingandan 1 daqiqadan keyin sodir bo’ladi [21]. Preparat organizmga kiritilgandan so’ng bir
necha fazada o’zgarishlar yuzaga keladi: Birinchi bosqich-gipoglikemik faza, davomiyligi
maksimal-30 daqiqa, alloksan inyeksiyasidan keyin o’sha zahoti sodir bo’ladi. Bu qisqa muddatli
gipoglikemik faza organizmni vaqtinchalik rag’batlantiradi, bu bosqichda oshqozon osti bezi
hujayralari morfologik o’zgarishlarga kam uchraydi [22]. Ikkinchi bosqich- alloksan kiritilgandan
keyin 1 soatdan keyin yuz beradi, bunda qonda glyukoza miqdori ortadi, plazmada insulin
konsentratsiyasi kamayadi. Bu faza davomiyligi 2-4 soatni tashkil qiladi. Bu bosqichda betta
hujayralar bir qancha morfologik xususiyatlarni namoyon qiladi [22]. Uchinchi bosqich-
vaqtinchalik gipoglikemik bosqich hisoblanadi. Alloksan kiritilgandan so’ng 4-8 soatda
rivojlanadi va bir necha soatdan sutkagacha davom etishi mumkin [23]. Bu bosqichda hayvon
to’satdan o’lib qolishi mumkin, chunki qonda glyukoza miqdorining kamayishi tutqanoqlarga
sabab bo’lishi va jigarning glikogen zahirasi tez yemirilishi mumkin. Bu esa betta hujayralarni
nekrozini kuchaytiradi. To’rtinchi bosqich-doimiy giperglikemik faza, yakuniy hisoblanadi va 12-
48 soat davom etadi. Bu bosqichda betta hujayralari to’liq nekrozlanishi bilan tugaydi. Preparat
parenteral, teri osti, vena ichi va qorin bo’shlig’i ichiga yuboriladi. Ko'pincha alloksan diabetini
qo'zg'atish uchun kalamushlar ishlatiladi. Diabetogen kalamushlar uchun alloksanning dozasi 100
- 200 mg/kg gacha. Umumiy o'lim soni va zaxarlanishni kamaytirish uchun alloksan dozasini 2-3
marta kamaytirish tavsiya etiladi [24]

Alloksan moddasining kamchiliklari:

Nefrotoksik va gepototoksik xususiyatning yuqoriligi;
Boshqa organlarni ham zararlashi mumkinligi [26];
Insulinorezistentlik shakllanishi tufayli "aralash" diabetning rivojlanishi [27];
Letal holatning yuqoriligi [25];
Alloksan moddasining afzalliklari:
Modelning nisbatan arzonligi,
80% zararlanish;
Eksperiment boshlanganidan 48-72 soatda diabetning klinik namoyon bo’lishi;

Streptozototsinli diabet modeli

Nitrozomochevinaning bu analogi gidrofilik va alloksanga o'xshash birikma, b-hujayra

ichiga GLUT2 transport vazifasida kiradi [28]. B hujaylaralning zararlanishining 3 ta yo’li bor.
asosiy mexanizm (ADPribose) polimeraza va nikotinamidodenindinukleotitning kamayishi


background image

ISSN:

2181-3906

2023

International scientific journal

«MODERN SCIENCE АND RESEARCH»

VOLUME 2 / ISSUE 5 / UIF:8.2 / MODERNSCIENCE.UZ

602

hisoblanadi, natijada ATF tarkibi va insulin sekretsiyani ingibirlash hususiyati pasayadi [28].
Streptozototsin tasiri shakllanishi natijasida jarayonga to’qima ichidagi azot oksidi ta’siri
qo’shiladi, natijada krebs sikli ishini susaytiradigan gidroksilli radikallar va mitoxondriylarda
kislorod yetishmovchiligini kelib chiqadi [29]. Bundan tashqari Streptozototsin AFK ni hosil
qilishi va DNK parchalanish xususiyati to;qimalarni zararlanishiga olib keladi[30]. Oxir-oqibatda
DNKning shikastlanishi energiyaning kamayishi bilan birga b-hujayralarning o'limiga olib keladi.
Preparatni yuborish usuli har xil bo’lib, urg’ochi jonivorlarda qandli diabet rivojlanishiga
chidamlilik yuqori bo’ladi [9]. Eng sezgir jonivorlardan kalamushlar hisoblanadi va
Streptozototsin vena ichiga 35-65mg/kg yuboriladi [28]. Sichqonlar uchun o'rtacha doza 100-200
mg/kg, quyonlar uchun -300 mg/kg bo’ladi[31]. Streptozototsin glyukokinaza ishini bloklamaydi,
alloksanning 5-karbonilli guruhidan farqi boshlang’ich gipoglikemik bosqichning bo’lmasligida.
Streptozototsin modelini qo’llashning afzalligi gepato va nefrotoksik ta’sirning yo’qligi
hisoblanadi. Buyrakning, jigar insulinomasining rivojlanish xavfi yoki eksperimentning
davomiyligiga streptokogenning onkogenlik ta'siri tufayli to'g'ridan-to'g'ri bog'liqligi natijasida
kompensatsiya shaklida diabet o'z-o'zidan "tiklanish"i mumkin[32].

