Increase Hydraulic Pressure by Compressing the Roller

HAC
Google Scholar
To share
Khurramov, S. (2024). Increase Hydraulic Pressure by Compressing the Roller. Modern Science and Research, 3(1), 1–5. Retrieved from https://inlibrary.uz/index.php/science-research/article/view/28214
Crossref
Сrossref
Scopus
Scopus

Abstract

The results of the study of hydraulic pressure in the roll squeezing of wet materials are given. Mathematical models of hydraulic pressure distribution in the squeezing zone are developed. It is revealed that the hydraulic pressure in the compression zone increases from zero at the initial contact point to a maximum at a point lying on the line of centers. The distribution patterns of hydraulic pressure in the strain restoration zone depend on the length of its part, where the fluid flows from the wet material into the roll coating.

Similar Articles


background image

Increase Hydraulic Pressure by Compressing the Roller

Shukhrat Khurramov

Tashkent University of Applied Sciences, Gavhar Str. 1, Tashkent 100149, Uzbekistan

khurramov86sh@gmail.com

https://doi.org/10.5281/zenodo.10471075

Keywords:

roller squeezing, moisture filtration, hydraulic pressure, squeezing area.

Abstract:

The results of the study of hydraulic pressure in the roll squeezing of wet materials are given.
Mathematical models of hydraulic pressure distribution in the squeezing zone are developed. It is
revealed that the hydraulic pressure in the compression zone increases from zero at the initial
contact point to a maximum at a point lying on the line of centers. The distribution patterns of
hydraulic pressure in the strain restoration zone depend on the length of its part, where the fluid
flows from the wet material into the roll coating.

Introduction

In many industries, roll technological machines are
widely used for the mechanical processing of various
materials. A special group is roller machines for
squeezing wet materials.
In the process of roller squeezing of wet materials, the
simultaneous occurrence of two phenomena is
observed - contact interaction and moisture filtration.
At the same time, a change in the indicators of contact
interaction affects the change in moisture filtration, and
vice versa. Therefore, the study of one of the
phenomena without taking into account the other does
not allow one to obtain reliable parameters of the
process of roller squeezing of wet materials.
Accordingly, to describe the roll squeezing of wet
materials, it is necessary to jointly solve two problems:
the first is contact interaction in two-roll modules
(contact problem); the second is moisture filtration in a
deformable inhomogeneous porous medium (hydraulic
problem).
The identity of the laws that take place during the
extraction of various materials causes a desire to reveal
the physical picture of the phenomenon of moisture

squeezing. Many researchers have tried to describe the
movement of a liquid during its roll squeezing [1–4]
References [5-10] are devoted to the study of the
phenomenon of contact interaction under the roll
squeezing of wet materials. Mathematical models of
the shape of roll contact curves, friction stresses, and
distribution of contact stresses in a generalized two-roll
module are developed in these studies.
One of the main hydraulic problems of the theory of
roller squeezing of fibrous materials is the modeling of
the hydraulic pressure distribution in the squeezing
area [2].
An analysis of the studies devoted to the hydraulic
problems of wet materials roll pressing [5-11] showed
that the existing models of hydraulic pressure
distribution in the pressing area were obtained with the
introduction of models of roll equipment and materials
that do not correspond to the real physical phenomena
of wet materials roll pressing. They do not consider the
presence of roll coating. However, in roll squeezing
machines at least one of the rollers has an elastic
coating. Therefore, the existing models of hydraulic
pressure distribution do not allow the disclosure of the
hydraulic phenomenon of wet materials roll pressing.


background image

In [20], analytical dependencies were determined that
describe the distribution patterns of the hydraulic
pressure in the pressing area for a symmetrical two-roll
module. In order to further develop theoretical
concepts, [1-3], the object of study is a generalized
two-roll module, in which the rolls are located relative
to the vertical line with an inclination to the right at an
angle of

, have unequal diameters

)

(

2

1

D

D

with

elastic coatings, and a layer of wet (processed) material
has a uniform thickness and is fed tilted downward
with respect to the line of centers at an angle of

1

(Fig. 1).

Fig. 1 Scheme of a two-roll moduleof squeezing machine

Materials and methods

The lower roll contact curve (curve

A

1

A

2

) consists of

two zones

3

1

A

A

and

2

3

A

A

. In zone

3

1

A

A

, the

fibrous material and the roll coating are compressed,

and in

2

3

A

A

the strain is restored.

Let us first consider the process of fluid filtration in
zone

3

1

A

A

.

