Features Of Inverse to Block - Tridiagonal Matrices with Zero Leading Block Angular Minors

HAC
Google Scholar
To share
Rakhmonov, T. . (2024). Features Of Inverse to Block - Tridiagonal Matrices with Zero Leading Block Angular Minors. Modern Science and Research, 3(1), 1–7. Retrieved from https://inlibrary.uz/index.php/science-research/article/view/28213
Crossref
Сrossref
Scopus
Scopus

Abstract

The article reports about construction of a previously unknown structure and shows the results of the study of direct representations of inverse to block-tridiagonal matrices with zero (or close to zero) leading block-angular minors.The study of the structure of the inverse matrix are related, firstly, to the solution of a system of linear algebraic equations, and secondly, to the inversion of a matrix of the indicated type. The task of inversing a block-tridiagonal type matrix arises while solving the problem of processing and analyzing experimental data of high-energy physics. At the same time, the special-type likelihood function is minimized, the parameters of which are the kinematic parameters of the secondary particles. The experimental data obtained by measurements contain errors. Therefore, stringent requirements are set to numerical methods for the stability of intermediate computer calculations.


background image

Features Of Inverse to Block - Tridiagonal Matrices with Zero

Leading Block Angular Minors

Turdimukhammad Rakhmonov

Tashkent University of Applied Sciences, Gavhar Str. 1, Tashkent 100149, Uzbekistan

t.rakhmonov@mail.ru

https://doi.org/10.5281/zenodo.10471069

Keywords:

Matrix, minor, representations, system solutions, block-tridiagonal matrix, linear algebra, computational
mathematics, ill-posed system.

Abstract:

The article reports about construction of a previously unknown structure and shows the results of the study of
direct representations of inverse to block-tridiagonal matrices with zero (or close to zero) leading block-
angular minors.The study of the structure of the inverse matrix are related, firstly, to the solution of a system
of linear algebraic equations, and secondly, to the inversion of a matrix of the indicated type. The task of
inversing a block-tridiagonal type matrix arises while solving the problem of processing and analyzing
experimental data of high-energy physics. At the same time, the special-type likelihood function is minimized,
the parameters of which are the kinematic parameters of the secondary particles. The experimental data
obtained by measurements contain errors. Therefore, stringent requirements are set to numerical methods for
the stability of intermediate computer calculations.

INTRODUCTION

This article is devoted to the construction and

analysis of the structure of direct representations of
inverse to block-tridiagonal matrices with zero (or
close to zero) leading block-angular minors. The
study of the properties of the explicit type of inverse
matrices and knowledge of their matrix structure is
necessary when constructing direct (non-iteration)
methods for solving poorly conditioned systems of

linear algebraic equations. It is known that solutions
of poorly conditioned systems of linear algebraic
equations with block - tridiagonal matrices arise when
the following problems are formulated: in the process
of numerical solution of boundary value problems of
mathematical physics; processing and analysis of
experimental data in high-energy physics; modeling
and numerical solution of geophysics problems,etc.
(see, for example, [1 - 6]).

So, let

𝐶

be a block-three-diagonal matrix of the

general type

𝐶 =

[

𝑞

1

 𝑟

2

𝑝

2

𝑞

2

 𝑟

3

𝑝

3

𝑞

3

𝑟

4

 −

  −

𝑝

𝑚−1

 𝑞

𝑚−1

   𝑟

𝑚

  𝑝

𝑚

  𝑞

𝑚

]

,

(1)

where

{𝑞

𝜉

}

𝜉=1

𝑚

- diagonal elements - blocks of the

matrix

𝐶

, which are generally square matrices of

various dimensions, at

{𝑝

𝜉

}

𝜉=2

𝑚

and

{𝑟

𝜉

}

𝜉= 2

𝑚

- under

(above) diagonal elements - blocks of the matrix

𝐶

,


background image

which are generally rectangular matrices, the
dimensions of which are determined by the
dimensions of the corresponding square matrices

{𝑞

𝜉−1

𝑎𝑛𝑑 𝑞

𝜉

}

𝜉=2

𝑚

.

Tridiagonal and block - tridiagonal

matrices play an independent role in solving many
problems of computational mathematics and
mathematical physics. Indeed, the numerical solution
of boundary value problems of mathematical physics
leads, in the general case, to the solution of algebraic
problems with tridiagonal tape and block tridiagonal
matrices. It is known (see, for example, [1]) that the
factorized representation of the error matrix taking
into account multiple Coulomb scattering, energy
losses, as well as hardware errors and arbitrary track
splitting when processing information in high-energy
physics experiments contains matrices of the form

𝐶(1)

. Moreover, the methods of constructing and the

efficiency of computational algorithms for solving
the above basic problems of linear algebra (with such
matrices)

are

largely

determined

by

the

representation’s characteristic of them and their
inverse matrices, as well as representations of their
leading angular minors and determinants. Extensive
literature is devoted to the method of solving systems
of linear algebraic equations with tridiagonal
matrices. These methods are largely associated with
the construction of economical algorithms for the
characteristic types of systems that arise when solving

problems of mathematical physics. The main task in
their development is to minimize the number of
arithmetic operations taking into account the specifics
of the equations or to ensure reliability, i.e. stability
to the accumulation of rounding errors when
implemented on a computer.

