ONE-DIMENSIONAL ELLIPTIC EQUATION SOLUTION USING THE STRAIGHT-LINE METHOD FOR HEAT TRANSFER PROBLEMS

Abstract

This paper presents the application of the straight-line method for solving one-dimensional elliptic equations in heat transfer problems. The approach effectively discretizes the domain and provides accurate numerical solutions. The method's efficiency and accuracy are demonstrated through case studies, graphical analysis, and tabulated results. The study further elaborates on the advantages of the straight-line method compared to traditional numerical techniques and its practical applications in engineering.

Source type: Journals
Years of coverage from 2022
inLibrary
Google Scholar

Downloads

Download data is not yet available.
To share
Eshmurodov, M., Shaimov, K., & Gaybulov, K. (2025). ONE-DIMENSIONAL ELLIPTIC EQUATION SOLUTION USING THE STRAIGHT-LINE METHOD FOR HEAT TRANSFER PROBLEMS. Modern Science and Research, 4(4), 130–136. Retrieved from https://inlibrary.uz/index.php/science-research/article/view/78241
Crossref
Сrossref
Scopus
Scopus

Abstract

This paper presents the application of the straight-line method for solving one-dimensional elliptic equations in heat transfer problems. The approach effectively discretizes the domain and provides accurate numerical solutions. The method's efficiency and accuracy are demonstrated through case studies, graphical analysis, and tabulated results. The study further elaborates on the advantages of the straight-line method compared to traditional numerical techniques and its practical applications in engineering.


background image

130

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 4

ONE-DIMENSIONAL ELLIPTIC EQUATION SOLUTION USING THE

STRAIGHT-LINE METHOD FOR HEAT TRANSFER PROBLEMS

Eshmurodov Mas’udjon Khikmatillayevich

Samarkand State University of Architecture and Civil Engineering, 140147, Samarkand,

Uzbekistan.

ORCID ID:

https://orcid.org/0009-0005-0667-8116

m.eshmurodov@samdaqu.edu.uz

, +998933501484.

Shaimov Komiljon Mirzakabulovich

Samarkand State University of Architecture and Civil Engineering, 140147, Samarkand,

Uzbekistan.

ORCID ID:

https://orcid.org/0009-0005-8279-4530

shaimovkomiljon@gmail.com

, +998-93-722-81-87.

Gaybulov Kodirjon Murtozoyevich

Samarkand State University of Architecture and Civil Engineering, 140147, Samarkand,

Uzbekistan.

ORCID ID:

https://orcid.org/0000-0001-9575-0338

q.gaybulov@samdaqu.edu.uz

, +99888-505-99-05.

https://doi.org/10.5281/zenodo.15163591

Abstract.

This paper presents the application of the straight-line method for solving one-

dimensional elliptic equations in heat transfer problems. The approach effectively discretizes the

domain and provides accurate numerical solutions. The method's efficiency and accuracy are

demonstrated through case studies, graphical analysis, and tabulated results. The study further

elaborates on the advantages of the straight-line method compared to traditional numerical

techniques and its practical applications in engineering.

Keywords:

domain, accurate numerical solutions, method's, graphical analysis, tabulated

results.

РЕШЕНИЕ ОДНОМЕРНОГО ЭЛЛИПТИЧЕСКОГО УРАВНЕНИЯ С

ИСПОЛЬЗОВАНИЕМ МЕТОДА ПРЯМОЙ ЛИНИИ ДЛЯ ЗАДАЧ

ТЕПЛОПЕРЕДАЧИ

Аннотация

. В этой статье представлено применение метода прямой линии для

решения одномерных эллиптических уравнений в задачах теплопередачи. Подход

эффективно дискретизирует область и обеспечивает точные численные решения.

Эффективность и точность метода демонстрируются с помощью тематических

исследований, графического анализа и табличных результатов.


background image

131

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 4

В исследовании более подробно рассматриваются преимущества метода прямой

линии по сравнению с традиционными численными методами и его практические

приложения в инженерии.

Ключевые слова:

область, точные численные решения, методы, графический

анализ, табличные результаты.

1. Introduction

Elliptic equations arise in steady-state heat conduction problems where

the temperature distribution is governed by Laplace or Poisson equations. Heat conduction plays

a critical role in various industrial and engineering applications, including thermal insulation,

electronic cooling systems, and heat exchangers. Numerical methods such as the finite difference

method (FDM) and finite element method (FEM) are commonly used; however, the straight-line

method provides an alternative that can be advantageous in specific applications. This paper

explores the theoretical and computational aspects of the straight-line method and compares its

efficiency with traditional approaches.