The equation of the contact curve of the lower roll in
the compression zone for the
considered two-roll module has the following form [4]:

,

0

)

(

,

)

cos(

)

cos(

1

1

11

1

11

11

1

11

11

11

11

11

1

11

+

+





+

+

+

+

=

k

k

R

r

(1)

,

)

sin(

)

sin(

1

21

1

*

1

21

11

1

11

11

+

=

m

H

m

k

;

))

1

(

)

1

(

(

)

(

))

1

(

)

1

(

(

)

(

1

*

11

*

11

11

11

11

11

11

0

11

*

11

*

11

11

11

11

*

11

*

11

11

H

m

A

m

A

l

m

A

h

m

A

m

A

l

m

A

ср

ср

+

=

)

sin(

)

sin(

21

11

1

21

1

0

11

+

=

h

;

,

)

(

2

)

(

2

sin

1

)

(

1

11

1

11

1

11





+

+

=

R

l

ср

here

11

m

is the coefficient of strengthening of the

points of the elastic coating of the lower roll under

compression,

*

1

m

is the coefficient of strengthening

of the points of the processed material under
compression.
Hence

.

cos

sin

cos

1

11

2

11

11

11

11

1

11

11

11

k

R

k

r

+

=

(2)

In zone

3

1

A

A

, the fibrous material is compressed, so

the fluid flows from it into the roll coating along the
polar angle [2, 12].
The process of fluid flow is considered continuous and
steady.
The feed rate of the fibrous material in the contact area
is constant and equal to

.

m

v

The fluid rate in the contact area is variable and equal
to [12]:

),

)

(

)

((

3

11

3

1

11

11

11

+

+

+

=

b

u

0

)

(

11

1

11

+

+

, (3)

where

,

))

cos(

1

)(

1

(

3

)

cos(

1

11

11

11

11

11

0

11

1

11

1

11

+

+

+

+

=

k

k

h

R

v

b

m

.

)

sin(

)

sin(

21

11

1

21

1

0

11

+

=

h

In [2], assuming the working hypothesis of the
orthogonality of the maximum and minimum porosity,
the applicability of the generalized Darcy law for an
anisotropic medium was established

K

u

n

P

n

=

, (4)

with filtration factor

,

sin

cos

1

min

2

max

2

K

K

K

+

=

where

u

P

n

,

are the hydraulic pressure and

filtration rate in direction

n

;

is the fluid viscosity

coefficient;

max

K

is

the

maximum

filtration

coefficient in the direction across the surface of the
material (along the

Оу

axis);

min

K

is the minimum


background image

filtration coefficient in the direction along the warp
threads of the material (along the

Оx

axis).

According to this dependence, the filtration direction

angle varies within

o

90

0

. On roller squeezing

machines, where the rollers have an elastic coating, at
each point of the roller contact curve, the resulting
filtration rate is directed relative to the direction of the

material feed at some angle of

o

90

, close to the

polar angle of

[2]. Therefore, for this case, we can

take

=

o

90

[12]. Then the expression

for the filtration coefficient takes the following form:

.

cos

sin

1

min

2

max

2

K

K

K

+

=

(5)

With formulas (3), (4), and (5), we obtain

)

)

(

)

((

)

(

cos

)

(

sin

3

11

3

1

11

min

11

11

2

max

11

11

2

11

11

11

+

+

+



+

+

+

=

K

K

b

n

P

n

assuming

2

11

11

2

)

(

1

)

(

cos

+

+

и

2

11

11

2

)

(

)

(

sin

+

+

)

(

)

)

(

)

((

)

(

1

)

(

11

11

3

11

3

1

11

2

11

max

11

min

11

max

11

min

11

11

11

11

+

+

+

+





+

=

+

d

dn

K

K

K

K

b

d

dP

n

. (6)

From Fig. 1, it follows that

)

cos(

11

11

11

+

=

r

n

.

Hence

)

sin(

)

cos(

)

(

11

11

11

11

11

11

+

+

=

+

r

r

d

dn

or considering equalities (1) and (2)

)

(

1

)

sin(

1

)

(

11

11

1

11

11

11

1

11

11

+

+

+

+

=

+

k

R

k

R

d

dn

.

With this in mind, from equality (6) we obtain





+

+

=

+

2

11

max

11

min

11

max

11

min

11

11

11

11

1

11

11

)

(

1

)

1

(

)

(

K

K

K

K

k

b

R

d

dP

n

)

)(

)

(

)

((

11

3

11

3

1

11

+

+

+

+

or being limited to the terms of the third power relative
to

)

(

11

+

).