Afzalliklari:

Genetik modellar bilan solishtirganda arzonligi;
Eksperiment boshlanishidan 72 soat Ichida klinikaning rivojlanishi
uzoq muddatli modelni yaratish imkoniyati.
Kamchiliklari:
Streptozototsinni onkogenlik xususiyati;
O’z-o’zidan tiklanish xususiyati;
Alloksanli modelga nisbatan qimmatligi;
tur va jinsning o'ziga xosligi;
insulin qarshiligining rivojlanishi tufayli "aralash" diabet rivojlanishi

Xulosa

Shunday qilib, hayvonlarning eksperimental modellaridan foydalanish zarurati1-toifa

diabetni o'rganishda ushbu kasallikning insonning hayotiga ta'siri o’rganish bilan belgilanadi.
Yuqoridagi ma’lumotlarga asoslanib, bu modellar oshqozon osti bezining betta hujayralarining
nekrozga uchrashi va insulinni yetishmasligi holatini yuzaga keltirilishi ma’lum bo’ldi. Modellar
orasida streptozototsin va alloksanli diabet modeli qo’llash uchun qulay modellar hisoblanadi. Bu
modellar aynan oshqozon osti bezi betta hujayralariga ta’sir ko’rsatib, insulin sekretsiyasini
kamaytirib, qandli diabetni chaqirishda yordam beradi.

REFERENCES

1.

Ostrauskas R. The prevalence of type 1 diabetes mellitus among 15-34-year-aged
Lithuanian inhabitants during 1991-2010. Prim Care Diabetes. 2015;9(2):105-111.
https://doi.org/10.1016/j.pcd.2014.07.009.

2.

Дедов И.И., Шестакова М.В. Сахарный диабет и артериальная гипертензия. — М.,
2006. — 344 с. [Dedov II, Shestakova MV. Sakharnyy diabeti arterial’naya gipertenziya.
Moscow; 2006. 344 p. (In Russ.)]


background image

ISSN:

2181-3906

2023

International scientific journal

«MODERN SCIENCE АND RESEARCH»

VOLUME 2 / ISSUE 5 / UIF:8.2 / MODERNSCIENCE.UZ

603

3.

Roglic G, Unwin N, Bennett PH, et al. The burden of mortality attributable to diabetes:
realistic estimates for the year 2000. Diabetes Care. 2005;28(9):2130-2135.
https://doi.org/10.2337/diacare.28.9.2130.

4.

Дедов И.И., Шестакова М.В. Сахарный диабет и репродуктивная система. — М.,
2016. — 176 с. [Dedov II, Shestakova MV. Sakharnyy diabet i reproduktivnaya sistema.
Moscow; 2016. 176 p. (In Russ.)]

5.

Потин В.В., Боровик Н.В., Тиселько А.В. Сахарный диабет и репродуктивная
система женщины // Журнал акушерства и женских болезней. — 2006. — Т. 55. —
№ 1. — C. 85–90. [Potin VV, Borovik NV, Tisel’ko AV. Diabetes Mellitus And Female
Reproductive System. Journal of Obstetrics and Womenʼs Diseases. 2006;55(1):85-90. (In
Russ.)]

6.

Levy N. The use of animal as models: ethical considerations. Int J Stroke. 2012;7(5):440-
442. https://doi.org/10.1111/j.1747-4949.2012.00772.x.

7.

Kroeger M. How omics technologies can contribute to the ‘3R’ principles by introducing
new

strategies

in

animal

testing.

Trends

Biotechnol.

2006;24(8):343-346.

https://doi.org/10.1016/j.tibtech.2006.06.003.

8.

Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med. 2005;22(4):359-
370. https://doi.org/10.1111/j.1464-5491.2005.01499.x.

9.

Etuk E. Animals models for studying diabetes mellitus. Agric Biol J N Am. 2010;1(2):130-
4.