MATERIALS AND METHODS

Direct representations of inverse to block-

tridiagonal matrices with zero leading block-angular
minors.In the cases [1, 8 - 9], the results have been
obtained on various direct factorized representations
of

𝐵

𝑖𝑗

- elements - blocks of the inverse matrix to

𝐶(1)

if it has only one upper or lower or at the same time
one upper and one lower zero (or close to zero)
leading block - corner minors (Under the leading

{𝛥

1

𝜉

}

𝜉=1

𝑚

- upper and

{𝛥

𝜉

𝑚

}

𝜉=1

𝑚

- lower block - corner

minors

𝐶(1)

, where the determinants of the leading

truncated submatrices

𝐶

1

𝑘−1

and

𝐶

𝑘+2

𝑚

starting with

𝑞

1

and

𝑞

𝑚

respectively) are understood. In this case, we

have used, introduced by us [9] in the case of the
vanishing of some of their leading upper (lower)
block - angular minors of nondegenerate matrices

𝐶(1)

, generalized matrix (processes) - sequences of

the type:

{

𝐼𝑓

𝑑𝑒𝑡( 𝛬

𝜉

) ≠ 0,  𝑡ℎ𝑒𝑛 𝛬

𝜉+1

= 𝑞

𝜉

− 𝑝

𝜉

𝛬

𝜉

−1

𝑟

𝜉

, 𝛬

2

= 𝑞

1

,

(𝑑𝑒𝑡( 𝑞

1

) ≠ 0),  𝜉 = 2, . . . , 𝑚.

𝐼𝑓

𝑑𝑒𝑡( 𝛬

𝜉

) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦𝜉 𝑓𝑟𝑜𝑚 (3 ≤ 𝜉 ≤ 𝑚 − 1),

𝑡ℎ𝑒𝑛 𝛬

𝜉+1

=? ,  𝑏𝑢𝑡 𝛬

𝜉+2

= 𝑞

𝜉+1

,  𝑤ℎ𝑒𝑟𝑒  𝑑𝑒𝑡( 𝑞

𝜉+1

) ≠ 0

(2)

{

𝐼𝑓

𝑑𝑒𝑡( 𝐺

𝜉

) ≠ 0,  𝑡ℎ𝑒𝑛 𝐺

𝜉−1

= 𝑞

𝜉

− 𝑟

𝜉+1

𝐺

𝜉

−1

𝑝

𝜉+1

,

𝐺

𝑚−1

= 𝑞

𝑚

, (𝑑𝑒𝑡( 𝑞

𝑚

) ≠ 0),  𝜉 = 𝑚 − 1, . . . ,1.

𝐼𝑓

𝑑𝑒𝑡( 𝐺

𝜉

) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜉 𝑓𝑟𝑜𝑚 (2 ≤ 𝜉 ≤ 𝑚 − 2),

𝑡ℎ𝑒𝑛 𝐺

𝜉−1

=? ,  𝑏𝑢𝑡 𝐺

𝜉−2

= 𝑞

𝜉−1

,  𝑤ℎ𝑒𝑟𝑒  𝑑𝑒𝑡( 𝑞

𝜉−1

) ≠ 0

(3)

It was established in [9] that if one of the

following conditions is satisfied for sequences of
matrices

{𝛬}(2)

and

{𝐺}(3)

:

𝐼. {

[𝑑𝑒𝑡( 𝛬

𝑘+1

) = 0 𝑓𝑜𝑟𝑎𝑛𝑦 𝑘 𝑓𝑟𝑜𝑚 (2 ≤ 𝑘 ≤ 𝑚 − 2),

𝑏𝑢𝑡 {𝑑𝑒𝑡( 𝛬

𝜉

) ≠ 0}

𝜉=2

 𝑘

, {𝑑𝑒𝑡( 𝛬

𝜉

) ≠ 0}

𝜉=𝑘+3

𝑚+1

] →

[𝛥

1

𝑘

= 0 𝑓𝑜𝑟𝑎𝑛𝑦 𝑘 𝑓𝑟𝑜𝑚 (2 ≤ 𝑘 ≤ 𝑚 − 2)];

𝐼𝐼. {

[𝑑𝑒𝑡( 𝐺

𝑘

) = 0 𝑓𝑜𝑟𝑎𝑛𝑦 𝑘 𝑓𝑟𝑜𝑚 (2 ≤ 𝑘 ≤ 𝑚 − 2),

𝑏𝑢𝑡 {𝑑𝑒𝑡( 𝐺

𝜇

) ≠ 0}

𝜇=𝑘+1

𝑚−1

, {𝑑𝑒𝑡( 𝐺

𝜇

) ≠ 0}

𝜇=0

𝑘−2

] →

[𝛥

𝑘+1

𝑚

= 0 𝑓𝑜𝑟𝑎𝑛𝑦 𝑘𝑓𝑟𝑜𝑚  (2 ≤ 𝑘 ≤ 𝑚 − 2)];


background image

𝐼𝐼𝐼.

{

[𝑑𝑒𝑡( 𝐺

𝑘

) = 0 𝑓𝑜𝑟𝑎𝑛𝑦 𝑘 𝑓𝑟𝑜𝑚 (2 ≤ 𝑘 ≤ 𝑚 − 2),

𝑏𝑢𝑡 {𝑑𝑒𝑡( 𝐺

𝜉

) ≠ 0}

𝜉= 𝑘+1

𝑚−1

, {𝑑𝑒𝑡( 𝐺

𝜉

) ≠ 0}

𝜉= 0

𝑘−2

 ]𝑎𝑛𝑑  

[𝑑𝑒𝑡( 𝛬

𝑘+1

) = 0𝑓𝑜𝑟𝑎𝑛𝑦 𝑘 𝑓𝑟𝑜𝑚 (2 ≤ 𝑘 ≤ 𝑚 − 2),

𝑏𝑢𝑡 {𝑑𝑒𝑡( 𝛬

𝜉

) ≠ 0}

𝜉=2

 𝑘

, {𝑑𝑒𝑡( 𝛬

𝜉

) ≠ 0}

𝜉=𝑘+3

𝑚+1

] →

[𝛥

1

𝑘

= 0𝑎𝑛𝑑 𝛥

𝑘+1

𝑚

= 0 𝑎𝑡𝑡ℎ𝑒𝑠𝑎𝑚𝑒 𝑡𝑖𝑚𝑒𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 𝑓𝑟𝑜𝑚 (2 ≤ 𝑘 ≤ 𝑚 − 2)],

then the inverse matrix

𝐵 = 𝐶

−1

has the following structure

𝐵 =

[

[

[𝐵

𝑖𝑗

]