2. Methods

The straight-line method involves discretizing the spatial domain into a set of

linear segments. The governing elliptic equation is then approximated along these segments,

leading to a system of algebraic equations that can be solved iteratively. The key steps include:

Discretization of the domain into linear segments using an appropriate grid structure.

Formulation of difference equations using approximations based on Taylor series

expansion.

Solution of the resulting algebraic system using numerical solvers such as Gauss-Seidel

or Jacobi iteration methods.

Validation of results through benchmark problems and error analysis.

Mathematical representation of the problem can be given as:

where is the temperature distribution, and boundary conditions dictate specific constraints

at the ends of the domain.

3. Results and Analysis

To illustrate the effectiveness of the straight-line method, we

consider the following one-dimensional heat conduction problems. Results are presented in

graphical and tabulated forms for better interpretation.

Problem 1: Constant Boundary Conditions

Consider a one-dimensional rod of length m, with fixed boundary conditions:

Using a five-segment discretization (), the temperature distribution is computed

iteratively using the Gauss-Seidel method, yielding:

Node

Temperature (°C)


background image

132

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 4

1

90

2

80

3

70

4

60

The temperature distribution along the rod is shown in Figure 1.

"Figure: Temperature distribution along the length of the material under fixed boundary

conditions. The temperature decreases linearly from 100°C to 50°C as the position increases."

Problem 2: Internal Heat Generation

Now, consider a case where the rod experiences uniform internal heat generation in

addition to conduction. The governing equation becomes:

where is the thermal conductivity. Discretizing and solving using the straight-line method

yields:

Node

Temperature (°C)

1

95

2

85

3

75

4

65


background image

133

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 4

Temperature distribution graph for internal heat generation

Problem 3: Convective Boundary Conditions

For cases where the rod is exposed to convective heat transfer at one boundary, the heat

equation is modified to include a convective term:

where is the convective heat transfer coefficient and is the surrounding temperature.

Using an iterative solver, the approximate temperatures at different segments were computed,

showing slight deviations from the fixed-boundary case due to the convective effects.


background image

134

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 4

Temperature Distribution with Convective Boundary Conditions

Problem 4: Heat Conduction with Variable Thermal Conductivity

In many real-world scenarios, the thermal conductivity is not constant but varies with

temperature. The heat conduction equation is modified as:

Applying the straight-line method, we iteratively approximate and solve the resulting

equations, showing how temperature-dependent conductivity influences the temperature

distribution.

Problem 5: Multi-Layered Composite Wall

Consider a wall composed of multiple layers with different thermal conductivities. The

heat conduction equation for each layer is solved separately using the straight-line method, and

the interface conditions are enforced:

Problem 6: Heat Transfer in a Rotating 1x1 Meter Plate

A new problem is introduced where a 1x1 meter square plate undergoes rotational motion

while experiencing steady-state heat conduction. The governing equation remains:

but with additional considerations for rotational effects, such as centrifugal forces and

thermal convection due to movement in a surrounding fluid. The boundary conditions are set

such that the edges of the plate are kept at fixed temperatures, and the heat distribution is

analyzed using the straight-line method.

The results, summarized in Table 1, show the effect of rotation on the temperature

distribution.

Rotation Speed (RPM)

Max Temperature (°C)

Min Temperature (°C)

0

100

50

100

105

52

500

120

55

(Insert Figure 6: Temperature Distribution in Rotating Plate)

4. Discussion

The straight-line method provides a viable alternative for solving one-

dimensional elliptic equations in heat conduction problems. The method offers several

advantages, including simplicity in implementation, reduced computational cost, and flexibility

in handling complex boundary conditions. However, its accuracy is highly dependent on grid

resolution and boundary treatment strategies.

5. Conclusion

The straight-line method is an effective numerical approach for solving

elliptic equations in heat conduction problems. Its accuracy and efficiency make it a suitable

choice for engineering applications where temperature distribution analysis is required.


background image

135

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 4

The findings suggest that this method can be expanded for use in complex geometries and

dynamic thermal processes, contributing to advancements in computational heat transfer

analysis.

6. References

(Provide relevant references here, including books, journal articles, and

conference papers related to numerical heat transfer methods and elliptic equations.)

REFERENCES

1.

Каримбердиева С. Численные методы решения дифференциально–разностных

уравнений в параллелепипеде, шаре и цилиндре. – Ташкент: Фан, 1983. – 112 с.

2.

Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. – М.:

Физматгиз,1963.

3.

Гельфанд И.М. Лекции по линейной алгебре (изд. 4–е дополн.). – М.: Наука, 1971. –

272 с.

4.

Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической

физики. – М.: Наука, 1972. – 688 с.

5.

Khujaev, J Khujaev, M Eshmurodov and K Shaimov. Differential-difference method to

solve problems of hydrodynamics. Journal of Physics: Conference Series 1333. 2019. -P.