10.

Баранов В.Г. Экспериментальный сахарный диабет. — Л.: Наука, 1983. — 240 с.
[Baranov VG. Eksperimental’ny sakharny diabet. Leningrad: Nauka; 1983. 240 p. (In
Russ.)]

11.

Kim JM, Lee TH, Lee MC, et al. Endoneurial microangiopathy of sural nerve in
experimental

vacor-induced

diabetes.

Ultrastruct

Pathol.

2002;26(6):393-401.

https://doi.org/10.1080/01913120290104700.

12.

Monago CC, Onwuka F, Osaro E. Effect of combined therapy of diabinese and nicotinic
acid on liver enzymes in rabbits with dithizone-induced diabetes. J Exp Pharmacol.
2010;2:145-153. https://doi.org/10.2147/JEP.S11490.

13.

Bailey CC, Bailey OT, Leech RS. Diabetes mellitus in rabbits injected with dialuric acid.
Proc Soc Exp Biol Med. 1946;63(3):502-505. https://doi.org/10.3181/00379727-63-15651

14.

Wöhler F, Liebig J. Untersuchungen über die Natur der Harnsäure. Annalen der Pharmacie.
1838;26(3):241-336. https://doi.org/10.1002/jlac.18380260302.

15.

Shaw Dunn J, McLetchie NGB. Experimental alloxan diabetes in the rat. Lancet.
1943;242(6265):384-387. https://doi.org/10.1016/s0140-6736(00)87397-3.

16.

Dunn JS, Kirkpatrick J, McLetchie NGB, Telfer SV. Necrosis of the islets of Langerhans
produced

experimentally.

J

Pathol

Bacteriol.

1943;55(3):245-257.

https://doi.org/10.1002/path.1700550302.

17.

Goldner MG, Gomori G. Alloxan diabetes in the Dog1. Endocrinology. 1943;33(5):297-
308. https://doi.org/ 10.1210/endo-33-5-297.

18.

Lenzen S, Munday R. Thiol-group reactivity, hydrophilicity and stability of alloxan, its
reduction products and its N-methyl derivatives and a comparison with ninhydrin. Biochem
Pharmacol. 1991;42(7):1385-1391. https://doi.org/10.1016/0006-2952(91)90449-f.


background image

ISSN:

2181-3906

2023

International scientific journal

«MODERN SCIENCE АND RESEARCH»

VOLUME 2 / ISSUE 5 / UIF:8.2 / MODERNSCIENCE.UZ

604

19.

Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia.
2008;51(2):216-226. https://doi.org/10.1007/s00125-007-0886-7.

20.

Boquist L, Nelson L, Lorentzon R. Uptake of labeled alloxan in mouse organs and
mitochondria

in

vivo

and

in

vitro.

Endo-crinology.

1983;113(3):943-948.

https://doi.org/10.1210/endo-113-3-943.

21.

Lenzen S, Panten U. Alloxan: history and mechanism of action. Diabetologia.
1988;31(6):337-342. https://doi.org/10.1007/bf02341500.

22.

Wrenshall GA, Collins-Williams J, Best CH. Initial changes in the blood sugar of the fasted
anesthetized

dog

after

alloxan.

Am

J

Physiol.

1950;160(2):228-246.

https://doi.org/10.1152/ajplegacy.1950.160.2.228.

23.

Tasaka Y, Inoue Y, Matsumoto H, Hirata Y. Changes in plasma glucagon, pancreatic
polypeptide and insulin during development of alloxan diabetes mellitus in dog. Endocrinol
Jpn. 1988;35(3):399-404. https://doi.org/10.1507/endocrj1954.35.399.

24.

Reis FPd, Sementilli A, Gagliardi ARdT. Experimental diabetes exacerbates skin
transplant

rejection

in

rats.

Acta

Cir

Bras.

2013;28(5):323-326.

https://doi.org/10.1590/s0102-86502013000500001.

25.

Federiuk IF, Casey HM, Quinn MJ, et al. Induction of type-1 diabetes mellitus in laboratory
rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comp Med.
2004;54(3):252-257.

26.

Srinivasan K, Ramarao P. Animal model in type 2 diabetes research: An overview. Ind J
Med Res. 2007;125(3):451.

27.

Islam MS, Loots du T. Experimental rodent models of type 2 diabetes: a review. Methods
Find

Exp

Clin

Pharmacol.

2009;31(4):249-261.

https://doi.org/10.1358/mf.2009.31.4.1362513.

28.

28. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat
pancreas. Physiol Res. 2001;50(6):537-546.