11

]

 𝐵

1  𝑘

 𝐵

2  𝑘

   

   𝐵

𝑘−1𝑘

   

 𝐵

1  𝑘+1

 𝐵

2  𝑘+1

    𝐵

𝑘−1𝑘+1

   

[

[𝐵

𝑖𝑗

]

12

]

  𝐵

𝑘

1

⋯ 𝐵

𝑘

𝑘−1

  (𝐵

𝑘𝑘

= 𝑋

𝑘𝑘

)    (𝐵

𝑘𝑘+1

= 𝑋

𝑘𝑘+1

)

 𝐵

𝑘 𝑘+2

⋯  𝐵

𝑘𝑚

  𝐵

𝑘+1 1

⋯ 𝐵

𝑘+1 𝑘−1

 (𝐵

𝑘+1𝑘

= 𝑋

𝑘+1𝑘

) (𝐵

𝑘+1𝑘+1

= 𝑋

𝑘+1𝑘+1

)

    𝐵

𝑘+1 𝑘+2

⋯ 𝐵

𝑘+1 𝑚

[

[𝐵

𝑖𝑗

]

21

]

  𝐵

𝑘+2  𝑘

 𝐵

𝑘+3  𝑘

 ⋯

   

  𝐵

𝑚

𝑘

   

𝐵

𝑘+2  𝑘+1

𝐵

𝑘+3  𝑘+1

   𝐵

𝑚

𝑘+1

   

[

[𝐵

𝑖𝑗

]

22

]

]

(4)

While for

𝐵

𝑖𝑗

- elements of blocks of

𝐵(4)

, the

following direct factorized representations take place:

Representation 1.1 (on condition I)

[𝐵

𝑖𝑗

(𝛬)]

11

=

{

𝐵̃

𝑖𝑗

(𝛬) + 𝜏

𝑖

𝑋

𝑘𝑘

𝑧

𝑗

,

1 ≤ 𝑖 < 𝑗 ≤ 𝑘 − 1,
𝐵̃

𝑖𝑖

(𝛬) + 𝜏

𝑖

𝑋

𝑘𝑘

𝑧

𝑖

,

 1 ≤ (𝑖 = 𝑗) ≤ 𝑘 − 1,
𝐵̃

𝑖𝑗

(𝛬) + 𝜏

𝑖

𝑋

𝑘𝑘

𝑧

𝑗

,

1 ≤ 𝑗 < 𝑖 ≤ 𝑘 + 1;

[𝐵

𝑖𝑗

(𝛬)]

22

=

{

𝐵̃

𝑖𝑗

(𝛬) + 𝜉

𝑖

𝑋

𝑘+1 𝑘+1

𝑓

𝑗

,

𝑘 + 2 ≤ 𝑖 < 𝑗 ≤ 𝑚;
𝐵̃

𝑖𝑖

(𝛬) + 𝜉

𝑖

𝑋

𝑘+1 𝑘+1

𝑓

𝑖

,

𝑘 + 2 ≤ (𝑖 = 𝑗) ≤ 𝑚;
𝐵̃

𝑖𝑗

(𝛬) + 𝜉

𝑖

𝑋

𝑘+1 𝑘+1

𝑓

𝑗

,

𝑘 + 2 ≤ 𝑗 < 𝑖 ≤ 𝑚.

(5)

{

{

𝐵

𝑘𝑗

= 𝑋

𝑘𝑘

𝑧

𝑗

;

𝐵

𝑘+1 𝑗

= 𝑋

𝑘+1 𝑘

𝑧

𝑗

, 

 1 ≤ 𝑗 ≤ 𝑘 − 1.

{

𝐵

𝑖 𝑘

= 𝜏

𝑖

𝑋

𝑘𝑘

;

𝐵

𝑖 𝑘+1

= 𝜏

𝑖

𝑋

𝑘 𝑘+1

, 

1 ≤ 𝑖 ≤ 𝑘 − 1.

{

{

𝐵

𝑘 𝑗

= 𝑋

𝑘 𝑘+1

𝑓

𝑗

;

𝐵

𝑘+1 𝑗

= 𝑋

𝑘+1 𝑘

𝑓

𝑗

, 

𝑘 + 2 ≤ 𝑗 ≤ 𝑚.

{

𝐵

𝑖 𝑘

= 𝜉

𝑖

𝑋

𝑘+1𝑘

;

𝐵

𝑘+1 𝑗

= 𝜉

𝑖

𝑋

𝑘+1 𝑘+1

, 

𝑘 + 2 ≤ 𝑖 ≤ 𝑚.

(6)


{

[𝐵

𝑖 𝑗

(𝛬)]

21

= 𝜉

𝑖

𝑋

𝑘+1 𝑘

𝑧

𝑗

,

𝑘 + 2 ≤ 𝑖 ≤ 𝑚,
1 ≤ 𝑗 ≤ 𝑘 − 1;

{

[𝐵

𝑖 𝑗

(𝛬)]

12

= 𝜏

𝑖

𝑋

𝑘+1 𝑘

𝑓

𝑗

,

1 ≤ 𝑖 ≤ 𝑘 − 1,
𝑘 + 2 ≤ 𝑗 ≤ 𝑚;

(7)

Here in (4) - (7) aredefined:

{

{𝜏

𝑖

= 𝛱

𝜉=𝑖+1

𝑘

𝑐

𝜉

}

𝑖=1

𝑘−1

, {𝜉

𝑖

= −𝐵̃

𝑖𝑖

(𝛬)𝛱

𝜉=𝑘+3

𝑖

𝛽

𝜉

𝑝

𝑘+2

}

𝑖=𝑘+2

𝑚

,

{𝑧

𝑗

= 𝛱

𝜉=𝑗+1

𝑘

𝛽

𝜉

}

𝑗=1

𝑘−1

, {𝑓

𝑗

= −𝑟

𝑘+2

𝛱

𝜉=𝑘+3

𝑗

𝑐

𝜉

𝐵̃

𝑗𝑗

(𝛬)}

𝑗=𝑘+2

𝑚

.