(

)

(

)

(

)

1

(

)

(

11

11

3

11

max

11

min

11

max

11

min

11

11

11

3

1

11

11

1

11

+





+

+

+

+

=

d

K

K

K

K

k

b

R

dP

n

(7)

After integration, we get

,

)

(

2

)

(

11

2

11

4

11

max

11

min

11

max

11

11

11

C

K

K

K

c

P

n

+





+

+

=

(8)

where

))

cos(

1

)(

1

(

12

)

)(

cos(

1

11

11

11

11

11

0

11

min

11

3

1

11

1

11

2

1

11

+

+

+

+

+

=

k

k

h

K

R

v

с

m

Constant

11

C

is determined by initial condition

0

))

(

(

1

11

11

=

+

n

P

:

.

)

(

)

(

2

4

1

11

max

11

min

11

max

11

2

1

11

11





+

+

=

K

K

K

C

Then we obtain

,

)

)

(

)

((

2

)

)

(

)

((

2

11

2

1

11

max

11

min

11

max

11

2

11

2

1

11

11

11





+

+

+

+

+

=

K

K

K

c

P

n

(9)

where

.

0

)

(

11

1

11

+

+

This formula determines the patterns of distribution of
hydraulic pressure along the contact curve of the lower
roll in the compression zone.
The patterns of distribution of hydraulic pressure along
the contact curve of the

lower roll in the strain restoration zone are determined
similarly:


background image

,

)

)

(

)

((

2

)

)

(

)

((

2

12

2

4

14

max

12

min

12

max

12

2

12

2

4

14

12

12





+

+

+

+

+

=

K

K

K

c

P

n

(10)

where

;

0

2

12

12

+

+

;

1

0

),

(

1

2

12

1

4

14

+

=

+

))

cos(

1

)(

1

(

12

)

)(

cos(

2

12

12

12

12

12

0

12

min

12

3

2

12

2

12

2

1

12

+

+

+

+

+

=

k

k

h

K

R

v

с

m

.

The patterns of distribution of hydraulic pressure along
the contact curve of the upper roll are determined
likewise.

They have the following form:

,

2

)

)

(

)

((

)

)

(

)

((

2

21

2

1

21

max

21

min

21

max

21

2

21

2

1

21

21

21





+

+

=

K

K

K

c

P

n

(11)

where

,

0

)

(

21

1

21

;

))

cos(

1

)(

1

(

12

)

)(

cos(

1

21

21

21

21

21

0

21

min

21

3

1

11

1

21

2

2

21

+

+

=

k

k

h

K

R

v

с

m

,

2

)

)

(

)

((

)

)

(

)

((

2

22

2

4

24

max

22

min

22

max

22

2

22

2

4

24

22

22





+

=

K

K

K

c

P

n

(12)

where

;

0

2

22

22

;

1

0

),

(

2

2

22

2

4

=

))

cos(

1

)(

1

(

12

)

)(

cos(

2

22

22

22

22

22

0

22

min

22

3

2

22

2

22

2

2

22

+

+

=

k

k

h

K

R

v

с

m

.

Thus, analytical dependencies (9)-(12) are determined,
which describe the patterns of distribution of hydraulic
pressure in the pressing zone for the generalized two-
roll module shown in Fig. 1.
Graphs of changes in hydraulic pressure along the roll
contact curve are shown in Fig.2.

Fig. 2. Graphs of changes in hydraulic

pressure along the roll contact curve:

;

2

1

2

;

4

1

1

12

14

12

14

=

=

.

4

,

4

3

3

12

14

12

14

=

=

Results

Mathematical models of hydraulic pressure distribution
in the squeezing zone were developed.

Conclusions

From the analysis of the calculated data and

graphs, it follows that the hydraulic pressure in the
compression zone increases from zero at the initial
point of contact, to a maximum at a point lying on the
line of centers. The distribution patterns of hydraulic
pressure in the strain restoration zone depend on the
length of its part, where the fluid flows from the wet
material into the roll coating.


References

[1].

Parshukov V.E., Marinin A.N., Konstantinova E.R.,

Petrova

I.V.,

Fomin

Yu.G.

Influence

of

technological factors on the degree of moisture

extraction from the fabric. Bulletin of Universities.
Technology of the textile industry - 2011, No.

4

pp. 124-127.

[2].

Novikov N. E. Pressing paper web. Moscow. Forest

industry, 1992.


background image

[3].

Alexa V, Ratiu S and Kiss.I. Metall Rolling–

Asymmetrical rolling process.IOP Conference
Series: Materials Shience and Engineering.
106012019 (2016).