29.

Turk J, Corbett JA, Ramanadham S, et al. Biochemical evidence for nitric oxide formation
from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun.
1993;197(3):1458-1464. https://doi.org/10.1006/bbrc.1993.2641.

30.

Bedoya FJ, Solano F, Lucas M. N-Monomethyl-arginine and nicotinamide prevent
streptozotocin-induced double strand DNA break formation in pancreatic rat islets.
Experientia. 1996;52(4):344-347. https://doi.org/10.1007/ bf01919538.

31.

Dekel Y, Glucksam Y, Elron-Gross I, Margalit R. Insights into modeling streptozotocin-
induced

diabetes

in

ICR

mice.

Lab

Anim

(NY).

2009;38(2):55-60.

https://doi.org/10.1038/laban0209-55.

32.

Kazumi T, Yoshino G, Fujii S, Baba S. Tumorigenic action of streptozotocin on the
pancreas and kidney in male Wistar rats. Cancer Res. 1978;38(7):2144-2147.

References

Ostrauskas R. The prevalence of type 1 diabetes mellitus among 15-34-year-aged Lithuanian inhabitants during 1991-2010. Prim Care Diabetes. 2015;9(2):105-111. https://doi.org/10.1016/j.pcd.2014.07.009.

Дедов И.И., Шестакова М.В. Сахарный диабет и артериальная гипертензия. — М., 2006. — 344 с. [Dedov II, Shestakova MV. Sakharnyy diabeti arterial’naya gipertenziya. Moscow; 2006. 344 p. (In Russ.)]

Roglic G, Unwin N, Bennett PH, et al. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care. 2005;28(9):2130-2135. https://doi.org/10.2337/diacare.28.9.2130.

Дедов И.И., Шестакова М.В. Сахарный диабет и репродуктивная система. — М., 2016. — 176 с. [Dedov II, Shestakova MV. Sakharnyy diabet i reproduktivnaya sistema. Moscow; 2016. 176 p. (In Russ.)]

Потин В.В., Боровик Н.В., Тиселько А.В. Сахарный диабет и репродуктивная система женщины // Журнал акушерства и женских болезней. — 2006. — Т. 55. — № 1. — C. 85–90. [Potin VV, Borovik NV, Tisel’ko AV. Diabetes Mellitus And Female Reproductive System. Journal of Obstetrics and Womenʼs Diseases. 2006;55(1):85-90. (In Russ.)]

Levy N. The use of animal as models: ethical considerations. Int J Stroke. 2012;7(5):440-442. https://doi.org/10.1111/j.1747-4949.2012.00772.x.

Kroeger M. How omics technologies can contribute to the ‘3R’ principles by introducing new strategies in animal testing. Trends Biotechnol. 2006;24(8):343-346. https://doi.org/10.1016/j.tibtech.2006.06.003.

Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med. 2005;22(4):359-370. https://doi.org/10.1111/j.1464-5491.2005.01499.x.

Etuk E. Animals models for studying diabetes mellitus. Agric Biol J N Am. 2010;1(2):130-4.

Баранов В.Г. Экспериментальный сахарный диабет. — Л.: Наука, 1983. — 240 с. [Baranov VG. Eksperimental’ny sakharny diabet. Leningrad: Nauka; 1983. 240 p. (In Russ.)]

Kim JM, Lee TH, Lee MC, et al. Endoneurial microangiopathy of sural nerve in experimental vacor-induced diabetes. Ultrastruct Pathol. 2002;26(6):393-401. https://doi.org/10.1080/01913120290104700.

Monago CC, Onwuka F, Osaro E. Effect of combined therapy of diabinese and nicotinic acid on liver enzymes in rabbits with dithizone-induced diabetes. J Exp Pharmacol. 2010;2:145-153. https://doi.org/10.2147/JEP.S11490.

Bailey CC, Bailey OT, Leech RS. Diabetes mellitus in rabbits injected with dialuric acid. Proc Soc Exp Biol Med. 1946;63(3):502-505. https://doi.org/10.3181/00379727-63-15651

Wöhler F, Liebig J. Untersuchungen über die Natur der Harnsäure. Annalen der Pharmacie. 1838;26(3):241-336. https://doi.org/10.1002/jlac.18380260302.

Shaw Dunn J, McLetchie NGB. Experimental alloxan diabetes in the rat. Lancet. 1943;242(6265):384-387. https://doi.org/10.1016/s0140-6736(00)87397-3.