( 8)

Here

𝐵̃

𝑖𝑗

(𝛬)

- elements - blocks of truncated

inverse

submatrices

𝐵̃

1

𝑘−1

= [𝐶

1

𝑘−1

(𝛬)]

−1

and

𝐵̃

𝑘+2

𝑚

= [𝐶

𝑘+2

𝑚

(𝛬)]

−1

, as functions of a sequence of

{𝛬}

matrices, respectively, can be represented as


background image

𝐵̃

𝑖𝑗

(𝛬) =

{

𝐵̃

𝑖𝑗

(𝛬) = 𝑐

𝑖+1

𝐵̃

𝑖+1𝑗

(𝛬),

 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 − 1;  𝑘 + 2 ≤ 𝑖 < 𝑗 ≤ 𝑚,
𝐵̃

𝑖𝑖

(𝛬) = 𝛬

𝑖+1

−1

+ 𝑐

𝑖+1

𝐵̃

𝑖+1 𝑖+1

(𝛬)𝛽

𝑖+1

,

1 ≤ (𝑖 = 𝑗) ≤ 𝑘 − 1;  𝑘 + 2 ≤ (𝑖 = 𝑗) ≤ 𝑚,
𝐵̃

𝑖𝑗

(𝛬) = 𝐵̃

𝑖 𝑖+1

(𝛬)𝛽

𝑖+1

,

1 ≤ 𝑗 < 𝑖 ≤ 𝑘 − 1;  𝑘 + 2 ≤ 𝑗 < 𝑖 ≤ 𝑚.

(9)

Representation 1.2 (oncondition II)

[𝐵

𝑖𝑗

(𝐺)]

11

=

{

𝐵̃

𝑖𝑗

(𝐺) + 𝑓̂

𝑖

𝑋

𝑘𝑘

𝜉̂

𝑗

,

 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 − 1,
𝐵̃

𝑖𝑗

(𝐺) + 𝑓̂

𝑖

𝑋

𝑘𝑘

𝜉̂

𝑖

,

1 ≤ (𝑖 = 𝑗) ≤ 𝑘 − 1,
𝐵̃

𝑖𝑗

(𝐺) + 𝑓̂

𝑖

𝑋

𝑘𝑘

𝜉̂

𝑗

,

1 ≤ 𝑗 < 𝑖 ≤ 𝑘 − 1;

[𝐵

𝑖𝑗

(𝐺)]

22

=

{

𝐵̃

𝑖𝑗

(𝐺) + 𝑧̂

𝑖

𝑋

𝑘+1 𝑘+1

𝜏̂

𝑗

,

𝑘 + 2 ≤ 𝑖 < 𝑗 ≤ 𝑚;
𝐵̃

𝑖𝑗

(𝐺) + 𝑧̂

𝑖

𝑋

𝑘+1 𝑘+1

𝜏̂

𝑖

,

 𝑘 + 2 ≤ (𝑖 = 𝑗) ≤ 𝑚;
𝐵̃

𝑖𝑗

(𝐺) + 𝑧̂

𝑖

𝑋

𝑘+1 𝑘+1

𝜏̂

𝑗

,

 𝑘 + 2 ≤ 𝑗 < 𝑖 ≤ 𝑚.

(10)

{

{

𝐵

𝑘𝑗

= 𝑋

𝑘𝑘

𝜉̂

𝑗

,

𝐵

𝑘+1 𝑗

= 𝑋

𝑘+1 𝑘

𝜉̂

𝑗

, 

1 ≤ 𝑗 ≤ 𝑘 − 1.

{

𝐵

𝑖 𝑘

= 𝑓̂

𝑖

𝑋

𝑘𝑘

,

𝐵

𝑖 𝑘+1

= 𝑓̂

𝑖

𝑋

𝑘 𝑘+1

, 

 1 ≤ 𝑖 ≤ 𝑘 − 1.

,

{

{

𝐵

𝑘𝑗

= 𝑋

𝑘𝑘+1

𝜏̂

𝑗

,

𝐵

𝑘+1 𝑗

= 𝑋

𝑘+1 𝑘+1

𝜏̂

𝑗

, 

 𝑘 + 2 ≤ 𝑗 ≤ 𝑚.

{

𝐵

𝑖 𝑘

= 𝑧̂

𝑖

𝑋

𝑘+1𝑘

,

𝐵

𝑘+1 𝑗

= 𝑧̂

𝑖

𝑋

𝑘+1 𝑘+1

, 

𝑘 + 2 ≤ 𝑖 ≤ 𝑚.

(11)

{

[𝐵

𝑖 𝑗

(𝐺)]

12

= 𝑓̂

𝑖

𝑋

𝑘𝑘+1 

𝜏̂

𝑗

,

 1 ≤ 𝑖 ≤ 𝑘 − 1,
𝑘 + 2 ≤ 𝑗 ≤ 𝑚.

{

[𝐵

𝑖 𝑗

(𝐺)]

21

= 𝑧̂

𝑖

𝑋

𝑘+1𝑘 

𝜉̂

𝑗

,

𝑘 + 2 ≤ 𝑖 ≤ 𝑚,
1 ≤ 𝑗 ≤ 𝑘 − 1.

(12)

Where

{

{𝜉̂

𝑗

= −𝑝

𝑘

𝛱

𝜉=𝑗+1

𝑘−2

𝑐

𝜉

𝐵̃

𝑗𝑗

(𝐺)}

𝑗=1

𝑘−1

,

{𝜏̂

𝑗

= 𝛱

𝜉=𝑘+2

𝑗

𝛽̂

𝜉

}

𝑗=𝑘+2

𝑚

,

{𝑓̂

𝑖

= −𝐵̃

𝑗𝑗

(𝐺)𝛱

𝜉=𝑖+1

𝑘−1

𝛽

𝜉

𝑟

𝑘

}

𝑖=1

𝑘−1

,

{𝑧̂

𝑖

= 𝛱

𝜉=𝑘+2

𝑖

𝑐̂

𝜉

}

𝑖=𝑘+1

𝑚

.