[4].

Khurramov,

S.H.R., Bakhadirov,

G.A., Abdukarimov, A. Mathematical modeling of
friction stresses in a roll moduleIzvestiya Vysshikh
Uchebnykh

Zavedenii,

Seriya

Teknologiya

Tekstil'noi

Promyshlennostithis

link

is

disabled, 2022,

1

, pp. 242–247

[5].

Khurramov Sh.R. Analytical description of the

contact curve shape of the rolls in the two-roll
module, Izvestiya Vysshikh Uchebnykh Zavedenii,
Seriya Teknologiya Tekstil'noi Promyshlennostithis
link is disabled,
2021,

4

, pp. 153–158

[6].

X.Tan. Friction of plasticity: application of the

dynamic friction model// ImechE Part J:J.
Enginieering Tribology. 2007,

221.

[7].

Khurramov,

S., Abdurakhmonov,

B.

Contact

Problems of the Theory of Roller Squeezing of
Leather //AIP Conference Proceedings,

2637

,

060003 (2022)

[8].

V.Alexa, S.A.Ratiu, I Kiss and G. Ciota.

Modulling pressure rolling of asymmetric rolling
process// IOP Conf.Series: Materials Sciece and
Engineering. 200012038(2017).

[9].

Khurramov Sh. R., Abdukarimov A., Khalturayev

F.S., Kurbanova F.Z. Modeling of friction stress in
twin roll modules // Journal of Physics: Conference
Series,

1789

(2021)012008.

[10].

Khurramov, Sh.R., Khalturaev, F.S., Kurbanova,

F.Z. Theoretical analysis of the conditions of
capture in an asymmetric two-roll module,
Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya
Teknologiya Tekstil'noi Promyshlennostithis link is
disabled,
2021,

4

, стр. 159–163

[11].

Konovalov A.B. Simulation modeling of the

working process in longitudinal filtration Presses.
Technical and technological problems of service. -
2012. -

2

(20), pp. 40-47.

[12].

Khurramov Sh.R. Filtration rates in roller pressing

of fibrous materials. J AIP Conference Proceedins,

2402

0300420(2021)

[13].

Kuznetsov V.A., Petrov N.A., Kortovenko V.M.

Physical model of the process of squeezing fabric.
Bulletin of Universities. Technology of the textile
industry "- 1984,

3

, pp. 102 -105.

[14].

Khurramov Sh. R, Bahadirov G.A., Buriev E.S.,

Abduxalikova D.N.

Modeling of the roller pressing

of fibraus materials" E3S Web of Conference,
264(2021)01019.

[15].

D. McDonald, R.J. Kerekes, J.Zhao, J. Perspectives

on deriving mathematical modelsin pulp and paper
science. BioResources

15

pp.7319-7329(2020)

[16].

Bezanovic D., Duin C. J., Kaasschieter E.F.

Analysis of wet pressing of paper: The three phase
model, Part II: Compressible air case Transport in
Porous Media 2007,

67

, pp.171-187.

[17].

Khurramov Sh. R, Khalturaev F.S., Buriev E.S.

Residual moisture concent in semi-finished leather
under roller pressing" AIP Conference Proceedings,
MIP Injenering – III, Krosnoyarsk, Russia,

2402

030038(2021)

.

[18].

Iliev O., Printsypar G., Rief S. On mathematical

modeling and simulation of the pressing section of
a paper machine including dynamic capillary
effects: One-dimensional model. J Transport in
Porous Media, 2012,

92

pp.41-59.

[19].

D. McDonald D, R.J. Kerekes.Estimating limits of

wet pressing on paper machines. Tappi Journal

16

(2) 81-87 (2017)

[20].

Khurramov, S., Kurbanova, F. Hydraulic Problems

of the Theory of Roller Pressing

Hides

AIP

Conference Proceedingsthis link is disabled

,

2637

060004 (2022)

References

. Parshukov V.E., Marinin A.N., Konstantinova E.R., Petrova I.V., Fomin Yu.G. Influence of technological factors on the degree of moisture extraction from the fabric. Bulletin of Universities. Technology of the textile industry - 2011, No. 4 pp. 124-127.

. Novikov N. E. Pressing paper web. Moscow. Forest industry, 1992.

. Alexa V, Ratiu S and Kiss.I. Metall Rolling–Asymmetrical rolling process.IOP Conference Series: Materials Shience and Engineering. 106012019 (2016).