Dunn JS, Kirkpatrick J, McLetchie NGB, Telfer SV. Necrosis of the islets of Langerhans produced experimentally. J Pathol Bacteriol. 1943;55(3):245-257. https://doi.org/10.1002/path.1700550302.

Goldner MG, Gomori G. Alloxan diabetes in the Dog1. Endocrinology. 1943;33(5):297-308. https://doi.org/ 10.1210/endo-33-5-297.

Lenzen S, Munday R. Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its N-methyl derivatives and a comparison with ninhydrin. Biochem Pharmacol. 1991;42(7):1385-1391. https://doi.org/10.1016/0006-2952(91)90449-f.

Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-226. https://doi.org/10.1007/s00125-007-0886-7.

Boquist L, Nelson L, Lorentzon R. Uptake of labeled alloxan in mouse organs and mitochondria in vivo and in vitro. Endo-crinology. 1983;113(3):943-948. https://doi.org/10.1210/endo-113-3-943.

Lenzen S, Panten U. Alloxan: history and mechanism of action. Diabetologia. 1988;31(6):337-342. https://doi.org/10.1007/bf02341500.

Wrenshall GA, Collins-Williams J, Best CH. Initial changes in the blood sugar of the fasted anesthetized dog after alloxan. Am J Physiol. 1950;160(2):228-246. https://doi.org/10.1152/ajplegacy.1950.160.2.228.

Tasaka Y, Inoue Y, Matsumoto H, Hirata Y. Changes in plasma glucagon, pancreatic polypeptide and insulin during development of alloxan diabetes mellitus in dog. Endocrinol Jpn. 1988;35(3):399-404. https://doi.org/10.1507/endocrj1954.35.399.

Reis FPd, Sementilli A, Gagliardi ARdT. Experimental diabetes exacerbates skin transplant rejection in rats. Acta Cir Bras. 2013;28(5):323-326. https://doi.org/10.1590/s0102-86502013000500001.

Federiuk IF, Casey HM, Quinn MJ, et al. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comp Med. 2004;54(3):252-257.

Srinivasan K, Ramarao P. Animal model in type 2 diabetes research: An overview. Ind J Med Res. 2007;125(3):451.

Islam MS, Loots du T. Experimental rodent models of type 2 diabetes: a review. Methods Find Exp Clin Pharmacol. 2009;31(4):249-261. https://doi.org/10.1358/mf.2009.31.4.1362513.

28. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537-546.

Turk J, Corbett JA, Ramanadham S, et al. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun. 1993;197(3):1458-1464. https://doi.org/10.1006/bbrc.1993.2641.

Bedoya FJ, Solano F, Lucas M. N-Monomethyl-arginine and nicotinamide prevent streptozotocin-induced double strand DNA break formation in pancreatic rat islets. Experientia. 1996;52(4):344-347. https://doi.org/10.1007/ bf01919538.

Dekel Y, Glucksam Y, Elron-Gross I, Margalit R. Insights into modeling streptozotocin-induced diabetes in ICR mice. Lab Anim (NY). 2009;38(2):55-60. https://doi.org/10.1038/laban0209-55.

Kazumi T, Yoshino G, Fujii S, Baba S. Tumorigenic action of streptozotocin on the pancreas and kidney in male Wistar rats. Cancer Res. 1978;38(7):2144-2147.

inLibrary — это научная электронная библиотека inConference - научно-практические конференции inScience - Журнал Общество и инновации UACD - Антикоррупционный дайджест Узбекистана UZDA - Ассоциации стоматологов Узбекистана АСТ - Архитектура, строительство, транспорт Open Journal System - Престиж вашего журнала в международных базах данных inDesigner - Разработка сайта - создание сайтов под ключ в веб студии Iqtisodiy taraqqiyot va tahlil - ilmiy elektron jurnali yuridik va jismoniy shaxslarning in-Academy - Innovative Academy RSC MENC LEGIS - Адвокатское бюро SPORT-SCIENCE - Актуальные проблемы спортивной науки GLOTEC - Внедрение цифровых технологий в организации MuviPoisk - Смотрите фильмы онлайн, большая коллекция, новинки кинопроката Megatorg - Доска объявлений Megatorg.net: сайт бесплатных частных объявлений Skinormil - Космецевтика активного действия Pils - Мультибрендовый онлайн шоп METAMED - Фармацевтическая компания с полным спектром услуг Dexaflu - от симптомов гриппа и простуды SMARTY - Увеличение продаж вашей компании ELECARS - Электромобили в Ташкенте, Узбекистане CHINA MOTORS - Купи автомобиль своей мечты! PROKAT24 - Прокат и аренда строительных инструментов