(13)


Here

𝐵̃

𝑖𝑗

(𝐺)

- elements - blocks of truncated

submatrices

𝐵̃

1

𝑘−1

= [𝐶

1

𝑘−1

(𝐺)]

−1

and

𝐵̃

𝑘+2

𝑚

=

[𝐶

𝑘+2

𝑚

(𝐺)]

−1

, as functions of a sequence of

{𝐺}

matrices, respectively, can be represented as

𝐵̃

𝑖𝑗

(𝐺) =

{

𝐵̃

𝑖𝑗

(𝐺) = 𝐵̃

𝑖𝑗−1

(𝐺)𝛽̂

𝑗

,

𝑖𝑓 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 − 1;  𝑘 + 2 ≤ 𝑖 < 𝑗 ≤ 𝑚,
𝐵̃

𝑖𝑖

(𝐺) = 𝐺

𝑖−1

−1

+ 𝑐̂

𝑖

𝐵̃

𝑖−1 𝑖−1

(𝐺)𝛽̂

𝑖

,

𝑖𝑓 1 ≤ (𝑖 = 𝑗) ≤ 𝑘 − 1;  𝑘 + 2 ≤ (𝑖 = 𝑗) ≤ 𝑚,
𝐵̃

𝑖𝑗

(𝐺) = 𝑐̂

𝑖

𝐵̃

𝑖−1 𝑗

(𝐺),

𝑖𝑓 1 ≤ 𝑗 < 𝑖 ≤ 𝑘 − 1;  𝑘 + 2 ≤ 𝑗 < 𝑖 ≤ 𝑚.

(14)

Representation 1.3 (on condition III)

[𝐵

𝑖𝑗

(𝛬, 𝐺)]

11

=

{

𝐵̃

𝑖𝑗

(𝛬, 𝐺) + 𝑓̂

𝑖

𝑋

𝑘𝑘

𝑧

𝑗

,

1 ≤ 𝑖 < 𝑗 ≤ 𝑘 − 1,
𝐵̃

𝑖𝑖

(𝛬, 𝐺) + 𝑓̂

𝑖

𝑋

𝑘𝑘

𝑧

𝑖

,

1 ≤ (𝑖 = 𝑗) ≤ 𝑘 − 1,
𝐵̃

𝑖𝑗

(𝛬, 𝐺) + 𝑓̂

𝑖

𝑋

𝑘𝑘

𝑧

𝑗

,

1 ≤ 𝑗 < 𝑖 ≤ 𝑘 − 1.

[𝐵

𝑖𝑗

(𝛬, 𝐺)]

22

=

{

𝐵̃

𝑖𝑗

(𝛬, 𝐺) + 𝑧̂

𝑖

𝑋

𝑘+1 𝑘+1

𝑓

𝑗

,

 𝑘 + 2 ≤ 𝑖 < 𝑗 ≤ 𝑚,
𝐵̃

𝑖𝑖

(𝛬, 𝐺) + 𝑧̂

𝑖

𝑋

𝑘+1 𝑘+1

𝑓

𝑖

,

 𝑘 + 2 ≤ (𝑖 = 𝑗) ≤ 𝑚,
𝐵̃

𝑖𝑗

(𝛬, 𝐺) + 𝑧̂

𝑖

𝑋

𝑘+1 𝑘+1

𝑓

𝑗

,

 𝑘 + 2 ≤ 𝑗 < 𝑖 ≤ 𝑚.

(15)


background image

{

{

𝐵

𝑘𝑗

= 𝑋

𝑘𝑘

𝑧

𝑗

,

𝐵

𝑘+1 𝑗

= 𝑋

𝑘+1 𝑘

𝑧

𝑗

,

𝑖𝑓 1 ≤ 𝑗 ≤ 𝑘 − 1.

{

𝐵

𝑖 𝑘

= 𝑓̂

𝑖

𝑋

𝑘𝑘

,

𝐵

𝑖 𝑘+1

= 𝑓̂

𝑖

𝑋

𝑘 𝑘+1

, 

𝑖𝑓 1 ≤ 𝑖 ≤ 𝑘 − 1.

, 

{

{

𝐵

𝑘𝑗

= 𝑋

𝑘𝑘+1

𝑓

𝑗

,

𝐵

𝑘+1 𝑗

= 𝑋

𝑘+1 𝑘+1

𝑓

𝑗

, 

𝑖𝑓 𝑘 + 2 ≤ 𝑗 ≤ 𝑚.

{

𝐵

𝑖 𝑘

= 𝑧̂

𝑖

𝑋

𝑘+1𝑘

,

𝐵

𝑖 𝑘+1

= 𝑧̂

𝑖

𝑋

𝑘+1 𝑘+1

, 

𝑖𝑓 𝑘 + 2 ≤ 𝑖 ≤ 𝑚.

(

16)

{

[𝐵

𝑖 𝑗

(𝛬, 𝐺)]

12

= 𝑓̂

𝑖

𝑋

𝑘 𝑘+1

𝑓

𝑗

,

 1 ≤ 𝑖 ≤ 𝑘 − 1,
𝑘 + 2 ≤ 𝑗 ≤ 𝑚.

    {

[𝐵

𝑖 𝑗

(𝛬, 𝐺)]

21

= 𝑧̂

𝑖

𝑋

𝑘+1 𝑘

𝑧

𝑗

,

 𝑘 + 2 ≤ 𝑖 ≤ 𝑚,
1 ≤ 𝑗 ≤ 𝑘 − 1.