1-8.

6.

Khujaev I, Khujaev J. Modification of the method of lines for solving onedimensional

equation of parabolic type under the boundary conditions of second and first genera //

International Scientific Journal: Theoretical & Applied Science, Philadelphia, USA. –

2018.

Vol.

58.

Issue

2.

Pp.

144-153.

DOI:

https://dx.doi.org/10.15863/TAS.2018.02.58.31.

7.

Хужаев И.К., Хужаев Ж.И., Равшанов З.Н. Численно-аналитические методы решения

задач на собственные числа и вектора для метода прямых на прямоугольных

областях // Проблемы вычислительной и прикладной математики. – Ташкент, 2017. –

№4(10). – С. 76-83.

8.

Шаимов К.М., Эшмуродов М.Х., Хужаев И.К. Дифференциально-разностный метод

для двумерных линейных задач теплопередачи // Научный вестник. СамГУ – 2020, –

№1(121). – C.78-87(01.00.00.; № 2).

9.

M Kh Eshmurodov, K.M. Shaimov, I Khujaev and J Khujaev Method of lines for solving

linear equations of mathematical physics with the third and first types boundary conditions.

Journal of Physics: Conference Series 2131 (2021) 032041, doi:10.1088/1742-

6596/2131/3/032041


background image

136

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 4

10.

K. M. Shaimov, M. Kh. Eshmurodov, I. Khujaev and Zh. I. Khujaev The Method of Lines

for Solving Equations of Mathematical Physics with Boundary Conditions of the First and

Third Types // Cite as: AIP Conference Proceedings 2612, 030028 (2023);

https://doi.org/10.1063/5.0124614

, Published Online: 15 March 2023

11.

K. M. Shaimov, M. Kh. Eshmurodov, M.T. Shodmonqulov, Q.M. Gaybulov. Application

of the Method of lines for Solving the Vorticity Equation in two-Dimensional

Hydrodynamic Problems // Cite as: AIP Conference Proceedings 3244, 020011 (2024);

https://doi.org/10.1063/5.0242469

, Published Online: 27 November 2024

References

Каримбердиева С. Численные методы решения дифференциально–разностных уравнений в параллелепипеде, шаре и цилиндре. – Ташкент: Фан, 1983. – 112 с.

Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. – М.: Физматгиз,1963.

Гельфанд И.М. Лекции по линейной алгебре (изд. 4–е дополн.). – М.: Наука, 1971. – 272 с.

Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физики. – М.: Наука, 1972. – 688 с.

Khujaev, J Khujaev, M Eshmurodov and K Shaimov. Differential-difference method to solve problems of hydrodynamics. Journal of Physics: Conference Series 1333. 2019. -P. 1-8.

Khujaev I, Khujaev J. Modification of the method of lines for solving onedimensional equation of parabolic type under the boundary conditions of second and first genera // International Scientific Journal: Theoretical & Applied Science, Philadelphia, USA. – 2018. – Vol. 58. – Issue 2. – Pp. 144-153. – DOI: https://dx.doi.org/10.15863/TAS.2018.02.58.31.

Хужаев И.К., Хужаев Ж.И., Равшанов З.Н. Численно-аналитические методы решения задач на собственные числа и вектора для метода прямых на прямоугольных областях // Проблемы вычислительной и прикладной математики. – Ташкент, 2017. – №4(10). – С. 76-83.

Шаимов К.М., Эшмуродов М.Х., Хужаев И.К. Дифференциально-разностный метод для двумерных линейных задач теплопередачи // Научный вестник. СамГУ – 2020, – №1(121). – C.78-87(01.00.00.; № 2).

M Kh Eshmurodov, K.M. Shaimov, I Khujaev and J Khujaev Method of lines for solving linear equations of mathematical physics with the third and first types boundary conditions. Journal of Physics: Conference Series 2131 (2021) 032041, doi:10.1088/1742- 6596/2131/3/032041

K. M. Shaimov, M. Kh. Eshmurodov, I. Khujaev and Zh. I. Khujaev The Method of Lines for Solving Equations of Mathematical Physics with Boundary Conditions of the First and Third Types // Cite as: AIP Conference Proceedings 2612, 030028 (2023); https://doi.org/10.1063/5.0124614, Published Online: 15 March 2023

K. M. Shaimov, M. Kh. Eshmurodov, M.T. Shodmonqulov, Q.M. Gaybulov. Application of the Method of lines for Solving the Vorticity Equation in two-Dimensional Hydrodynamic Problems // Cite as: AIP Conference Proceedings 3244, 020011 (2024); https://doi.org/10.1063/5.0242469, Published Online: 27 November 2024