. Khurramov, S.H.R., Bakhadirov, G.A., Abdukarimov, A. Mathematical modeling of friction stresses in a roll moduleIzvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil'noi Promyshlennostithis link is disabled, 2022, 1, pp. 242–247

. Khurramov Sh.R. Analytical description of the contact curve shape of the rolls in the two-roll module, Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil'noi Promyshlennostithis link is disabled, 2021, 4, pp. 153–158

. X.Tan. Friction of plasticity: application of the dynamic friction model// ImechE Part J:J. Enginieering Tribology. 2007, 221.

. Khurramov, S., Abdurakhmonov, B. Contact Problems of the Theory of Roller Squeezing of Leather //AIP Conference Proceedings, 2637, 060003 (2022)

. V.Alexa, S.A.Ratiu, I Kiss and G. Ciota. Modulling pressure rolling of asymmetric rolling process// IOP Conf.Series: Materials Sciece and Engineering. 200012038(2017).

. Khurramov Sh. R., Abdukarimov A., Khalturayev F.S., Kurbanova F.Z. Modeling of friction stress in twin roll modules // Journal of Physics: Conference Series, 1789(2021)012008.

. Khurramov, Sh.R., Khalturaev, F.S., Kurbanova, F.Z. Theoretical analysis of the conditions of capture in an asymmetric two-roll module, Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil'noi Promyshlennostithis link is disabled, 2021, 4, стр. 159–163

. Konovalov A.B. Simulation modeling of the working process in longitudinal filtration Presses. Technical and technological problems of service. - 2012. - 2 (20), pp. 40-47.

. Khurramov Sh.R. Filtration rates in roller pressing of fibrous materials. J AIP Conference Proceedins, 2402 0300420(2021)

. Kuznetsov V.A., Petrov N.A., Kortovenko V.M. Physical model of the process of squeezing fabric. Bulletin of Universities. Technology of the textile industry "- 1984, 3, pp. 102 -105.

. Khurramov Sh. R, Bahadirov G.A., Buriev E.S., Abduxalikova D.N. Modeling of the roller pressing of fibraus materials" E3S Web of Conference, 264(2021)01019.

. D. McDonald, R.J. Kerekes, J.Zhao, J. Perspectives on deriving mathematical modelsin pulp and paper science. BioResources 15 pp.7319-7329(2020)

. Bezanovic D., Duin C. J., Kaasschieter E.F. Analysis of wet pressing of paper: The three phase model, Part II: Compressible air case Transport in Porous Media 2007, 67, pp.171-187.

. Khurramov Sh. R, Khalturaev F.S., Buriev E.S. Residual moisture concent in semi-finished leather under roller pressing" AIP Conference Proceedings, MIP Injenering – III, Krosnoyarsk, Russia, 2402030038(2021).

. Iliev O., Printsypar G., Rief S. On mathematical modeling and simulation of the pressing section of a paper machine including dynamic capillary effects: One-dimensional model. J Transport in Porous Media, 2012, 92 pp.41-59.

. D. McDonald D, R.J. Kerekes.Estimating limits of wet pressing on paper machines. Tappi Journal 16(2) 81-87 (2017)

. Khurramov, S., Kurbanova, F. Hydraulic Problems of the Theory of Roller Pressing Hides AIP Conference Proceedingsthis link is disabled, 2637 060004 (2022)

inLibrary — это научная электронная библиотека inConference - научно-практические конференции inScience - Журнал Общество и инновации UACD - Антикоррупционный дайджест Узбекистана UZDA - Ассоциации стоматологов Узбекистана АСТ - Архитектура, строительство, транспорт Open Journal System - Престиж вашего журнала в международных базах данных inDesigner - Разработка сайта - создание сайтов под ключ в веб студии Iqtisodiy taraqqiyot va tahlil - ilmiy elektron jurnali yuridik va jismoniy shaxslarning in-Academy - Innovative Academy RSC MENC LEGIS - Адвокатское бюро SPORT-SCIENCE - Актуальные проблемы спортивной науки GLOTEC - Внедрение цифровых технологий в организации MuviPoisk - Смотрите фильмы онлайн, большая коллекция, новинки кинопроката Megatorg - Доска объявлений Megatorg.net: сайт бесплатных частных объявлений Skinormil - Космецевтика активного действия Pils - Мультибрендовый онлайн шоп METAMED - Фармацевтическая компания с полным спектром услуг Dexaflu - от симптомов гриппа и простуды SMARTY - Увеличение продаж вашей компании ELECARS - Электромобили в Ташкенте, Узбекистане CHINA MOTORS - Купи автомобиль своей мечты! PROKAT24 - Прокат и аренда строительных инструментов