(17)

where

{

{𝑓̂

𝑖

= −𝐵̃

𝑖𝑖

(𝛬, 𝐺)𝛱

𝜉=𝑖+1

𝑘−1

𝛽̂

𝜉

𝑟

𝑘

}

𝑖=1

𝑘−1

,

{𝑧̂

𝑖

= 𝛱

𝜉=𝑘+2

𝑖

𝑐̂

𝜉

}

𝑖=𝑘+2

𝑚

,

{𝑧

𝑗

= 𝛱

𝜉=𝑗+1

𝑘

𝛽

𝜉

}

𝑗=1

𝑘−1

,

{𝑓

𝑗

= −𝑟

𝑘+2

𝛱

𝜉=𝑘+3

𝑐

𝜉

𝐵̃

𝑗𝑗

(𝛬, 𝐺)}

𝑗=𝑘+2

𝑚

.

(18)

Here

𝐵̃

𝑖𝑗

(𝛬, 𝐺)

are block elements of truncated submatrices

𝐵̃

1

𝑘−1

= [𝐶

1

𝑘−1

(𝛬, 𝐺)]

−1

and

𝐵̃

𝑘+2

𝑚

=

[𝐶

𝑘+2

𝑚

(𝛬, 𝐺)]

−1

, as functions of a sequence of

{𝛬}

and

{𝐺}

matrices, respectively, can be represented as

𝐵̃

𝑖𝑗

(𝛬, 𝐺) =

{

𝛱

𝜉=𝑖+1

𝑗

𝑐

𝜉

𝐵̃

𝑗𝑗

(𝛬, 𝐺),

 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 − 1,
𝑘 + 2 ≤ 𝑖 < 𝑗 ≤ 𝑚.
𝐵̃

𝑖𝑖

(𝛬, 𝐺)𝛱

𝜉=𝑗+1

𝑖

𝛽

𝜉

,

1 ≤ 𝑗 < 𝑖 ≤ 𝑘 − 1,
 𝑘 + 2 ≤ 𝑗 < 𝑖 ≤ 𝑚.

𝐵̃

𝑖𝑗

(𝛬, 𝐺) =

{

𝐵

̃

𝑖𝑖

(𝛬, 𝐺)𝛱

𝜉=𝑖+1

𝑗

𝛽̂

𝜉

,

1 ≤ 𝑖 < 𝑗 ≤ 𝑘 − 1,
 𝑘 + 2 ≤ 𝑖 < 𝑗 ≤ 𝑚.
𝛱

𝜉=𝑗+1

𝑖

𝑐̂

𝜉

𝐵̃

𝑗𝑗

(𝛬, 𝐺),

1 ≤ 𝑗 < 𝑖 ≤ 𝑘 − 1, 
𝑘 + 2 ≤ 𝑗 < 𝑖 ≤ 𝑚.

(19)

𝐵̃

𝑖𝑗

(𝛬, 𝐺) =

{

𝛱

𝜉=𝑖+1

𝑗

𝑐

𝜉

𝐵̃

𝑗𝑗

(𝛬, 𝐺),

1 ≤ 𝑖 < 𝑗 ≤ 𝑘 − 1,
𝑘 + 2 ≤ 𝑖 < 𝑗 ≤ 𝑚.
𝛱

𝜉=𝑗+1

𝑖

𝑐̂

𝜉

𝐵̃

𝑗𝑗

(𝛬, 𝐺),

1 ≤ 𝑗 < 𝑖 ≤ 𝑘 − 1, 
𝑘 + 2 ≤ 𝑗 < 𝑖 ≤ 𝑚.

𝐵̃

𝑖𝑗

(𝛬, 𝐺) =

{

𝐵

̃

𝑖𝑖

(𝛬, 𝐺)𝛱

𝜉=𝑖+1

𝑗

𝛽̂

𝜉

,

 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 − 1,
𝑘 + 2 ≤ 𝑖 < 𝑗 ≤ 𝑚.
𝐵̃

𝑖𝑖

(𝛬, 𝐺)𝛱

𝜉=𝑗+1

𝑖

𝛽

𝜉

,

1 ≤ 𝑗 < 𝑖 ≤ 𝑘 − 1, 
𝑘 + 2 ≤ 𝑗 < 𝑖 ≤ 𝑚.

(20)

Here in (8) - (20)

{

𝛽

𝜉+1

= −(𝑝

𝜉+1

𝛬

𝜉+1

−1

), 𝑐

𝜉+1

= − (𝛬

𝜉+1

−1

𝑟

𝜉+1

),

1 ≤ 𝜉 ≤ 𝑘 − 1;  𝑘 + 2 ≤ 𝜉 ≤ 𝑚 − 1;
𝛽̂

𝜉+1

= − (𝑝

𝜉+1

𝐺

𝜉+1

−1

), 𝑐̂

𝜉+1

= − (𝐺

𝜉+1

−1

𝑟

𝜉+1

),

1 ≤ 𝜉 ≤ 𝑘 − 2;  𝑘 + 1 ≤ 𝜉 ≤ 𝑚 − 1;
𝐵̃

𝜉𝜉

= (𝛬

𝜉+1

+ 𝐺

𝜉−1

− 𝑞

𝜉

)

−1

,  1 ≤ 𝜉 ≤ 𝑘 − 1;  𝑘 + 2 ≤ 𝜉 ≤ 𝑚,

𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 {𝛬} 𝑎𝑛𝑑 {𝐺}
𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 𝑎𝑐𝑐𝑜𝑑𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ (2) ÷ (3).

(21)


At the same time,

unknown

{[𝑋

𝑘𝑘

(𝛬), 𝑋

𝑘𝑘+1

(𝛬), 𝑋

𝑘+1𝑘

(𝛬), 𝑋

𝑘+1𝑘+1

(𝛬)],

1

1

1

1

( ),

( ),

( ),

( ) ,

kk

kk

k

k

k

k

X

G X

G X

G X

G

+

+

+ +

[𝑋

𝑘𝑘

(𝛬, 𝐺), 𝑋

𝑘𝑘+1

(𝛬, 𝐺), 𝑋

𝑘+1𝑘

(𝛬, 𝐺), 𝑋

𝑘+1𝑘+1

(𝛬, 𝐺)]}

- elements - blocks in

𝐵(4)

, as functions of the

sequence

{𝛬}

or

{𝐺}

, or simultaneously as functions of

the

sequences

{𝛬}

and

{𝐺}

under

appropriate

conditions, can be found from the following matrix
equations:

On condition I

[

𝛬

𝑘+1

𝑟

𝑘+1

𝑝

𝑘+1

(𝑞

𝑘+1

− 𝑄

𝑘+1

)

] [

𝑋

𝑘𝑘

(𝛬)

𝑋

𝑘𝑘+1

(𝛬)

𝑋

𝑘+1𝑘

(𝛬)

𝑋

𝑘+1𝑘+1

(𝛬)

]

=

= [

𝐸

𝑘𝑘

𝐸

𝑘+1𝑘+1

]

,


background image

Where

𝑸

𝒌+𝟏

(𝜦) = 𝒓

𝒌+𝟐

𝑩

̃

𝒌+𝟐𝒌+𝟐

(𝑮)𝒑

𝒌+𝟐

. Where

in

(𝑞

𝑘+1

− 𝑄

𝑘+1

) = 𝐺

𝑘

,

if

{𝑑𝑒𝑡( 𝐺

𝜉

) ≠ 0}

𝜉=𝑘+1

𝑚−1

.

On condition II

[

(𝑞

𝑘

− 𝑄

𝑘

)

𝑟

𝑘+1

𝑝

𝑘+1

𝐺

𝑘

] [

𝑋

𝑘𝑘

(𝐺)

𝑋

𝑘𝑘+1

(𝐺)

𝑋

𝑘+1𝑘

(𝐺)

𝑋

𝑘+1𝑘+1

(𝐺)

] =

= [

𝐸

𝑘𝑘

𝐸

𝑘+1𝑘+1

]

,

Where

𝑸

𝒌

(𝑮) = 𝒑

𝒌

𝑩

̃

𝒌+𝟏𝒌+𝟏

(𝜦)𝒓

𝒌

. Where

in

(𝑞

𝑘

− 𝑄

𝑘

) = 𝛬

𝑘+1

,

if

{𝑑𝑒𝑡( 𝛬

𝜉

) ≠ 0}

𝜉=2

𝑘

.

On condition III

[

𝛬

𝑘+1

𝑟

𝑘+1

𝑝

𝑘+1

𝐺

𝑘

] [

𝑋

𝑘𝑘

(𝐺, 𝛬)

𝑋

𝑘𝑘+1

(𝐺, 𝛬)

𝑋

𝑘+1𝑘

(𝐺, 𝛬)

𝑋

𝑘+1𝑘+1

(𝐺, 𝛬)

] =

= [

𝐸

𝑘𝑘

𝐸

𝑘+1𝑘+1

]

.

Remark.

The

validity

of

the

above

representations for

𝐵̃

𝑖𝑗

elements - blocks of the inverse

matrix

𝐵 = 𝐶

−1

was established [9] basing on

verification of the basic equalities of

𝐵С   =

Е 

= СВ

. In this case, one should use the

following matrix equalities [9]:

{

𝑐̂

𝜉+1

𝐵̃

𝜉 𝜉

= 𝐵̃

𝜉+1𝜉+1

𝛽

𝜉+1

,

𝐵̃

𝜉 𝜉

𝛽̂

𝜉+1

= 𝑐

𝜉+1

𝐵̃

𝜉+1𝜉+1

, 1 ≤ 𝜉 ≤ 𝑘 − 2;

  𝑘 + 1 ≤ 𝜉 ≤ 𝑚 − 1,

where are the matrices

{𝑐̂

𝜉+1

, 𝛽

𝜉+1

, 𝑐

𝜉+1

, 𝛽̂

𝜉+1

, 𝐵̃

𝜉

}

- defined in (21).

RESULTS AND DISCUSSIONS

The practical use of existing software packages

and a comparative analysis of the calculation results
based on them show [7] that in the case of poor
conditioning

(especially

pathologically

poor

conditioning , there is matrix condition number -
relative error of calculations with real numbers of a
given computer) the task of developing an effective
software package has not yet been completely solved.
The algorithms of machine-independent software
packages JINRLINPACK were created based on the
new abovementioned representations (methods) [8]..

CONCLUSIONS

Thus, the previously unknown structure of

matrices which are inverse to

𝐵 = 𝐶

−1

case has been

studied for one upper or lower or simultaneously
upper and lower zero (or close to zero) leading block

- angular minors of the matrix

𝐶(1)

. Moreover, for

the elements

𝐵̃

𝑖𝑗

of the truncated submatrices

𝐵̃

1

𝑘−1

=

[𝐶

1

𝑘−1

]

−1

and

𝐵̃

𝑘+2

𝑚

= [𝐶

𝑘+2

𝑚

]

−1

,

various

representations are obtained. It should be noted, that
these results we have been used while constructing a
solution to ill-conditioned systems of linear algebraic
equations of a general form [7-9].

𝐴𝑍 = 𝐹,

(22)

where

𝐴 = (𝑎

𝑖𝑗

)

is a square of order m or a

rectangular dimension of

𝑚 × 𝑛

is a real matrix of

general

form,

𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛,

𝑍 =

(𝑧

1

, . . . , 𝑧

𝑛

)

𝑇

is the desired

𝐹 = (𝑓

1

, . . . , 𝑓

𝑚

)

𝑇

is the

given n and m - dimensional vectors, respectively.
Numerical experiments have shown that new
programs have on average better basic indicators than
similar programs from the most famous packages
CERNLIB, NAG, LIBJINR, LINA.

REFERENCES

[1]

T.T.

Rakhmonov,

M.I.

Fazylov,

G.A.

Kulabdullaev. On role of matrix algegra in software
development for analysis and processing of data
registrered by high - energy particle detectors.Repors
of the Academy of Sciences of the Repablic of
Uzbekistan, №1, 2015, pp.22-26. (in russian).

[2]

A.S. Alekseyev, Kh. Kh. Imomnazarov, T.T.
Rakhmonov et. al. Direct and inverse dynamic
problems for a system of equations of homogeneous
media. Journal Applied Mathematic Letters. USA,
2004, V.17, No 9, рp.1097-1103.

[3]

Kh. Kh. Imomnazarov, P. P. Karovin, T.T.
Rakhmonov. Numerical solution of an inverse
problem of gravimetry for a contact surface. Journal
Applied Mathematics Letters. USA. 2005, vol. 18, No.
2, pp. 187-190.

[4]

Тikhonov А.N., Аrsenin V.Ya. Methodes for solving
incorrectli posed problems. M., «Nauka», 1979. (in
russian).

[5]

Gogunov S.K., Antonov A.G. et. al. Guaranteed
accuracyof linear systems of linear equations in
Euclidean spaces. Novosibirsk, «Nauka», Siberian
depatment.1988.(in russion).

[6]

Samarski A.A., Gulin A.B. Numerical methods. M.
«Nauka», 1989.(in russion).

[7]

T.T. Rakhmonov, G.A. Emel’yanenko et. al. On
efficiency of critical - component method for solving
degenerate and ill - posed systems of linear algebraic
equations. JINR, E11-98-302, Dubna, 1998.

[8]

T.T. Rakhmonov, G.A. Emel’yanenko et. al.
JINRLINPACK - the Pakage of Computer -
Independent Programmes for Solving Ill - Posed
Systems of Linear Algebraic Equations. JINR, P11-
2000 - 287, Dubna, 2000.(in russian).

[9]

T.T. Rakhmonov, G.A. Emel’yanenko. Generator of
matrix-factorized represenations of block-tridiagonal


background image

and inversed thе matrices. JINR, Р11-93 - 265, Dubna,
1993.(in russian).

[10]

Sh Salimov 2020 IOP Conf. Ser.: Mater. Sci. Eng. 883
012191

[11]

Sh Salimov et al 2020 IOP Conf. Ser.: Mater. Sci. Eng.
883 012192

References

T.T. Rakhmonov, M.I. Fazylov, G.A. Kulabdullaev. On role of matrix algegra in software development for analysis and processing of data registrered by high - energy particle detectors.Repors of the Academy of Sciences of the Repablic of Uzbekistan, №1, 2015, pp.22-26. (in russian).

A.S. Alekseyev, Kh. Kh. Imomnazarov, T.T. Rakhmonov et. al. Direct and inverse dynamic problems for a system of equations of homogeneous media. Journal Applied Mathematic Letters. USA, 2004, V.17, No 9, рp.1097-1103.

Kh. Kh. Imomnazarov, P. P. Karovin, T.T. Rakhmonov. Numerical solution of an inverse problem of gravimetry for a contact surface. Journal Applied Mathematics Letters. USA. 2005, vol. 18, No. 2, pp. 187-190.

Тikhonov А.N., Аrsenin V.Ya. Methodes for solving incorrectli posed problems. M., «Nauka», 1979. (in russian).

Gogunov S.K., Antonov A.G. et. al. Guaranteed accuracyof linear systems of linear equations in Euclidean spaces. Novosibirsk, «Nauka», Siberian depatment.1988.(in russion).

Samarski A.A., Gulin A.B. Numerical methods. M. «Nauka», 1989.(in russion).

T.T. Rakhmonov, G.A. Emel’yanenko et. al. On efficiency of critical - component method for solving degenerate and ill - posed systems of linear algebraic equations. JINR, E11-98-302, Dubna, 1998.

T.T. Rakhmonov, G.A. Emel’yanenko et. al. JINRLINPACK - the Pakage of Computer - Independent Programmes for Solving Ill - Posed Systems of Linear Algebraic Equations. JINR, P11- 2000 - 287, Dubna, 2000.(in russian).

T.T. Rakhmonov, G.A. Emel’yanenko. Generator of matrix-factorized represenations of block-tridiagonal and inversed thе matrices. JINR, Р11-93 - 265, Dubna, 1993.(in russian).

Sh Salimov 2020 IOP Conf. Ser.: Mater. Sci. Eng. 883 012191

Sh Salimov et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 883 012192

inLibrary — это научная электронная библиотека inConference - научно-практические конференции inScience - Журнал Общество и инновации UACD - Антикоррупционный дайджест Узбекистана UZDA - Ассоциации стоматологов Узбекистана АСТ - Архитектура, строительство, транспорт Open Journal System - Престиж вашего журнала в международных базах данных inDesigner - Разработка сайта - создание сайтов под ключ в веб студии Iqtisodiy taraqqiyot va tahlil - ilmiy elektron jurnali yuridik va jismoniy shaxslarning in-Academy - Innovative Academy RSC MENC LEGIS - Адвокатское бюро SPORT-SCIENCE - Актуальные проблемы спортивной науки GLOTEC - Внедрение цифровых технологий в организации MuviPoisk - Смотрите фильмы онлайн, большая коллекция, новинки кинопроката Megatorg - Доска объявлений Megatorg.net: сайт бесплатных частных объявлений Skinormil - Космецевтика активного действия Pils - Мультибрендовый онлайн шоп METAMED - Фармацевтическая компания с полным спектром услуг Dexaflu - от симптомов гриппа и простуды SMARTY - Увеличение продаж вашей компании ELECARS - Электромобили в Ташкенте, Узбекистане CHINA MOTORS - Купи автомобиль своей мечты! PROKAT24 - Прокат и аренда строительных инструментов